顶发射有机电致发光器件及其制备方法

文档序号:7245838阅读:170来源:国知局
顶发射有机电致发光器件及其制备方法
【专利摘要】本发明涉及一种顶发射有机电致发光器件,其包括依次层叠设置的基板、阴极层、电子传输层、空穴阻挡层、发光层、电子阻挡层、空穴传输层及阳极。电子传输层包括多层层叠设置的子传输层,每层子传输层的材料包括主体材料及掺杂在所述主体材料中的掺杂材料。该上述顶发射有机电致发光器件的光从顶部的阳极发射,从而解决了传统的顶发射电极出光效率低的问题。且器件的电子传输层采用梯度掺杂的方法,使电子传输层与阴极层之间形成欧姆接触,从而提高载流子注入效率,并且随着电子传输层厚度的增加,掺杂浓度逐渐减少,使电子呈梯度的注入和传输,从而能实现载流子的注入控制,进而能够控制激子的复合,以实现高光效。此外,本发明还涉及一种顶发射有机电致发光器件的制备方法。
【专利说明】顶发射有机电致发光器件及其制备方法
【技术领域】
[0001]本发明涉及电致发光领域,尤其涉及一种顶发射有机电致发光器件及其制备方法。
【背景技术】
[0002]有机电致发光器件(Organic Light Emission Diode,以下简称0LED)具有亮度高、材料选择范围宽、驱动电压低、全固化主动发光等特性,同时拥有高清晰、广视角以及响应速度快等优势,是一种极具潜力的显示技术和光源,符合信息时代移动通信和信息显示的发展趋势,以及绿色照明技术的要求,是目前国内外众多研究者的关注重点。
[0003]目前有机电致发光器件广泛被用应用于显示。当有机电致发光应用于显示时,一般要采用硅作为衬底,但由于硅是不透明的,所以往往顶发射结构更适用于做在硅衬底上,从而解决底发射显示器件驱动电路和显示发光面积相互竞争的问题,也即需要一种高透过率的电极应用于顶发射器件。通常采用薄层金属Ag或Al作为透明阴极层,但是这种薄膜材料的透过率不够高,而ITO薄膜作为阴极层时,由于功函太高,对电子的注入不利,因此不利于光效的提闻。此外,由于在有机材料中,空穴迁移率闻于电子的迁移率,导致在有机电致发光的载流子注入过程中,容易存在载流子注入不平衡的问题,因而抑制了光效的提高。

【发明内容】

[0004]基于此,有必要提供一种载流子注入效率及光效较高的顶发射有机电致发光器件及其制备方法。
[0005]一种顶发射有机电致发光器件,包括依次层叠设置的基板、阴极层、电子传输层、空穴阻挡层、发光层、电子阻挡层、空穴传输层及阳极,所述电子传输层包括多个层叠设置的子传输层,每层所述子传输层的材料包括主体材料及掺杂在所述主体材料中的掺杂材料,所述主体材料为2-(4-联苯基)-5-(4-叔丁基)苯基-1,3,4- 二唑,(8-羟基喹啉)-铝、4,7-二苯基-邻菲咯啉、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲、1,2,4-三唑衍生物或双(2-甲基-8-羟基喹啉-NI,08)-(1, I’-联苯-4-羟基)铝,所述掺杂材料为叠氮化锂、叠氮化铯、碳酸铷、氟化铷或氟化钠,所述掺杂材料在所述子传输层中的掺杂质量百分比随靠近所述阴极层至靠近所述发光层的方向逐层递减。
[0006]在其中一个实施例中,所述子传输层中掺杂材料占所述子传输层的掺杂质量百分比的变化范围为广20%。
[0007]在其中一个实施例中,所述子传输层的层叠数量为2飞层,每层所述子传输层的厚度为5?30nm。
[0008]在其中一个实施例中,所述阴极层的材料为Ag、Al、Sm、Yb、Mg-Ag合金或Mg-Al合金,所述阴极层的厚度为70-200nm。
