聚乙烯树脂的氧气修整的制作方法

文档序号:4465323阅读:285来源:国知局
专利名称:聚乙烯树脂的氧气修整的制作方法
1.发明领域本发明涉及聚乙烯均聚物和共聚物树脂的挤出方法。更特别地,本发明提供用氧气修整(tailoring)聚乙烯树脂以改善由该树脂制成的薄膜的膜泡稳定性和厚度均匀性的方法。
2.背景修整树脂如聚乙烯均聚物或共聚物树脂是改变分子构造从而改变树脂和由其制成的薄膜和制品的整体性质的公知方法。修整涉及用能使树脂受控制地降解的试剂如过氧化物或氧气处理所述树脂。对树脂流变性质的修整作用可体现在剪切稀化性增加、弹性增加、熔体强度提高、吹塑过程中溶胀减小、和薄膜吹塑过程中膜泡稳定性提高。虽然不希望受理论限制,但相信修整的作用是在树脂中引入少量长链支化。
许多应用中需要有双峰分子量分布和/或双峰组成分布的聚烯烃树脂。可生产包括较高分子量聚烯烃和较低分子量聚烯烃混合物的树脂以利用较高分子量树脂和由其制成的制品和薄膜提高的强度性质、和较低分子量树脂更好加工的特性。
可在串联的反应器如串联的气相反应器或串联的淤浆反应器中生产双峰树脂。也可用双金属催化剂如US 5 032 562和5 525 678和EP 0 729387中所公开的双金属催化剂在单一反应器内生产双峰聚烯烃树脂。这些催化剂典型地包括产生不同平均分子量聚烯烃的非茂金属催化剂组分和茂金属催化剂组分。例如US 5 525 678公开一种双金属催化剂,一实施方案中包括产生较高分子量树脂的钛非茂金属组分和产生较低分子量树脂的锆茂金属组分。控制反应器内各催化剂的相对量或不同催化剂的相对反应性可控制所述双峰产品树脂。
双峰聚乙烯树脂特别适合的应用是在薄膜中。但通常,中密度聚乙烯(MDPE)和高密度聚乙烯(HDPE)树脂的膜泡稳定性和厚度均匀性不足以生产薄膜。已试图修整聚乙烯树脂以改善膜泡稳定性、厚度均匀性、和/或其它树脂或薄膜性质;参见例如EP 0 457 441和US 5 728 335;5 739 266;和6 147 167。其它背景参考文献包括FR 2 251 576;EP 0 180 444;US5 578 682;EP 0 728 796;和GB 1 201 060。但希望有挤出聚乙烯、特别是粒状双峰聚乙烯膜树脂的改进方法,以提供加工成薄膜时膜泡稳定性和厚度均匀性改善的树脂。
3.发明概述一方面,本发明提供一种双峰聚乙烯树脂的挤出方法。所述方法包括提供有双峰分子量分布的聚乙烯均聚物或共聚物树脂;输送所述树脂通过挤出机,所述挤出机有其中不使所述树脂熔融的进料区、其中使所述树脂的至少一部分熔融的熔融混合区、和其中所述树脂处于熔融状态的熔融区,每个区都部分地充满所述树脂;和使所述熔融树脂在熔融区与包含8至40%(体积)的O2的气体混合物接触。还可将所述树脂造粒。一特殊实施方案中,用所述粒状、氧气处理的树脂制备聚乙烯薄膜,所述薄膜有改进的膜泡稳定性和厚度均匀性。
另一方面,本发明提供一种有双峰分子量分布的粒状聚乙烯膜树脂的生产方法,所述方法包括使乙烯在聚合条件下与负载型双金属催化剂接触产生有双峰分子量分布的粒状聚乙烯树脂;输送所述树脂通过挤出机,所述挤出机有其中不使所述树脂熔融的进料区、其中使所述树脂的至少一部分熔融的熔融混合区、和其中所述树脂处于熔融状态的熔融区,每个区都部分地充满所述树脂;使所述熔融树脂在熔融区与包含8至40%(体积)的O2的气体混合物接触;和将所述氧气处理过的树脂造粒形成所述粒状聚乙烯膜树脂。
4.附图简述

图1为Kobe混合机的示意图。
图2为Farrel混合机的示意图。
