形成纳米间隙的方法、用于分子器件和生物传感器的纳米场效应晶体管的制造方法以及...的制作方法

文档序号:5271955阅读:282来源:国知局
专利名称:形成纳米间隙的方法、用于分子器件和生物传感器的纳米场效应晶体管的制造方法以及 ...的制作方法
技术领域
本发明涉及形成纳米间隙的方法、用于分子器件或生物传感器的纳米场效应晶体管(nanoFET)的制造方法和结构,更具体地说,本发明涉及使用尺寸与分子尺寸一样薄或与分子尺寸相似的膜来形成高重现性的纳米间隙的方法,以及通过所述形成纳米间隙的方法而制得的纳米场效应晶体管。
背景技术
金属板位于纳米尺寸间隙的两侧的金属纳米间隙在制造分子器件和生物传感器方面具有很重要的价值。
随着技术的持续发展,已经与高性能化和小型化一起实现了半导体器件的高集成化。
由于半导体制造过程中所用的光刻法的技术局限性(光源波长、光色散、透镜数值孔径(N/A),和光致抗蚀剂的缺失),器件的小型化目前已达到极限。
为了克服这些局限性以实现半导体器件的小型化,已经提出了分子器件。
所述分子器件是新概念器件,其中将分子用作通道。
为了实现这样的分子器件,应当在两个金属板之间形成与分子长度相当的间隙,所述两个金属板分别起到常规场效应晶体管的源极和漏极的功能。
然而,如上所述,使用传统的光刻法来形成分子长度的间隙的方法已经达到技术极限。
生物传感器是用于检测例如酶或抗体等构成生物体的特定分子的检测器。
用于检测特定分子的方法目前有化学法、光学法和电学法。在这些方法中,电学检测法由于可以迅速地检测到少量的特定分子,因此是最精确的方法。
电学检测法的优势还在于,可使用传统的硅加工技术,通过大规模生产小型、高集成度的传感器以低制造成本制得便携式传感器。
由于可以在用包含生物材料的溶液装满纳米间隙结构体之后,通过改变该纳米间隙结构体两端的电特性来检测特定的物质,所以具有几个纳米宽度的纳米间隙结构体可以用作电传感器。
随着该纳米间隙结构体的间隙变得越窄,它的检测灵敏度变得越大,由此使检测变得更有效率。
然而,通过传统硅加工所用的光刻法来形成尺寸小于几个纳米的间隙具有技术上的局限性,例如所用的光源的波长和光的色散现象等。此外,由于使用光刻法来形成纳米间隙需要复杂的工序,而且随着所需的间隙尺寸变小,该方法的重现性变低,形成高性能生物传感器所需的尺寸为几个纳米的间隙是很难的。
为了生产所述的分子器件或生物传感器,必须采用新的用于形成尺寸为几个纳米的纳米间隙的方法。

发明内容
为了解决上述问题,本发明的目的是提供一种形成尺寸为几个纳米的纳米间隙的方法,该方法包括通过原子层沉积法在硅基材上形成两层金属层和自组装的单层(SAM)或氧化铝(Al2O3)层,然后对所述SAM或Al2O3层进行蚀刻(或部分蚀刻)。
本发明的另一目的是提供一种通过上述形成纳米间隙的方法来制造高集成度高性能的生物传感器和纳米场效应晶体管的方法,所述的纳米场效应晶体管是一种用于取代传统器件的分子器件。
根据本发明的一个实施方案所述,形成用于生物传感器的平面式纳米间隙的方法包括以下步骤(a)在硅基材上依次形成绝缘层、第一金属层和硬掩模;(b)使用该掩模作为蚀刻用掩模,对所述第一金属层进行部分蚀刻;(c)在所述第一金属层的侧表面上形成自组装的单层(SAM),以便在所述硅基材上形成纳米间隙;(d)将金属沉积在包括所述掩模在内的整个结构体上,以形成第二金属层;(e)通过对步骤(a)中形成的掩模进行蚀刻,通过剥离工序(lift-off process)将沉积在所述硬掩模上的金属除去;以及(f)对步骤(c)中形成的SAM进行蚀刻,从而形成所述纳米间隙。
