带有可接近的导电性接触垫的微观流体分析系统的制作方法

文档序号:6101916阅读:153来源:国知局
专利名称:带有可接近的导电性接触垫的微观流体分析系统的制作方法
技术领域
本发明总的来说涉及分析装置,并尤其涉及微观流体分析系统。
背景技术
在基于流体样品的分析装置(即,流体分析装置)中,应当以高度的准确度和精确度控制必要的流体样品以便得到可靠的分析结果。但对于使用小体积,例如10纳升至10微升的流体样品的“微观流体”分析装置而言,这种控制是特别需要的。在这种微观流体分析装置中,流体样品一般地被包含于尺寸为大约例如10微米至500微米的微通道中,并在其中输送。
这种对微通道内部的小体积流体样品的控制(例如,输送、位置检测、流速测定和/或体积测定)在各种分析过程的成功进行中是必要的,其中所述的分析过程包括测定间隙流体(ISF)样品中的葡萄糖浓度。例如,获得可靠的结果可能需要掌握流体样品位置的信息,以确保在开始分析之前流体样品已经到达检测区。
然而,微观流体分析装置中的流体样品和微通道的相对较小的尺寸可能会导致难以进行这种控制。例如,微通道和环绕结构(如,基板和电极)可能缺乏统一的结构完整性,以至于这些微通道不是充分液密性和/或气密性的。
此外,对于包括被分析物的检测和流体样品的控制(例如,流体样品位置检测和流体样品输送)等各种目的,微观流体分析装置常常使用电极。然而,用于微观流体分析装置的电极相对较小并且在本质上可能是易碎的。因此,这些电极容易受到不完全的或弱的电接触的影响,从而导致在操作期间产生假信号和/或有害信号。此外,包括微通道和电极的微观流体分析装置的制造是昂贵和/或困难的。
因此,在本技术领域仍然需要一种分析装置,该分析装置提供与其中的电极安全且牢固地电连接、并且可以以有效的成本和简单的方式制造。此外,该分析装置内的任何微通道应该是基本上液密性和/或气密性的。
发明概述本发明的微观流体分析系统提供与其中的电极安全且牢固电连接,并且可以以有效的成本和简单的方式制造。此外,本发明的微观流体分析系统的具体实例包括基本上液密性和/或气密性的微通道。
本发明的一种用于监测流体样品(例如,血液或ISF)中的被分析物(例如葡萄糖)的微观流体分析系统的一个具体实例包括一个分析模块和一个电气装置(例如,一个仪表或电源)。该分析模块包括一个绝缘基板,所述绝缘基板具有一个上表面以及至少一个位于上表面内部的微通道。该分析块还包括至少一个布置在绝缘基板的上表面上的导电性接触垫以及至少一个电极,并且每个电极布置在至少一个微通道的上方。此外,分析模块包括至少一个导电迹线,所述的导电迹线与至少一个所述的电极以及至少一个所述的导电性接触垫电连接。
该分析模块还具有一个层压层,所述的层压层布置在所述的至少一个电极、所述的至少一个导电迹线、所述的至少一个微通道以及所述的绝缘基板的上表面的一部分的上方。此外,该分析模块被配置成这样使得至少一个导电性接触垫具有至少一个可接近的暴露表面,所述的暴露表面用于与电气装置电连接。
由于本发明的微观流体分析装置的具体实例使用可接近的导电性接触垫用于与电气装置电连接(其中导电性接触垫经由导电迹线与电极电连接),因而可以在电气装置与电极之间得到一个安全且牢固的电连接。此外,由于导电性接触垫被布置在绝缘基板上而非层压层上,因而可以使用相对强的作用力以便在导电性接触垫与电气装置之间提供一个安全且牢固的电连接,而不损伤电极。
在本发明的微观流体分析系统中,可以通过例如如下方式实现一个基本上液密性和/或气密性的微通道(a)具有与绝缘基板的上表面部分熔合的层压层,以便至少一个微通道基本上是液密性和/或气密性的,和/或(b)具有至少一个与绝缘基板的上表面熔合的至少一个电极和至少一个导电迹线,以便至少一个微通道基本上是液密性和/或气密性的。
附图简要说明结合下述运用本发明的原理对说明性具体实例所作的详细说明、以及附图,可以更好地理解本发明的特征和优点,其中