5.详述所述聚乙烯树脂优选为中密度聚乙烯(MDPE),即密度典型地在0.930至0.945g/cm3范围内的聚乙烯;或高密度聚乙烯(HDPEs),即密度大于0.945g/cm3而且高至0.970g/cm3的聚乙烯。所述聚乙烯可以是均聚物或共聚物,有多于两种单体的聚合物如三元共聚物也包含在本文所用术语“共聚物”的范围内。适用的共聚单体包括α-烯烃,如C3-C20α-烯烃或C3-C12α-烯烃。所述α-烯烃共聚单体可以是线形或支化的,需要时可使用两或多种共聚单体。适用的共聚单体的例子包括线形C3-C12α-烯烃,和有一或多个C1-C3烷基支链或芳基的α-烯烃。具体实例包括丙烯;3-甲基-1-丁烯;3,3-二甲基-1-丁烯;1-戊烯;有一或多个甲基、乙基或丙基取代基的1-戊烯;有一或多个甲基、乙基或丙基取代基的1-己烯;有一或多个甲基、乙基或丙基取代基的1-庚烯;有一或多个甲基、乙基或丙基取代基的1-辛烯;有一或多个甲基、乙基或丙基取代基的1-壬烯;乙基、甲基或二甲基-取代的1-癸烯;1-十二碳烯;和苯乙烯。应理解以上所列共聚单体只是举例而不是要限制。优选的共聚单体包括丙烯、1-丁烯、1-戊烯、4-甲基-1-戊烯、1-己烯、1-辛烯和苯乙烯。
一特殊实施方案中,所述聚乙烯树脂有双峰分子量分布和/或双峰组成分布。所述树脂可用任何能产生双峰树脂的催化剂以常规方法如单或串联的气相流化床反应器、或单或串联淤浆环管或超临界环管反应器生产。所用催化剂无特殊限制,可包括例如一或多种齐格勒-纳塔催化剂和/或茂金属催化剂。也可使用催化剂混合物。特别地,可在单一反应器内存在两或多种不同催化剂而且同时活性地聚合的情况下进行聚合。所述两或多种催化剂可以是不同催化剂类型的,如非茂金属催化剂和茂金属催化剂,以产生有所要性质的树脂产品。所述催化剂可分开地或以物理混合物形式供入反应器中,或者每个催化剂粒子可都包含多于一种催化剂化合物。所述催化剂包括两种产生不同分子量和/或不同共聚单体含量的聚合物的催化剂时,所述聚合物产品可有分子量、共聚单体、或两者的双峰分布。此双峰产品可有与由任一催化剂单独获得的产品、或在反应器后使由每种催化剂单独获得的各单峰树脂混合获得的产品不同的物性。
例如,US 5 525 678公开一种催化剂,包括产生较低分子量的高共聚单体含量的聚合物的锆茂金属和产生较高分子量和低共聚单体含量的聚合物的钛非茂金属。典型地,乙烯是主要单体,加入少量的己烯或其它α-烯烃以降低聚乙烯的密度。所述锆催化剂结合大部分共聚单体和氢,以致在一典型实施例中约85%的己烯和92%的氢在低分子量聚合物中。加水以通过控制所述锆催化剂的活性控制总分子量。
适用催化剂的其它例子包括US 4 554 265中公开的Zr/Ti催化剂;US 5 155 079和5 198 399中公开的混合铬催化剂;US 5 395 540和5 405817中公开的Zr/V和Ti/V催化剂;US 6 271 323中公开的铪/庞大配体茂金属混合催化剂;和US 6 207 606中公开的混合茂金属催化剂。
典型地,优选的双峰树脂包括用茂金属催化剂生产的熔体指数I21.6为100至1000dg/min的窄分子量分布低分子量(LMW)组分,和用非茂金属催化剂生产的流动指数I21.6为0.1至1dg/min的高分子量(HMW)组分。HMW和LMW组分的相对重量分数可为约1∶9至约9∶1。典型树脂的HMW重量分数为约60%,流动指数为约6。
在混合机如同向旋转或反向旋转、啮合或非啮合双螺杆混合机中处理所述双峰树脂。此类混合机为本领域公知,可从Kobe和Farrel等各种来源商购。将所述树脂供入混合机的进料区,其中温度低于所述树脂被压缩和向熔融混合区输送时的熔融温度。典型地,进料区内温度为20至100℃,通过冷却挤出机壁保持。在熔融混合区内,温度升高至少部分地使所述树脂熔融。在熔融区内,温度足以使基本上所有树脂熔融,以提供熔融的聚乙烯树脂。每个区都仅部分地充满所述树脂,即未完全充满这些区。虽然术语“混合机”和“挤出机”通常不严格地可互换使用,但本领域技术人员将理解混合机如商购Kobe或Farrel混合机在较低压力(典型地约100psi或更低)下操作,混合机内各区一般不完全充满树脂。相反,挤出机如商购自例如Werner-Pfleiderer的在高得多的压力(典型地至少几百或几千psi)下操作,挤出机内各区一般完全充满树脂。
虽然不限于任何具体混合机,但现在具体参考示出Kobe混合机10的示意图的图1说明本发明方法。混合机10包括进料区12、混合区14、和熔体输送区16。在进料区12中给混合机10提供树脂和非必需的添加剂,沿下游方向输送树脂通过混合区14和熔体输送区16。闸门20分隔混合区14与熔体输送区16。图1中示出熔体输送区16内非必需的通风口22。如前面所述,所述树脂在混合区14内一般至少部分熔融,在熔体输送区16内一般但不必基本上完全熔融。输送所述树脂通过混合机出口18并深加工如造粒。