[0009]在其中一个实施例中,所述发光层的材料为二(2-甲基-二苯基[f,h]喹喔啉)(乙酰丙酮)合铱按照5%的质量比掺杂到N,N’ - (1-萘基)-N,N’ - 二苯基-4,4’ -联苯二胺中组成的掺杂混合材料、或者为4- (二腈甲基)-2-丁基-6- (1,1,7,7_四甲基久洛呢啶-9-乙烯基)-4H-吡喃按照1%的质量比掺杂到8-羟基喹啉铝中组成的掺杂混合材料,或者为4,4’-双(9-乙基-3-咔唑乙烯基)-1,I’-联苯(BCzVBi);所述发光层的厚度为15nm。
[0010]在其中一个实施例中,所述阳极的材料为铟锡氧化物薄膜、铟锌氧化物、铝锌氧化物或镓锌氧化物,厚度为70nm。
[0011]在其中一个实施例中,所述空穴阻挡层的材料为双(2-甲基-8-羟基喹啉-NI,08)-(1, I’ -联苯-4-羟基)铝;所述空穴阻挡层的厚度为10nm。
[0012]在其中一个实施例中,所述电子阻挡层的材料为酞菁锌、酞菁铜、酞菁氧钒、酞菁氧钦、酞菁钼、4,4’,4" _ 二(2-萘基苯基氨基)二苯基胺、4,4’,4" _ 二(1-萘基苯基氨基)三苯基胺、N,N’-二苯基-N,N’-二(1-萘基)_1,I’-联苯-4,4’-二胺、4,4’,4"-三(N-3-甲基苯基-N-苯基氨基)三苯胺、N,N’ - 二苯基-N,N’ - 二(3-甲基苯基)_1,I'-联苯-4,4’-二胺、N,N,N’,N’ -四甲氧基苯基)_对二氨基联苯、2,7-双(N,N-二(4-甲氧基苯基)氨基)-9,9-螺二芴、4,4’,4"-三(咔唑-9-基)三苯胺)、1,1-二(4-(N,N' -二(p-甲苯基)氨基)苯基)环己烧或2, 2' ,7,7'-四(N, N-二苯胺基)-9,9' _螺二荷。 [0013]在其中一个实施例中,所述空穴传输层的材料为所述空穴阻挡层的材料为酞菁锋、酞菁铜、酞菁氧钥;、酞菁氧钦、酞菁钼、4,4’,4 " -二(2-萘基苯基氨基)二苯基胺、4,4’,4"-三(1-萘基苯基氨基)三苯基胺、N,N’-二苯基-N,N’-二(1-萘基)-1,I'-联苯-4,4’ - 二胺、4,4’,4 "-三(N-3-甲基苯基-N-苯基氨基)三苯胺、N,N’ - 二苯基-N,N’-二(3-甲基苯基)-1,-联苯-4,4’- 二胺、N,N,N’,N’-四甲氧基苯基)-对二氨基联苯、2,7-双(N,N- 二( 4-甲氧基苯基)氨基)-9,9-螺二芴、4,4’,4 "-三(咔唑-9-基)三苯胺)、1,1_ 二(4_(N,N' -二(P-甲苯基)氨基)苯基)环己烷或2,2',7,7'-四(N, N-二苯胺基)-9,9' _螺二荷。
[0014]一种顶发射有机电致发光器件的制备方法,包括如下步骤:
[0015]采用真空镀膜法,在洁净的基板蒸镀制备阴极层;
[0016]采用真空镀膜法,在所述阴极层上蒸镀多层子传输层构成电子传输层,其中,每层所述子传输层的材料包括主体材料及掺杂在所述主体材料中的掺杂材料,所述主体材料为2- (4-联苯基)-5- (4-叔丁基)苯基-1,3,4-二唑,(8-羟基喹啉)-铝、4,7-二苯基-邻菲咯啉、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲、1,2,4-三唑衍生物或双(2-甲基-8-羟基喹啉-NI,08)-(1,I’-联苯_4_羟基)铝,所述掺杂材料为叠氮化锂、叠氮化铯、碳酸铷、氟化铷或氟化钠,所述掺杂材料在所述子传输层中的掺杂质量百分比随远离所述阴极层的方向而逐层递减;