图1为一个描述用于提取体液样品并检测其中的被分析物的系统的简化框图,利用该系统可以使用本发明的微观流体分析系统的具体实例;图2为与本发明的微观流体分析系统的具体实例相关的位置电极、微通道、被分析物传感器和仪表结构的简要示意图;图3为本发明的示例性具体实例的微观流体分析系统的分析模块的简化俯视图(虚线表示隐藏的元件);图4为沿图3的A-A线获得图3的分析模块的简化剖视图;图5为与微观流体分析系统的电气装置电连接的图3的分析模块的简化剖视图;图6为与另一个电气装置的一部分电连接的图3的分析模块的简化剖视图;图7为本发明的微观流体分析系统的另一个分析模块的简化剖视图;图8为描述本发明的方法的具体实例的流程图;和图9A和9B为说明图8的方法中的步骤的剖视图。
优选实施方式为了在整个说明书中保持一致以及为了清楚地理解本发明,对于其中所使用的术语定义如下术语“熔合的”是指通过或好象是通过一起熔化而已经被连结在一起的状态。
术语“熔合”是指通过或好象是通过一起熔化而变成连结在一起的行为。
本领域熟练技术人员将认识到,本发明的具体实例的微观流体分析系统可被用作例如各种分析装置中的子系统。例如,本发明的具体实例可被用作如图1所述的系统100的分析模块。系统100被配置成用于提取体液样品(例如,ISF样品)并检测其中的被分析物(例如,葡萄糖)。系统100包括一个可置换盒112(包含在虚线框内)、一个局部控制器模块114和一个远程控制器模块116。
在系统100中,可置换盒112包括一个用于从身体(B,例如用户的皮肤层)提取体液样品(即ISF样品)的采样模块118以及一个用于测量体液中的被分析物(即,葡萄糖)的分析模块120。采样模块118可以是本领域技术人员已知的任何适宜的采样模块,而分析模块120可以是一个根据本发明的具体实例的微观流体分析系统。适宜的采样模块如国际专利申请PCT/GB01/05634(公开号为WO02/49507A1,
公开日2002年6月27日)和美国专利申请案第10/653023号所述,这两篇文献都在此被全文引为参考。然而,在系统100中,由于采样模块118是可置换盒112的一个组件,因而被配置成可置换的。
图2为与理解本发明的微观流体分析系统相关的位置电极、微通道、被分析物传感器和计量结构200的简要示意图。结构200包括第一位置电极202、第二位置电极204、阻抗仪206、计时器208、微通道210和被分析物传感器212。在图2的结构中,波形线表示微通道210内部的流体样品(例如,ISF、血液、尿液、血浆、血清、缓冲剂或试剂流体样品)。
结构200可被用于测定微通道210中的流体样品的位置或流速。在图2的结构中,被分析物传感器212位于第一位置电极202和第二位置电极204之间。阻抗仪206适用于测量第一位置电极202和第二位置电极204之间的阻抗。这种测量可以通过例如如下步骤来完成利用一个电压源以便在第一位置电极202和第二位置电极204之间施加一个连续的电压或者交流电压,从而可以测量由传导通路所形成的阻抗,其中所述的传导通路是通过微通道210内部和第一位置电极202与第二位置电极204之间的流体样品所形成的,得到一个指示该流体的存在的信号。
此外,当阻抗仪206测量由于在第一和第二位置电极之间存在样品所导致的阻抗变化时,可以将一个信号送入定时器208以记录在第一和第二位置电极之间第一次存在液体的时间。当该测量的阻抗表明流体样品已经到达第二位置电极时,可将另一个信号送入计时器208中。第一和第二位置电极之间第一次存在流体样品时的时间与流体样品到达第二位置电极时的时间的差值可被用于测定流体样品的流速(假定已知第一和第二位置电极之间的微通道210的体积)。此外,有关流体样品流速和/或流体样品位置的信息可被用于测定总的流体样品体积。此外,还可将用于表示流体样品到达第二位置电极204的时间点的信号送入一个局部控制器模块(例如,图1和2的局部控制器模块114)中以用于操作。
关于可用于根据本发明的具体实例的微观流体分析系统的微观流体分析装置的进一步的说明包括在美国专利申请案第10/811,446号中,其全文在此引为参考。
图3、4和5为根据本发明示例性具体实例的用于监测流体样品中的被分析物的微观流体分析系统300的简要说明图。微观流体分析系统300包括一个分析模块302和一个电气装置304(例如,一个仪表和/或电源)。