优选使用金(Au)来形成所述第一和第二金属层。
优选通过汽相沉积法、溅射法或脉冲激光沉积(PLD)法中的任一种方法来形成所述第一和第二金属层。
根据本发明的一个实施方案所述,形成用于生物传感器的垂直式纳米间隙的方法包括以下步骤(a)在硅基材上依次形成绝缘层和第一金属层;(b)在形成于所述硅基材上的结构体上,依次形成自组装的单层(SAM)、第二金属层和硬掩模;(c)使用所述硬掩模作为蚀刻用掩模,对所述第二金属层、所述自组装的单层(SAM)和所述第一金属层进行部分蚀刻;(d)将步骤(b)中形成的掩模除去;以及(e)对所述自组装的单层(SAM)进行部分蚀刻,从而形成所述纳米间隙。
优选使用金(Au)来形成所述第一和第二金属层。
根据本发明的另一个实施方案所述,形成用于生物传感器的垂直式纳米间隙的方法包括以下步骤(a)在硅基材上依次形成绝缘层和第一金属层;(b)在形成于所述硅基材上的结构体上,依次形成介电层、第二金属层和硬掩模;(c)使用该硬掩模作为蚀刻用掩模,对所述第二金属层、所述介电层和所述第一金属层进行部分蚀刻;以及(d)对步骤(b)中形成的介电层进行部分蚀刻,从而形成所述纳米间隙。
优选使用金(Au)来形成所述第一和第二金属层。
优选在步骤(a)中使用氧化铝(Al2O3)来形成所述介电层。
使用垂直式纳米间隙来制造用于分子器件的纳米场效应晶体管的方法,该方法包括以下步骤(a)在硅基材上依次形成绝缘层、第一氮化硅(Si3N4)层和第一金属层;(b)在形成于所述硅基材上的结构体上,依次形成第一介电层、第二金属层、第二氮化硅层和硬掩模;(c)使用该硬掩模作为蚀刻用掩模,对所述第二氮化硅层、第二金属层、第一介电层、第一金属层和第一氮化硅层进行部分蚀刻;(d)在整个结构体上形成第二介电层,所述第二介电层可以以各向异性的形式形成并被蚀刻;(e)通过深腐蚀法(etch-back process)对所述第二介电层进行蚀刻,以形成栅极氧化层;(f)将栅极材料沉积在整个结构体上;(g)使用光致抗蚀剂图案作为掩模对步骤(f)中沉积的栅极材料进行蚀刻,以形成栅极;(h)对步骤(b)中形成的第一介电层进行蚀刻,从而形成所述垂直式纳米间隙;以及(i)在步骤(h)形成的垂直式纳米间隙中形成分子层,所述分子层的长度与所述纳米间隙的宽度相同。
优选使用金(Au)来形成所述第一和第二金属层。
优选在步骤(a)中形成的介电层由Al2O3形成。
优选在步骤(c)中形成的介电层由氧化硅(SiO2)形成。
参照附图并且通过下文的说明及所附的优选实施方案,本发明的其他特征和目的将更为清楚。这些实施方案仅作为实例给出,用以说明如何实施本发明。


下面将参照附图详细描述本发明,附图中的标号指示各个元件。
图1a~1f是一系列截面图,其中顺序显示了根据本发明的一个实施方案形成用于生物传感器的平面式纳米间隙的方法;图2a~2e是一系列截面图,其中顺序显示了根据本发明的一个实施方案形成用于生物传感器的垂直式纳米间隙的方法;图3a~3e是一系列截面图,其中顺序显示了根据本发明的另一个实施方案形成用于生物传感器的垂直式纳米间隙的方法;和图4a~4f是一系列截面图,其中顺序显示了根据本发明的另一个实施方案采用垂直式纳米间隙制造分子器件的方法,其中该方法采用分子作为通道。
具体实施例方式