[0017]采用真空镀膜法,在所述电子传输层上蒸镀空穴阻挡层、发光层、电子阻挡层及空穴传输层,并所述发光层上使用低频磁控溅射法制备阳极,得到所述有机电致发光器件。
[0018]上述顶发射有机电致发光器件的光从顶部的阳极发射,从而解决了传统的顶发射电极出光效率低的问题。且器件的电子传输层采用梯度掺杂的方法,使电子传输层与阴极层之间形成欧姆接触,从而提高载流子注入效率,并且随着电子传输层厚度的增加,掺杂浓度逐渐减少,使电子呈梯度的注入和传输,从而能实现载流子的注入控制,进而能够控制激子的复合,以实现高光效。[0019]且上述制备方法过程简单,对设备要求低,可以广泛推广应用。
【专利附图】

【附图说明】
[0020]图1为一实施方式的有机电致发光器件的结构示意图;
[0021]图2为图1所示有机电致发光器件的制备方法流程图;
[0022]图3为实施例1和对比例1、对比例2的电流-电压特性曲线比较图。
【具体实施方式】
[0023]下面主要结合附图及具体实施例对有机电致发光器件及其制备方法作进一步详细的说明。
[0024]如图1所示,一实施方式的顶发射有机电致发光器件100包括依次层叠设置的基板110、阴极层120、电子传输层130、空穴阻挡层140、发光层150、电子阻挡层160、空穴传输层170及阳极180。
[0025]基板110可以采用透明玻璃制作。
[0026]阴极层120的材料为Ag、Al、Sm、Yb、Mg-Ag合金或Mg-Al合金。阴极层120的厚度为70-200nm。在优选的实施方式中,阴极层120为厚度IOOnm的Ag层。
[0027]在本实施方式中,电子传输层130包括多层层叠设置的子传输层。每层子传输层的材料包括主体材料及掺杂在主体材料中的掺杂材料。其中,主体材料为2- (4-联苯基)-5- (4-叔丁基)苯基-1,3,4-噁二唑(PBD),(8-羟基喹啉)_铝、4,7- 二苯基-邻菲咯啉(Alq3)、l,3,5_三(1-苯基-1H-苯并咪唑_2_基)苯(Bphen)、2,9_ 二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP)、1,2,4-三唑衍生物(TAZ)或双(2-甲基-8-羟基喹啉-NI,08)-(1, I’-联苯-4-羟基)铝(BAlq)。掺杂材料为叠氮化锂(LiN3)、叠氮化铯(SeN3)、碳酸铷(Rb2CO3 )、氟化铷(RbF)或氟化钠(NaF)。掺杂材料在子传输层中的掺杂质量百分比随靠近阴极层120至靠近发光层150的方向而逐层递减。每层子传输层中掺杂材料占子传输层的掺杂质量百分比的变化范围为广20%。子传输层的数量可以为2飞层,每层子传输层的厚度可以为5?30nm。
[0028]空穴阻挡层140的材料为双(2-甲基-8-羟基喹啉-NI,08)-(1, I’ -联苯_4_羟基)铝。本实施方式中空穴阻挡层140的厚度为10nm。
[0029]发光层150的材料可以为二(2-甲基-二苯基[f,h]喹喔啉)(乙酰丙酮)合铱(Ir (MDQ) 2 (acac))按照5%的质量比掺杂到N,N’ - (1-萘基)-N,N’ - 二苯基-4,4’ -联苯二胺(NPB)中组成的掺杂混合材料、或者为4- (二腈甲基)-2-丁基-6- (1,1,7,7_四甲基久洛呢啶-9-乙烯基)-4H-吡喃(DCJTB)按照1%的质量比掺杂到、8-羟基喹啉铝(Alq3)中组成的掺杂混合材料,此外,发光层150的材料也可以是4,4’-双(9-乙基-3-咔唑乙烯基)_1,I’-联苯(BCzVBi)组成单一材料。发光层150的厚度为15nm。