分析模块302包括一个带有上表面308的绝缘基板306。上表面308中具有微通道310。分析模块302还包括三个布置在绝缘基板306的上表面上的导电性接触垫312、三个布置在微通道310上方的电极314、与各个电极314连接的以及与各个导电接触垫312连接的导电迹线316以及一个层压层318。层压层318被布置在电极314、导电迹线316和绝缘基板306的上表面308的一部分的上方。
电气装置304包括三个弹簧触头320(其中一个如图5所述)以及一个底盘322(参阅图5)。微观流体分析系统300的导电性接触垫312具有可接近的暴露表面324和326,所述的暴露表面324和326经由弹簧触头320提供了与电气装置304的电连接。
绝缘基板306可以是由本领域技术人员已知的任何适宜材料形成的。例如,绝缘基板306可以是由绝缘聚合物例如聚苯乙烯、聚碳酸酯、聚甲基丙烯酸甲酯、聚酯及其任意组合形成的。为了使电气装置和导电性接触垫之间实现电连接,特别希望绝缘基板基本上是不可压缩的、并且具有足够的硬度以插入到电气装置中。绝缘基板306可以具有任意适宜的厚度,并且通常厚度为大约2mm。
导电性接触垫312可以是由本领域技术人员已知的任何适宜的导电材料形成的,这些导电材料包括例如如下所述的导电油墨和导电性颜料材料(例如,适用于注模和印刷技术的石墨、负载了铂、金和银的聚合物)。
导电性接触垫可以具有任意适宜的厚度。然而,为了实现与电气装置的安全且牢固的连接,导电性接触垫的厚度最好为5微米至5毫米,优选厚度为大约50微米。在这一方面,应指出,导电性接触垫的厚度可以明显地厚于电极或导电迹线,从而在实现电极和电气装置之间的安全和牢固的电连接(经由导电迹线和导电性接触垫)的同时使得电极和导电迹线的厚度相对较薄。
电极314和导电迹线316还可以是由任何适宜的导电材料形成的,这些材料包括但不限于通常用于照相平版印刷、丝网印刷和胶版印刷技术的导电材料。用于电极和导电迹线的材料中所包括的组分的实例为碳、贵金属(例如,金、铂和钯)、贵金属合金、以及形成电势的金属氧化物和金属盐。还可以使用导电油墨(例如市售的,商品名为Electrodag418 SS的银导电油墨,Acheson Colloids公司制造,美国休仑港MI 48060,华盛顿大街1600号)来形成电极314和导电迹线316。电极314和导电迹线316的厚度通常为例如20微米。
对于多电极的情况而言,可以使用相同的导电油墨,例如国际专利中请PCT/US97/02165(公开号WO97/30344,
公开日1997年8月21日)所述的导电油墨来形成各个电极,也可以使用不同的导电油墨来形成各个电极以便为各个电极提供所需要的各种特征。
层压层318还可以由本领域技术人员已知的任何适宜的材料形成,这些材料包括但不限于聚苯乙烯、聚碳酸酯、聚甲基丙烯酸甲酯和聚酯。当层压层318为柔韧薄片和/或柔性板的形式时,根据本发明的具体实例的微观流体分析系统的制造可以被简化。例如,层压层318可以是一个厚度为大约5μm~大约500μm的柔韧薄板。在这一点上,已经发现厚度为大约50μm的层压厚度对于简化制造是有利的。层压层318一般比绝缘基板306薄,并且可以是足够薄的,以便在制造分析模块302期间热量可以轻易地从层压层318传递到绝缘基板306。
当(i)层压层318与绝缘基板306的上表面308的一部分熔合在一起使得微通道310基本上是液密性和/或气密性的时候、和/或(ii)具有与绝缘基板306的上表面308融合在一起的电极314和/或导电迹线316使得微通道310基本上是液密性和/或气密性的时候,在微观流体分析系统300中可以实现一个基本上液密性和/或气密性的微通道。实现这种融合结构的示例性方法具体如下所述。
图6为与另一个电气装置304’连接的微观流体分析系统300的分析模块302的说明图,所述的电气装置包括三个弹簧触点320’(其中一个如图6所述)以及一个底盘322’(参阅图6)。图6显示了与可接近的暴露表面326相连的弹簧触点320’。