下面将参照附图并根据本发明的优选实施方案,详细描述形成用于分子器件或生物传感器的纳米间隙的方法和用于分子器件或生物传感器的纳米场效应晶体管的制造方法。
图1a~1f是一系列截面图,其中顺序显示了根据本发明的一个实施方案形成用于生物传感器的平面式纳米间隙的方法。
如图所示,在硅基材上形成第一金(Au)层(金属层),采用自组装的单层(下称“SAM”)形成与所述第一金层隔离的第二金层,从而形成相应于SAM长度的平面式纳米间隙。
形成纳米间隙的方法详细描述如下。
首先,在硅基材101上依次形成背栅极薄层101-1、绝缘层102、第一金层103和硬掩模104,其中所述背栅极薄层101-1通过掺杂法形成。(图1a)制成硬掩模104的材料在第一金层上的各向异性的蚀刻工序中不被蚀刻。
然后,采用具有预定图案的硬掩模104作为蚀刻用掩模,通过随后的工序,借助形成有图案的硬掩模104,各向异性地蚀刻第一金层103,以形成用作平面式纳米间隙的一个电极的图案。(图1b)然后,在第一金层103的一侧(表面)上形成SAM 105,以便在第一金层103和通过后续工序形成的第二金层之间形成间隙。(图1c)优选使用对金具有优异的附着性的SAM。
为了形成用于平面式纳米间隙的其他电极,在通过蚀刻暴露出来的绝缘层102上形成第二金层106。(图1d)由于硬掩模104,在形成于第一金层103一侧的SAM 105上没有形成第二金层106。
通过去除硬掩模104而得到一个组件,其中SAM 105置于两个电极(第一和第二金层)之间。
在去除硬掩模的同时蚀刻形成于硬掩模104上的第二金层106。(图1e)去除形成于第一金层103和第二金层106之间的SAM 105。(图1f)
为了将平面式纳米间隙用作纳米场效应晶体管,应当不去除SAM105,因此不需要上述去除第一金层103和SAM 105的步骤。
上述方法实现了本发明的一个实施方案中用于生物传感器的平面式纳米间隙或纳米场效应晶体管的制造,并且可以根据SAM的长度调节纳米间隙的宽度。
通过调节以原子单位计的SAM的链长度,可以根据待检测生物材料的尺寸,获得具有原子尺寸精度的可变宽度的纳米间隙。
图2a~2e是一系列截面图,其中顺序显示了根据本发明的一个实施方案形成用于生物传感器的垂直式纳米间隙的方法。
如图所示,在硅基材上形成第一金层,采用自组装的单层(下称“SAM”)形成与所述第一金层隔离的第二金层,从而形成对应于SAM长度的垂直式纳米间隙。
依次在硅基材201上形成绝缘层202、第一金层203、SAM 204和第二金层205。(图2a)然后,在第二金层205上形成硬掩模206。(图2b)由于在随后的蚀刻工序中,硬掩模206被用来选择性地蚀刻第一金层203、SAM 204和第二金层205,所以优选的是,在蚀刻去除第一金层203、SAM 204和第二金层205的各向异性蚀刻工序的蚀刻条件下,构成硬掩模206的材料基本上不被蚀刻,并且硬掩模206具有足够的厚度而在蚀刻工序中不被腐蚀掉。
然后,采用硬掩模206对第一金层203、SAM 204和第二金层205进行各向异性蚀刻,从而形成图案。(图2c)然后,去除硬掩模206,从而得到SAM 204形成于两个电极之间的组件。(图2d)然后,部分地蚀刻形成于第一金层203和第二金层205之间的SAM204,从而形成纳米间隙部分。(图2e)采用上述方法,可以根据本发明的一个实施方案制造用于生物传感器的垂直式纳米间隙,并且可以根据SAM的长度调节纳米间隙的宽度。