[0030]电子阻挡层160的材料为酞菁锌(ZnPc)、酞菁铜(CuPc)、酞菁氧I凡(VOPc)、酞菁氧钛(TiOPc)、酞菁钼(PtPc)、4,4’,4〃 -三(2-萘基苯基氨基)三苯基胺(2-TNATA)、4,4’,4"-三(1-萘基苯基氨基)三苯基胺(1-TNATA)、N,N’- 二苯基-N,N’- 二(1-萘基)_1,I’-联苯-4,4’-二胺(NPB)、4,4’,4〃 -三(N-3-甲基苯基N-苯基氨基)三苯胺(m-MTDATA)、N, N’ - 二苯基-N, N’ - 二 (3-甲基苯基)-1,I,-联苯-4,4’ - 二胺(TPD)、N,N,N’,N’ -四甲氧基苯基)-对二氨基联苯(MeO-TPD)、2,7-双(N,N-二(4-甲氧基苯基)氨基)-9,9-螺二芴(MeO-Sprio-TPD)、4,4’,4〃 -三(咔唑 _9_ 基)三苯胺)(TCTA)、1,1-二(4-(N,N' -二(P-甲苯基)氨基)苯基)环己烷(TAPC)或2,2' ,1,1' -四(N,N-二苯胺基)-9,9'-螺二芴(s-TAD)。
[0031]空穴传输层170的材料为空穴阻挡层的材料为酞菁锌(ZnPc)、酞菁铜(CuPc)、駄善氧f凡(VOPc)、駄善氧钦(TiOPc)、駄善钼(PtPc)、4, 4’,4 " -二 (2-萘基苯基氨基)三苯基胺、4,4’,4 "-三(1-萘基苯基氨基)三苯基胺、N, N’ - 二苯基-N,N’ - 二(1-萘基)_1,I’-联苯_4,4’-二胺、4,4’,4"-三(N-3-甲基苯基-N-苯基氨基)三苯胺、N,N’-二苯基-N,N’ - 二(3-甲基苯基)-1, I’ -联苯-4,4’ - 二胺、N, N,N’,N’ -四甲氧基苯基)-对二氛基联苯、2,7_双(N, N-二(4_甲氧基苯基)氛基)-9,9_螺二荷、4,4’,4 " -二(咔唑-9-基)三苯胺)、1,1_ 二(4-(N,K -二(P-甲苯基)氨基)苯基)环己烷或2,2',I, T -四(N,N-二苯胺基)-9,9'-螺二芴。
[0032]阳极180的材料为铟锡氧化物薄膜(ΙΤ0)、铟锌氧化物(ΙΖ0)、铝锌氧化物(AZO)或镓锌氧化物(GZ0),厚度为70nm。
[0033]如图2所示,本实施方式还提供了一种顶发射有机电致发光器件的制备方法,包括如下步骤:
[0034]步骤S210,采用真空镀膜法,在洁净的基板上蒸镀制备阴极层。
[0035]基板在使用之前可以先放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇、丙酮在超声波中处理20分钟,然后用氮气吹干,形成洁净的基板。
[0036]步骤S220,采用真空镀膜法,在阴极层上蒸镀多层子传输层构成电子传输层。其中,每层子传输层的材料包括主体材料及掺杂在主体材料中的掺杂材料,主体材料为2- (4-联苯基)-5- (4-叔丁基)苯基-1,3,4-二唑,(8-羟基喹啉)-铝、4,7-二苯基-邻菲咯啉、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲、1,2,4-三唑衍生物或双(2-甲基-8-羟基喹啉-NI,08)-(1,I’-联苯_4_羟基)铝,掺杂材料为叠氮化锂、叠氮化铯、碳酸铷、氟化铷或氟化钠,掺杂材料在子传输层中的掺杂质量百分比随远离阴极层而逐层递减;