参见图2,具体参考Farrel混合机30。混合机30包括进料区32、混合区34、和熔体输送区36。在进料区32中给混合机30提供树脂和非必需的添加剂,沿下游方向输送树脂通过混合区34和熔体输送区36。如前面所述,所述树脂在混合区34内一般至少部分熔融,在熔体输送区36内一般但不必基本上完全熔融。输送所述树脂通过混合机出口38并深加工如造粒。Farrel混合机没有闸门如Kobe混合机分隔混合区与熔体输送区的闸门20。但通过对应于混合元件44的顶点42的虚线40所示窄空隙区有效地分隔混合区34和熔体输送区36。在混合区34和熔体输送区36之间线40的位置可插入非必需的挡板(未示出)。
可在从220°F(104℃)或240°F(116℃)或260°F(127℃)或280°F(138℃)或300°F(149℃)的下限至低于430°F(221℃)或低于420°F(216℃)或低于410°F(210℃)或低于400°F(204℃)的上限的熔体温度下处理所述树脂,其中所述熔体温度是混合区下游端的温度。例如,图1中,熔体温度是闸门20处的温度,图2中,熔体温度是顶点42处的温度。
应理解可使用除本文所述Kobe和Farrel混合机以外的混合机。
在熔体输送区内使树脂与氧气接触。所述氧气可通过例如一或多个气体入口供入。参见图1,例如某些实施方案中,可通过一或多个入口24提供氧气。参见图2,例如某些实施方案中,可通过一或多个入口46提供氧气。应理解这些具体的入口位置只是举例说明。
可以连续气流的形式提供氧气,也可间歇地提供氧气。
可以基本纯气体形式或作为气体混合物如空气的一部分提供氧气。可在预混的气体混合物中提供氧气,或与稀释气一起供入挤出机,通过调节氧气/稀释气的相对流量调节所得混合物中氧气的量。例如氧气和氮气可以分开地计量的流量供入挤出机给挤出机提供所要浓度的氧气。
所述氧气处理或“修整”之后,可将所述树脂通过模口挤出并造粒和冷却,也可在不造粒的情况下直接挤出形成薄膜如通过流延或吹塑薄膜法。
也可在挤出机内引入各种添加剂,如本领域惯用的。
6.实施例薄膜厚度按ASTM D374-94方法C测量。
薄膜厚度变化用Measuretech Series 200仪器测定。该仪器用容量规格计(capacitance gauge)测量薄膜厚度。对每个薄膜试样,当薄膜横向通过所述规格计时每英寸薄膜测量十个薄膜厚度数据点。用三个薄膜试样确定厚度变化。用薄膜厚度的全量程(最大值-最小值)除以平均厚度然后再除2确定所述厚度变化。所述厚度变化用均值周围的变化百分率表示。
落镖冲击值用ASTM D1709-98方法A中的方法测量,但薄膜厚度按ASTM D374-94方法C测量。
Elmendorf撕裂强度(纵向“MD”和横向“TD”)用ASTM D1922-94a中的方法测量,但薄膜厚度按ASTM D374-94方法C测量。
术语“熔体指数”意指按ASTM D-1238条件E(190℃,2.16kg载荷)测量的树脂的熔体流动速率,通常表示为I2.16。术语“流动指数”意指按ASTM D-1238条件F(190℃,21.6kg载荷)测量的树脂的熔体流动速率,通常表示为I21.6。熔体指数和流动指数的单位为g/10min,或等同于dg/min。术语“MFR”意指比值I21..6/I2.16,是无量纲的。
比能输入(SEI)意指每单位重量熔体加工树脂向挤出机主驱动机构输入的能量,用单位hp·hr/lb或kW·hr/kg表示。
本文所用“弹性”是在0.1s-1的频率下G’与G”之比,其中G’和G”分别是储能(或弹性)和损耗(或粘性)模量。G’和G”按ASTM D-4440-84测量。在200℃下用Rheometrics RMS 800振动流变仪进行测量。
密度(g/cm3)用从板中切出的碎片测定,按ASTM D-1928-96方法C模压、按ASTM D618方法A老化、并按ASTM D1505-96测量。