通过调节以原子单位计的SAM的链长度,可以根据待检测生物材料的尺寸,获得具有原子尺寸精度的可变宽度的纳米间隙。
图3a~3e是一系列截面图,其中顺序显示了根据本发明的另一个实施方案形成用于生物传感器的垂直式纳米间隙的方法。
如图所示,在硅基材上形成第一金层,采用氧化铝(Al2O3)层形成与所述第一金层隔离的第二金层,从而形成对应于Al2O3层厚度的垂直式纳米间隙。
依次在硅基材301上形成绝缘层302、第一金层303、氧化铝层304和第二金层305。(图3a)采用原子层沉积(ALD)法形成Al2O3层304。
可以采用ALD法形成厚度相当于一个原子尺寸的层。
然后在第二金层305上形成硬掩模306。(图3b)由于在随后的蚀刻工序中,硬掩模306被用来选择性地蚀刻第一金层303、Al2O3层304和第二金层305,所以优选的是,在蚀刻第一金层303、Al2O3层304和第二金层305的各向异性蚀刻工序的蚀刻条件下,构成硬掩模306的材料不被蚀刻,并且硬掩模306具有足够的厚度而在蚀刻工序中不被腐蚀掉。
然后采用硬掩模306对第一金层303、Al2O3层304和第二金层305进行各向异性的蚀刻,从而形成图案,该图案在随后的工序中被形成为垂直式纳米间隙。(图3c)然后,去除硬掩模306,从而得到Al2O3层304形成于两个电极之间的组件。(图3d)然后部分地蚀刻形成于第一金层303和第二金层305之间的Al2O3层304,从而形成纳米间隙部分。(图3e)通过以上方法,可以根据本发明的另一实施方案制造用于生物传感器的垂直式纳米间隙,并且可以根据由原子层沉淀法形成的Al2O3层的厚度,将纳米间隙的宽度调整到次纳米尺寸的精度。
对于原子层沉淀工序的各种条件(例如气体压力和处理时间等),可以人工调节层的厚度而获得具有各种厚度的薄层。
图4a~图4f为一系列的截面图,其中顺序显示了根据本发明的另一个实施方案采用用于分子器件的垂直式纳米间隙的分子器件的制造方法,所述分子作为栅极介电层。
如图所示,在硅基材上形成第一金层,并使用氧化铝(Al2O3)层来形成与第一金层隔离的第二金层,从而形成相应于Al2O3层厚度的垂直式纳米间隙。
然后,通过形成长度与所述间隙尺寸相同的分子来生产纳米场效应晶体管,所述分子在所形成的垂直式纳米间隙中作为栅极介电层。
在硅基材401上顺序形成绝缘层402、第一氮化硅(Si3N4)层403、第一金层404、氧化铝(Al2O3)层405、第二金层406、第二氮化硅(Si3N4)层407和硬掩模408。
采用原子层沉积(ALD)法形成Al2O3层405。
采用ALD方法可以形成厚度相当于一个原子尺寸的层。
由于使用硬掩模408来蚀刻第一Si3N4层403、第一金层404、Al2O3层405、第二金层406、第二Si3N4层407,所以硬掩模408由在第一Si3N4层403、第一金层404、Al2O3层405、第二金层406和第二Si3N4层407的各向异性蚀刻工序中不被蚀刻的材料制成,并具有足够的厚度以在蚀刻工序中不被蚀刻掉。
然后,使用硬掩模408作为掩模对第一Si3N4层403、第一金层404、Al2O3层405、第二金层406和第二Si3N4层407进行各向异性的蚀刻工序,接着除去硬掩模408。(图4b)然后在整个结构上沉积二氧化硅,以形成SiO2层409。(图4c)使用SiO2层409来形成位于金层和将在后续工序中形成的栅极之间的SiO2侧壁。