[0037]步骤S230,采用真空镀膜法,在电子传输层上依次蒸镀空穴阻挡层、发光层、电子阻挡层及空穴传输层,并在空穴传输层上使用低频磁控溅射法制备阳极,得到有机电致发光器件。
[0038]上述顶发射有机电致发光器件100的光从顶部的阳极180发射,从而解决了传统的顶发射电极出光效率低的问题。且顶发射有机电致发光器件100的电子传输层130采用梯度掺杂的方法,使电子传输层130与阴极层120之间形成欧姆接触,从而提高载流子注入效率,并且随着电子传输层130厚度的增加,掺杂浓度逐渐减少,使电子呈梯度的注入和传输,从而能实现载流子的注入控制,进而能够控制激子的复合,以实现高光效。
[0039]且上述制备方法过程简单,对设备要求低,可以广泛推广应用。
[0040]以下为具体实施例部分:
[0041]实施例1
[0042]本实施例的顶发射有机电致发光器件的结构为:玻璃基板/Ag/(CsN3: Bphen (20%)/CsN3: Bphen (15%) /CsN3: Bphen (10%) /CsN3: Bphen (5%)) /BAlq/Ir (MDQ)2(acac):NPB(5%)/TAPC/CuPc/IT0,其中,相应层中“:”表示掺杂,括弧内百分比数据表示前者在相应层中的掺杂质量百分比,“/”表示层叠,具体制备过程如下:
[0043]将玻璃基板放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理20分钟,再用氮气吹干,得到洁净的玻璃基板。
[0044]采用真空镀膜法,在洁净的玻璃基板表面蒸镀制备厚度为IOOnm的Ag阴极层。
[0045]在Ag阴极层上蒸镀制备包括4层子传输层的电子传输层,其中,每层子传输层中的掺杂材料为CsN3,主体材料为Bphen,随远离Ag阴极层每层子传输层中CsN3的掺杂质量百分比依次为 20%、15%、10% 及 5%,表示为=CsN3: Bphen (20%) /CsN3: Bphen (15%) /CsN3: Bphen (10%) /CsN3: Bphen (5%);厚度依次为 20nm、15nm、IOnm 及 10nm。
[0046]在电子传输层上依次蒸镀制备空穴阻挡层、发光层、电子阻挡层及空穴传输层,其中,空穴阻挡层材料为BAlq、发光层材料为Ir (MDQ)2 (acac)按照5%质量比掺杂在NPB的掺杂混合材料,电子阻挡层材料为TAPC,空穴传输层的材料为CuPc,空穴阻挡层、发光层、电子阻挡层及空穴传输层的厚度分别为10nm、15nm、20nm及40nm。
[0047]使用低频磁控溅射法在空穴传输层上制备的厚度为70nm的ITO薄膜作为阳极。
[0048]实施例2
[0049]本实施例的顶发射有机电致发光器件的结构为:玻璃基板/Ag/(LiN3:TPBi (15%)/LiN3: TPBi (12%)/LiN3: TPBi (8%)/LiN3: TPBi (5%) /LiN3: TPBi (1%))/BAlq/DCJTB =Alq3 (1%)/TAPC/CuPc/ITO,其中,相应层中“:”表示掺杂,括弧内百分比数据表示前者在相应层中的掺杂质量百分比,“/”表示层叠,具体制备过程如下:
[0050]将玻璃基板放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理20分钟,再用氮气吹干,得到洁净的玻璃基板。