某些实施例中,定性地目视确定“膜泡稳定性”,定为差、好等。其中给出“膜泡稳定性”数值的实施例中,膜泡稳定性定为观察到开始不稳定之前可获得的最大线速,表现为以4∶1的吹胀比(BUR)垂直或水平振动。
氧气在氧-氮气体混合物中提供。通过改变氧气和氮气的相对流量控制氧气含量。数据表中报告的氧气含量由空气和氮气的体积流量计算。
数据表不包括基础(未修整的)树脂的薄膜性质,因为通常不能由未修整的树脂制造薄膜(即产生稳定的膜泡)。同样,未尝试在不修整条件下配混粒状树脂并在以下实施例中所用Alpine薄膜生产线上试验。
实施例1-4用双金属催化剂在单一气相流化床反应器中生产中密度聚乙烯(MDPE)双峰树脂。所述双金属催化剂是US 6 403 181中所述齐格勒-纳塔/茂金属催化剂。该树脂的密度为0.938g/cm3,熔体指数I2.16为0.07dg/min,流动指数I21.6为6.42dg/min,MFR(I21.6/I2.16)为92。在4in.(10cm)直径Farrel 4LMSD配混机上进行双峰树脂的氧气修整。所述Farrel 4LMSD配混机有一个5L/D转子。参见图2,在熔体输送区36内距转子末端0.5L/D处以10标准ft3/hr(0.3m3/hr)的流量加入氧/氮气体混合物(21%体积O2)。非必须地,可在距机器出口端约1.0L/D 40处插入流量挡板,在熔体输送区36内所述流量挡板之后注入氧气。在不同熔体温度下如此处理几种树脂试样。
在有100mm模口和1mm模口间隙的50mm Alpine薄膜生产线上在120lb/hr(54kg/hr)的流量、4∶1的吹胀比(BUR)和28in.霜白线高度下由所述修整树脂生产单层吹塑薄膜。这些实施例示于表1中。
表1基础实施例号树脂1234配混条件实际SEI(a)(hp·hr/lb, 0.112, 0.119, 0.125, 0.137,kW·hr/kg)0.1840.1960.2060.225O2含量(体积%) 21 21 21 21熔体T(℃) 239 241 243 268树脂特性流动指数,I21.6(dg/min)6.42 5.54 5.57 5.61 5.14熔体指数,I2.16(dg/min)0.07 0.0610.0550.0560.046MFR,I21.6/I2.1692 91 101 100 112流变性在0.1s-1下的弹性(b)0.51 0.61 0.64 0.66 0.74弹性增加(%) 20 26 31 47加工性熔体压力(psi,MPa) 7590, 7760, 7760, 8020,52.3 53.5 53.5 55.30.5mil[13μm]下膜泡稳定性 差 一些垂 好 好直振动(c)薄膜性质1mil(25μm)厚落镖冲击强度 473,482,527,479,(g,g/mil,g/μm) 473,482,527,479,18.6 19.0 20.7 18.9Elmendorf撕裂强度,33, 32, 32, 32,MD(g/mil,g/μm) 1.3 1.3 1.3 1.3Elmendorf撕裂强度,338,304,258,211,TD(g/mil,g/μm) 13.3 12.4 10.2 8.310.5mil(1.3μm)厚落镖冲击强度 449,548,518,401,(g,g/mil,g/μm) 898,1096, 1036, 802,35.4 43.1 40.8 31.6Elmendorf撕裂强度,18, 25, 23, 28,MD(g/mil,g/μm) 0.71 0.98 0.91 1.1Elmendorf撕裂强度,203,128,130,110,TD(g/mil,g/μm) 7.99 5.04 5.12 4.33(a)比能输入;(b)G’/G”;(c)观察到一些垂直振动随着氧气修整度提高(以比能输入(SEI)提高度量),树脂的膜泡稳定性改善。因氧气修整所致树脂特性变化反映在弹性增加高达47%。意外的是使用极高氧气含量(21%体积)的情况下,实现膜泡稳定性和薄膜性质的极佳平衡。