在图3、4、5和6的具体实例中,导电性接触垫312被布置在上表面308的一个凹槽328中。通过将导电性接触垫312定位在绝缘基板306的上表面上的凹槽中,可以容易地形成具有大于电极和导电性接触垫的厚度的导电性接触垫312,从而能够从该导电性接触垫的顶面(例如可接近的暴露表面324)或端面(例如,可接近的暴露表面326)的任何一个与电气装置实现安全且牢固的连接。然而,图7描述了另一个可供选择的结构,其中该导电性接触垫被布置在绝缘基板的一个基本上平坦的上表面上。图7描述了本发明的微观流体分析系统的一个分析模块700。分析模块700包括一个带有上表面708的绝缘基板706。在上表面708中具有微通道710。
分析模块700还具有一个布置在绝缘基板706的上表面上的导电性接触垫712、一个布置在微通道710上方的电极714、一个与电极714和导电性接触垫712相连的导电迹线716以及一个层压层718。层压层718被布置在电极714、导电迹线716和绝缘基板706的上表面708的一部分的上方。
在理解了本发明所公开的内容的条件下,本领域熟练技术人员将能认识到本发明的微观流体分析系统的分析模块可包括多个微通道、多个电极(例如多个工作电极和多个参比电极)、多个导电迹线以及多个导电性接触垫。此外,绝缘基板和层压层可以为任何适宜的形状。例如,绝缘基板和层压层可以是圆形的,且导电性接触垫被布置在这种圆形绝缘基板的周围。
图8为说明在过程800中用于制造用于微观流体系统的具有可接近的导电性接触垫的分析模块的阶段的流程图。过程800包括,如步骤810所述,形成一个绝缘基板,所述的绝缘基板具有一个上表面、在上表面内部具有至少一个微通道、以及至少一个布置在该上表面上的导电性接触垫。图9A描述通过绝缘基板950,绝缘基板950上表面952、微通道954和导电性接触垫956所表示的这种形成步骤的结果。
可以使用任何适宜的工艺来执行步骤810。例如,可以通过利用蚀刻技术、烧蚀技术、注塑技术或热压花技术在绝缘基板的上表面中形成微通道。对于使用注塑技术的情况而言,可以使用绝缘聚合材料(已知其在高温高压条件下很好地流入到模具中)。这种绝缘聚合材料的实例包括但不局限于聚苯乙烯、聚碳酸酯、聚甲基丙烯酸甲酯和聚酯。此外,可以在形成绝缘基板期间使用例如导电油墨的丝网印刷或者导电性接触垫的共模制从而形成导电性接触垫。
如图8的步骤820所述,制造了一个具有布置在层压层的底面上的至少一个电极和至少一个导电迹线的层压层。图9A还描述了如层压层958、电极960和导电迹线962所代表的这种制造步骤的结果。可以通过本领域熟练技术人员所已知的任何适宜的导电油墨印刷技术在层压层上形成电极和导电迹线。
随后,在过程800的步骤830中,该层压层被粘合到该绝缘基板上,使得(i)层压层的底面的至少一部分被粘合到绝缘基板的上表面的至少一部分上;(ii)电极被暴露于至少一个微通道之下;(iii)每个导电迹线与至少一个导电性接触垫电连接,和(iv)导电性接触垫的至少一个表面仍然是暴露的且可用于电连接。图9B描述了步骤830所得的结构。
在粘合步骤830过程中,层压层可与绝缘基板的上表面的至少一部分熔合,以便至少一个微通道基本上是液密性的,或者,也基本上是气密性的。这种熔合可以通过施加足够的热量和/或压力以引起层压层和绝缘基板的局部软化和/或熔融来实现。可以经由加热的滚筒来实现施加热量和/或压力。一般认为,但是并不局限于此,熔合被归因于物理粘合而非化学键合,并且熔合是层压层和绝缘层的熔融状态与固态中的“机械键控(mechanical keying)”之间的表面湿润的结果。机械键控是指两个材料表面经由一种机制而连结,所述的机制涉及一种材料物理渗透到存在或形成于第二种材料中的空隙中。
为了实现液密性和/或气密性的微通道的熔合与产生,必需预先测定层压层与绝缘基板的熔融特征。例如,为了在层的熔融部分的流动与掺杂之前可以出现层压层与绝缘层之间的分界面的有效湿润,在粘合步骤期间,层压层与绝缘基板的表面基本上同时变得熔融是有利的。随后的冷却形成一个与绝缘层的一部分熔合的层压层,在所述的绝缘层上方,按照与制造液密性和/或气密性的微通道的相同方式配置层压层。