对SiO2层409进行深腐蚀,以在位于预定形成栅极的部位形成两个侧壁。(图4d)在整个结构体上沉积栅极材料410,然后通过光致抗蚀剂图案对沉积的栅极材料进行图案制作,以形成栅极410。然后对Al2O3层405进行蚀刻,以形成在其中预定形成分子层的纳米间隙。(图4e)然后形成分子层411,其宽度与通过对Al2O3层405进行蚀刻而形成的纳米间隙的宽度相同。(图4f)通过以上方法,可以根据本发明的另一实施方案制造用于生物传感器的垂直式纳米间隙,并且可以根据由原子层沉淀法形成的Al2O3层的厚度,将纳米间隙的宽度调整到次纳米尺寸的精度。
通过在由前述方法形成的纳米间隙中形成分子层,可以制造纳米FET(场效应晶体管)。
根据本发明,通过采用制造用于分子器件或生物传感器的纳米间隙或纳米场效应晶体管的方法中的简单可重复的工序,可以制造高度集成的纳米间隙结构体。
不能由常规方法实现的几个纳米的纳米间隙可以通过选择合适的SAM和通过原子层沉积法来形成。
此外,通过各种类型的SAM和原子层沉积法,可以形成尺寸适合于待测生物材料的纳米间隙,该纳米间隙具有次纳米的精度。
本发明是利用目前的半导体方法来制造半导体设备的最实用的技术,并且是可以形成纳米间隙的技术,其可以取代常规的受到剥离限制的光刻方法。
以上描述和附图中所示的本发明的实施方案并不应旨在解释为对本发明的技术精神的限制。本发明的范围仅由所附权利要求来限定。本领域技术人员可以对本发明进行各种改变或变更而不脱离本发明的真正精神。因此,对于本领域技术人员来说显而易见的各种变化和变更落在本
权利要求
1.一种形成用于生物传感器的平面式纳米间隙的方法,该方法包括以下步骤(a)在硅基材上依次形成绝缘层、第一金属层和硬掩模;(b)使用掩模图案作为掩模部分地蚀刻所述第一金属层;(c)在所述第一金属层的一侧上形成自组装的单层(SAM),以在所述硅基材上形成纳米间隙;(d)在所述硅基材上沉积金属以形成第二金属层;(e)通过采用剥离工序蚀刻步骤(a)中所形成的掩模,除去沉积在所述硬掩模上的金属;和(f)蚀刻步骤(c)中所形成的自组装的单层,以形成纳米间隙。
2.如权利要求1所述的形成用于生物传感器的平面式纳米间隙的方法,其中所述第一金属层和第二金属层由金形成。
3.如权利要求1所述的形成用于生物传感器的平面式纳米间隙的方法,其中步骤(a)中的所述第一金属层和步骤(d)中的所述第二金属层由汽相沉积法、溅射法或脉冲激光沉积法中的任意一种方法形成。
4.一种生物传感器,该生物传感器用权利要求1~3任一项所述的形成用于生物传感器的平面式纳米间隙的方法制造。
5.一种形成用于生物传感器的垂直式纳米间隙的方法,该方法包括以下步骤a)在硅基材上依次形成绝缘层和第一金属层;b)在形成于所述硅基材上的结构体上依次形成自组装的单层(SAM)、第二金属层和硬掩模;c)通过使用所述硬掩模作为蚀刻用掩模部分地蚀刻所述第二金属层、所述自组装的单层和所述第一金属层;d)除去步骤b)中所形成的硬掩模;和e)部分地蚀刻所述自组装的单层以形成纳米间隙。
6.如权利要求5所述的形成用于生物传感器的垂直式纳米间隙的方法,其中所述第一金属层和第二金属层由金形成。
7.一种生物传感器,该生物传感器用权利要求5或权利要求6所述的形成用于生物传感器的垂直式纳米间隙的方法制造。