实施例5-9用双金属催化剂在单一气相流化床反应器中生产高密度聚乙烯(HDPE)双峰树脂。所述双金属催化剂是US 6 403 181中所述齐格勒-纳塔/茂金属催化剂。该树脂的密度为0.946g/cm3,熔体指数I2.16为0.066dg/min,流动指数I21.6为5.81dg/min,MFR(I21.6/I2.16)为88。如上所述进行该双峰树脂的氧气修整。在不同熔体温度下如此处理几种树脂试样。如上所述由所述修整树脂生产单层流延薄膜。这些实施例示于表2中。
表2基础树脂实施例号5 6 7 8 9配混条件在混合机第4节的流量挡板无 无 无 有 有实际SEI(a)(hp·hr/lb,kW·hr/kg) 0.115,0.129,0.147,0.131,0.145,0.189 0.212 0.242 0.215 0.238O2含量(体积%)21 21 21 21 21熔体T(℃) 231253281256282树脂特性流动指数,I21.6(dg/min) 5.81 5.69 5.46 5.33 5.52 5.38熔体指数,I2.16(dg/min) 0.0660.062 0.051 0.042 0.054 0.043MFR,I21.6/I2.1688 92 108127103125流变性在0.1s-1下的弹性(b)0.52 0.54 0.69 0.76 0.67 0.79弹性增加(%)4 33 46 29 51加工性熔体压力(psi,MPa) 6500, 6450, 6400, 6300, 6250,44.8 44.5 44.1 43.4 43.1膜泡稳定性(c)(ft/min,m/s) <200,280, >300,>300,>300,<1.0 1.4>1.5 >1.5 >1.5薄膜性质落镖冲击强度, 270, 350, 345, 300, 315,1mil(25μm) 270, 350, 345, 300, 315,(g,g/mil,g/μm) 10.6 13.8 13.6 11.8 12.4落镖冲击强度, 410, 420, 360, 390, 270,0.5mil(13μm) 820, 840, 720, 780, 540,(g,g/mil,g/μm) 32.3 33.1 28.3 30.7 21.3(a)比能输入;(b)G’/G”;(c)开始不稳定之前获得的最大线速随着修整强度(以SEI或熔体温度度量)提高,以最大线速度量的膜泡稳定性提高。存在流量挡板也增加修整。意外地发现甚至使用高氧气含量(21%体积),也实现膜泡稳定性(最大线速大于300ft/min(1.5m/s))和薄膜性质的平衡。
实施例10-12C用双金属催化剂在单一气相流化床反应器中生产高密度聚乙烯(HDPE)双峰树脂。所述双金属催化剂是US 6 403 181中所述齐格勒-纳塔/茂金属催化剂。如上所述进行该双峰树脂的氧气修整。
用ExxonMobil HD-7755作对比树脂(实施例12C)。ExxonMobilHD-7755是在串联反应器中生产的双峰乙烯共聚物。ExxonMobil HD-7755的密度为0.952g/cm3,熔体指数I2.16为0.055dg/min,流动指数I21.6为9dg/min。ExxonMobil HD-7755来自ExxonMobil Chemical Company,Houston,TX。该实施例示于表3中。
在有120mm单层模口和标称1.2mm模口间隙的50mm Alpine薄膜生产线上在200lb/hr(90.7kg/hr)的流量、4∶1的吹胀比(BUR)和48-52in.(122-132cm)霜白线高度下由所述修整树脂生产单层吹塑薄膜。这些实施例示于表3中。
表3基础树脂 实施例号(a)101112C配混条件实际SEI(a)(kW·hr/kg) 0.176 0.181O2含量(体积%)9.1 9.2混合机金属T(℃)266 277流量(103kg/hr)2525机筒脉冲水冷 关开树脂特性流动指数,I21.6(dg/min) 6.56 6.14 6.44 14.1熔体指数,I2.16(dg/min) 0.083MFR,I21.6/I2.1684106 124 186密度(g/cm3) 0.95190.95120.951流变性在0.1s-1下的弹性(c)0.498 0.612 0.740弹性增加(%) - 2349加工性熔体压力(psi,MPa) 7775,7610,7175,53.61 52.47 49.47薄膜性质厚度变化(%) 161120落镖冲击强度 204, 169, 203,(g,g/mil,g/μm) 408, 338, 406,16.1 13.3 16.0Elmendorf撕裂强度,11, 11, 11,MD(g/mil,g/μm) 0.43 0.43 0.43(a)两种试样的平均值;(b)比能输入;(c)G’/G”本文中引用的所有专利、测试方法和其它文献包括优先权文献均在与本发明不矛盾的程度和允许此引入的所有司法管辖内引入本文供参考。