对于层压层与绝缘层都是由聚苯乙烯形成的情况,可以在5巴的压力下以及在120℃的温度下进行熔合3秒钟。为了进一步促进液密性或者气密性的微通道的生成,还可以进行该粘合步骤使导电迹线和/或电极与绝缘基板的上表面熔合在一起。在这种情况下,对形成导电迹线(和/或电极)的材料进行预先测定,以便在和熔融层压层与绝缘层相同的压力、温度和时间条件下实现材料与绝缘层的熔合。然而,在粘合步骤期间,形成导电迹线(和/或电极)材料必须不丢失主要的定义。
此外,为了提高导电迹线与导电性接触垫之间的电连接,导电迹线与导电性接触垫的材料可以是由在粘合步骤期间变得熔合的材料(例如含有过量的导电颜料的材料)形成的。然而,在导电迹线与导电性接触垫之间的电连接还可以是由在粘合步骤期间所产生的物理机械接触所形成的。
粘合步骤的通常的条件为例如80℃~200℃的温度、约0.5巴~10巴的压力、以及大约0.5秒~大约5秒的持续时间。
实施例——分析模块的制造本发明的微观流体分析装置的一个具体实例是使用一个绝缘基板与一个层压层制造的,其中所述的绝缘基板是由聚苯乙烯材料(即,Polystyrol,144C购自BASF公司,商业单位聚苯乙烯、D-67056,路德维希港,德国)形成的,所述的层压层是由另一种聚苯乙烯材料(即,Norfiex Film,购自NSW塑料技术公司,NorddeutscheSeekabeiwerke AG,26954 Nordenham,德国)形成的。
使用导电油墨将电极和导电迹线印刷在层压层上。此外,使用相同的导电油墨将导电性接触垫印刷在绝缘衬垫上。用于印刷导电迹线、导电性接触垫与电极的导电油墨具有如下质量百分比的组成18.5%的包含质量比为1∶9的铂与碳的微粉化的粉末(例如,MCA20V披铂碳,购自MCA Services,Unit 1A Long 巴n,North End,Meldreth,South Cambridgeshire,SG8 6NT,U.K);19.0%的聚(双酚A-共-表氯醇)-缩水甘油基封端聚合物(例如,EpikoteTM1055,购自Resolution Enhanced Products,ResolutionEurope BV,PO Box 606,3190AN Hoogvliet Rt,The Netherlands);和62.5%的甲基卡必醇(二甘醇单甲醚)溶剂(购自Dow BeneluxB.V.,Prins Boudewijnlaan 41,2650 Edegem,Belgium)。
上面所述的导电油墨组合物特别适合与聚苯乙烯层压层以及聚苯乙烯绝缘基板一起使用(如下所述)。然而,一般来说,可以在保持微粉化的粉末与聚合物的比例为大约3∶1~1∶3的同时,该组成可以是可变的。
在理解了本发明所公开的内容的条件下,本领域熟练技术人员将能够认识到,可以改变导电油墨中的溶剂的百分比以便使之适合用于将导电油墨施加到层压层和/或绝缘基板的工艺(例如,喷涂、热压印和胶版印刷)。此外,可以使用任何适宜的溶剂代替甲基卡必醇(二甘醇一甲基醚),这些溶剂包括例如,醇类、丁酮、丁二醇、乙酸苯甲基酯、二乙酸乙二醇酯、异佛尔酮和芳香烃。
随后在所施加的温度和压力条件下将绝缘基板粘合到层压层上,以便使层压层和绝缘层发生软化和熔合。通过如下方法将温度和压力施加到层压层和绝缘基板上使层压层和绝缘基板以30mm/sec~3mm/sec的速度通过加热滚筒。
此外,该温度和压力足以引起导电油墨的软化和导电油墨与绝缘基板之间的熔合以及导电油墨和层压层之间的熔合。尽管发生了这种软化和熔合,该导电油墨仍然保持了它的导电性质。因此,该导电油墨也被称为可熔导电油墨。
在粘合步骤过程中所使用的温度通常为大约80℃~150℃,并且特别为大约120℃,而压力通常为1巴~10巴,并且特别为5巴。
粘合步骤所形成的液密微通道在绝缘基板、层压层与导电油墨之间的任何物理接触点之间不存在缝隙。