8.一种形成用于生物传感器的垂直式纳米间隙的方法,该方法包括以下步骤a)在硅基材上依次形成绝缘层和第一金属层;b)在形成于所述硅基材上的结构体上依次形成介电层、第二金属层和硬掩模;c)通过使用所述硬掩模作为掩模部分地蚀刻所述第二金属层、所述介电层和所述第一金属层;和d)部分地蚀刻步骤b)中所形成的介电层以形成纳米间隙。
9.如权利要求8所述的形成用于生物传感器的垂直式纳米间隙的方法,其中所述第一金属层和第二金属层由金形成。
10.如权利要求8所述的形成用于生物传感器的垂直式纳米间隙的方法,其中步骤a)中所形成的介电层由氧化铝形成。
11.一种生物传感器,该生物传感器用权利要求8~权利要求10任一项所述的形成用于生物传感器的垂直式纳米间隙的方法制造。
12.一种制造用于使用垂直式纳米间隙的分子器件的纳米场效应晶体管的方法,该方法包括以下步骤a)在硅基材上依次形成绝缘层、第一氮化硅层和第一金属层;b)在形成于所述硅基材上的结构体上依次形成第一介电层、第二金属层、第二氮化硅层和硬掩模;c)通过使用所述硬掩模作为掩模部分地蚀刻所述第二氮化硅层、所述第二金属层、所述第一介电层、所述第一金属层和所述第一氮化硅层;d)在整个结构体上形成第二介电层,所述第二介电层能够作为膜而形成并能够各向异性地进行蚀刻;e)由深腐蚀工序蚀刻所述第二介电层以形成用于栅极的氧化物层;f)在整个结构体上沉积栅极材料;g)通过使用光致抗蚀剂图案作为掩模蚀刻步骤f)中所沉积的栅极材料以形成栅极;h)蚀刻步骤b)中所形成的第一介电层以形成垂直式纳米间隙;和i)在步骤h)所形成的垂直式纳米间隙中形成分子层,所述分子层具有与所述纳米间隙的宽度相同的长度。
13.如权利要求12所述的制造用于使用垂直式纳米间隙的分子器件的纳米场效应晶体管的方法,其中所述第一金属层和第二金属层由金形成。
14.如权利要求12所述的制造用于使用垂直式纳米间隙的分子器件的纳米场效应晶体管的方法,其中步骤a)中所形成的第一介电层由氧化铝形成。
15.如权利要求12所述的制造用于使用垂直式纳米间隙的分子器件的纳米场效应晶体管的方法,其中步骤c)中所形成的第二介电层由氧化硅形成。
16.一种纳米场效应晶体管,所述纳米场效应晶体管用权利要求12~15任一项权利要求所述的制造用于使用垂直式纳米间隙的分子器件的纳米场效应晶体管的方法制造。
全文摘要
本发明涉及形成纳米间隙的方法、用于分子器件或生物传感器的纳米场效应晶体管的制造方法及其组件,更具体地,本发明涉及使用薄层形成高重现性纳米间隙的方法,所述薄层具有分子尺寸或与分子尺寸相似的尺寸,并且涉及通过形成纳米间隙的方法制造的纳米场效应晶体管。本发明的形成纳米间隙的方法包括以下步骤(a)在硅基材上依次形成绝缘层、第一金属层和硬掩模;(b)使用所述掩模作为蚀刻掩模部分地蚀刻所述第一金属层;(c)在所述第一金属层的侧表面上形成自组装的单层(SAM),以在所述硅基材上形成纳米间隙;(d)在包括所述掩模在内的整个结构体上沉积金属,以形成第二金属层;(e)采用剥离工序通过蚀刻步骤(a)中所形成的掩模,除去沉积在所述硬掩模上的金属;以及(f)蚀刻步骤(c)中所形成的自组装的单层,以形成纳米间隙。
文档编号B82B3/00GK1828849SQ200610002569
公开日2006年9月6日 申请日期2006年1月10日 优先权日2005年1月10日
发明者崔梁圭, 金洲铉 申请人:韩国科学技术院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1