权利要求
1.一种双峰聚乙烯树脂的挤出方法,所述方法包括(a)提供有双峰分子量分布的聚乙烯均聚物或共聚物树脂;(b)输送所述树脂通过挤出机,所述挤出机有其中不使所述树脂熔融的进料区、其中使所述树脂的至少一部分熔融的熔融混合区、和其中所述树脂处于熔融状态的熔融区,每个区都部分地充满所述树脂;和(c)使所述熔融树脂在熔融区与包含8至40体积%的O2的气体混合物接触。
2.权利要求1的方法,其中所述双峰聚乙烯树脂是乙烯和至少一种选自C3-C12α-烯烃的共聚单体的共聚物。
3.权利要求1的方法,其中所述双峰聚乙烯树脂的密度为至少0.93g/cm3。
4.权利要求1的方法,其中所述双峰聚乙烯树脂的密度为至少0.945g/cm3。
5.权利要求1的方法,其中所述双峰聚乙烯树脂的密度为0.93至0.97g/cm3。
6.权利要求1的方法,其中所述气体混合物包含10至35体积%的O2。
7.权利要求1的方法,其中所述气体混合物包含15至25体积%的O2。
8.权利要求1的方法,其中所述提供步骤包括使包含乙烯的单体在聚合条件下与负载型双金属催化剂接触产生有双峰分子量分布的聚乙烯树脂。
9.权利要求8的方法,共中所述负载型双金属催化剂包括非茂过渡金属催化剂和茂过渡金属催化剂。
10.权利要求8的方法,其中所述单体包括乙烯和至少一种C3-C12α-烯烃。
11.权利要求1的方法,还包括在步骤(c)之后将所述氧气处理的树脂造粒。
12.一种有双峰分子量分布的粒状聚乙烯膜树脂的生产方法,所述方法包括(a)使乙烯在聚合条件下与负载型双金属催化剂接触产生有双峰分子量分布的聚乙烯树脂;(b)输送所述树脂通过挤出机,所述挤出机有其中不使所述树脂熔融的进料区、其中使所述树脂的至少一部分熔融的熔融混合区、和其中所述树脂处于熔融状态的熔融区,每个区都部分地充满所述树脂;(c)使所述熔融树脂在熔融区与包含8至40体积%的O2的气体混合物接触;和(d)将所述氧气处理过的树脂造粒形成所述粒状聚乙烯膜树脂。
13.权利要求12的方法,其中所述双峰聚乙烯树脂是乙烯和至少一种选自C3-C12α-烯烃的共聚单体的共聚物。
14.权利要求12的方法,其中所述双峰聚乙烯树脂的密度为至少0.93g/cm3。
15.权利要求12的方法,其中所述双峰聚乙烯树脂的密度为至少0.945g/cm3。
16.权利要求12的方法,其中所述双峰聚乙烯树脂的密度为0.93至0.97g/cm3。
17.权利要求12的方法,其中所述气体混合物包含10至35体积%的O2。
18.权利要求12的方法,其中所述气体混合物包含15至25体积%的O2。
19.权利要求12的方法,共中所述负载型双金属催化剂包括非茂过渡金属催化剂和茂过渡金属催化剂。
全文摘要
提供一种双峰聚乙烯树脂的挤出方法,其中有双峰分子量分布的聚乙烯均聚物或共聚物被输送通过挤出机并与氧气接触。所述树脂在挤出机中加工,所述挤出机有其中不使所述树脂熔融的进料区(32)、其中使所述树脂的至少一部分熔融的混合区(34)、和其中所述树脂处于熔融状态的熔融区(36)。每个区都部分地充满所述树脂;和使所述熔融树脂在熔融区(36)与8至40%(体积)O
文档编号B29B7/46GK1652921SQ02823627
公开日2005年8月10日 申请日期2002年10月9日 优先权日2001年11月30日
发明者S·D·施莱根伯格, J·F·罗特斯, P·P·施罗卡, P·C·珊农 申请人:埃克森美孚化学专利公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1