为了促进最佳熔合,相对于层压层和绝缘基板的熔点,该导电油墨的熔点理想地是+30℃~-50℃。此外,更理想的情况是相对于基材的熔点,导电油墨的熔程为0℃~-30℃,并且优选相对于基材的熔点,油墨的熔程为-5℃~-15℃。在这一点上,应当指出的是所报道的环氧树脂Epikote 1055的熔点范围为79℃~87℃,而形成层压层和绝缘基板的聚苯乙烯的熔点为90℃。
此外,为了促进由导电油墨所形成的组分(例如,电极、导电迹线与导电性接触垫)与绝缘基板或层压层之间的熔合,优选使用包括约量低于聚合材料(其中所述的材料可以形成绝缘基板与层压层)的分子量的组分的导电油墨。
应理解,对此处所述的本发明的具体实施方案的各种替换选择方案也可被用于实施本发明。本发明的范围将由如下权利要求来限定,并且这些权利要求范围内的结构及其等同技术方案将被包括在其中。
权利要求
1.一种用于监测流体样品中的被分析物的微观流体分析系统,该微观流体系统包括一个分析模块,其包括一个带有上表面的绝缘基板,该上表面具有至少一个微通道;至少一个布置于绝缘基板的上表面上的导电性接触垫;至少一个电极,该至少一个电极中的每一个布置在至少一个微通道的上方;至少一个导电迹线,所述的导电迹线与至少一个电极和至少一个导电性接触垫电连接;和一个层压层,其布置在所述的至少一个电极、所述的至少一个导电迹线、所述的至少一个微通道和所述绝缘基板的上表面的一部分的上方,和一个电气装置,其中,该至少一个导电性接触垫具有至少一个用于与电气装置电连接的可接近的暴露表面。
2.权利要求1所述的微观流体分析装置,其中所述的电气装置包括至少一个接触弹簧,并且各个接触弹簧适合与至少一个导电性接触垫的可接近的暴露表面电接触。
3.权利要求1所述的微观流体分析装置,其中所述的绝缘基板的上表面包括一个凹槽并且所述的导电性接触垫布置在该凹槽的内部。
4.权利要求1所述的微观流体分析装置,其中所述的层压层与绝缘基板的上表面的一部分熔合,使得所述的至少一个微通道基本上是液密性的。
5.如权利要求1所述的微观流体分析装置,其中所述的至少一个电极和所述的至少一个导电迹线与绝缘基板的上表面熔合在一起,使得所述的至少一个微通道基本上是液密性的。
6.权利要求1所述的微观流体分析装置,其中所述的至少一个导电迹线和所述的至少一个导电性接触垫熔合在一起。
7.权利要求1所述的微观流体分析装置,其中所述的至少一个导电性接触垫布置在绝缘基板的周围。
8.权利要求1所述的微观流体分析装置,其中所述的绝缘基板是圆形的并且包括多个微通道,包括多个电极,并且所述的导电性接触垫布置在绝缘基板的周围。
9.权利要求1所述的微观流体分析装置,其中所述的层压层是一个柔性薄片。
10.权利要求1所述的微观流体分析装置,其中所述的电极、导电迹线和导电性接触垫中的至少一个是由导电油墨形成的。
11.权利要求10所述的微观流体分析装置,其中所述的导电油墨具有如下组成包含铂和碳的微粉化的粉末;聚(双酚A-共-表氨醇)-缩水甘油基封端的聚合物;和溶剂,并且,其中微粉化的粉末与聚(双酚A-共-表氯醇)-缩水甘油基封端的聚合物的比例为3∶1~1∶3。
全文摘要
一种用于监测流体样品(例如,血液或ISF)中的被分析物(例如葡萄糖)的微观流体分析系统,其包括一个分析模块和一个电气装置(例如,仪表或电源)。该分析模块在绝缘基板的上表面内包括绝缘基板和微通道。该分析模块还包括导电性接触垫和电极,所述的导电性接触垫布置在绝缘基板的上表面上,而电极布置在微通道的上方。另外,该分析模块包括导电迹线,所述的导电迹线将电极与至少一个导电性接触垫电连接。该分析模块还具有一个层压层,其布置在电极、导电迹线、微通道和绝缘基板的上表面的一部分的上方。该分析模块的导电性接触垫具有一个用于与电气装置电连接的可接近的暴露表面。
文档编号G01N35/00GK1763515SQ200510107659
公开日2006年4月26日 申请日期2005年9月29日 优先权日2004年9月30日
发明者M·斯蒂恩, T·A·里奇特, J·I·罗杰斯, M·麦伦南, J·莫法特, A·麦克尼拉格 申请人:生命扫描有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1