[0051]采用真空镀膜法,在洁净的玻璃基板表面蒸镀制备厚度为IOOnm的Ag阴极层。
[0052]在Ag阴极层上制备由5层子传输层构成的电子传输层,其中,每层子传输层中的掺杂材料为LiN3,主体材料为TPBi,随远离Ag阴极层每层子传输层中LiN3的掺杂质量百分比依次为 15%、12%、8%、5% 及 1%,表示为=LiN3: TPBi (15%) /LiN3: TPBi (12%) /LiN3: TPBi (8%)/LiN3: TPBi (5%)/LiN3: TPBi (1%);厚度依次为 15nm、15nm、10nm、IOnm 及 IOnm0
[0053]在电子传输层上依次蒸镀制备空穴阻挡层、发光层、电子阻挡层及空穴传输层,其中,空穴阻挡层材料为BAlq、发光层材料为4- (二腈甲基)-2_ 丁基-6- (1,1,7,7_四甲基久洛呢啶-9-乙烯基)-4H_吡喃(DCJTB)按照1%的质量比掺杂到、8-羟基喹啉铝(Alq3)中组成的掺杂混合材料,电子阻挡层材料为TAPC,空穴传输层的材料为CuPc,空穴阻挡层、发光层、电子阻挡层及空穴传输层的厚度分别为10nm、15nm、20nm及40nm。
[0054]使用低频磁控溅射法在空穴传输层上制备厚度为70nm的ITO薄膜作为阳极。
[0055]实施例3
[0056]本实施例的顶发射有机电致发光器件的结构为:玻璃基板/Ag/(Rb2CO3: BCP (18%) /Rb2CO3: BCP (16%) /Rb2CO3: BCP (12%) /Rb2CO3: BCP (8%) /Rb2CO3: BCP (4%) /Rb2CO3IBCP (1%)) /BAlq/BCzVBi/TAPC/CuPc/ITO,其中,相应层中“:”表示掺杂,括弧内百分比数据表示前者在相应层中的掺杂质量百分比,“/”表示层叠,具体制备过程如下:
[0057]将玻璃基板放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理20分钟,再用氮气吹干,得到洁净的玻璃基板。[0058]采用真空镀膜法,在洁净的玻璃基板上蒸镀制备厚度为IOOnm的Ag阴极层。
[0059]在Ag阴极层上制备由6层子传输层构成的电子传输层,其中,每层子传输层中的掺杂材料为Rb2CO3,主体材料为BCP,随远离Ag阴极层每层子传输层中Rb2CO3的掺杂质量百分比依次为 18%、16%、12%、8%、4% 及 1%,表示为=Rb2CO3:BCP(18%)/Rb2CO3:BCP (16%)/Rb2CO3: BCP (12%) /Rb2CO3: BCP (8%) /Rb2CO3: BCP (4%) /Rb2CO3: BCP (1%);厚度依次为 10nm、10nm、10nm、5nm、5nm 及 5nm。
[0060]在电子传输层上依次蒸镀制备空穴阻挡层、发光层、电子阻挡层及空穴传输层,其中,空穴阻挡层材料为BAlq、发光层材料为4,4’-双(9-乙基_3_咔唑乙烯基)_1,I’-联苯(BCzVBi),电子阻挡层材料为TAPC,空穴传输层的材料为CuPc,空穴阻挡层、发光层、电子阻挡层及空穴传输层的厚度分别为10nm、15nm、20nm及40nm。
[0061]使用低频磁控溅射法在空穴传输层上制备厚度为70nm的ITO薄膜作为阳极。
[0062]实施例4
[0063]本实施例的顶发射有机电致发光器件的结构为:玻璃基板/Ag/(RbF = Alq3(12%)/RbF: Alq3 (8%)/RbF: Alq3 (5%) )/BAlq/Ir (MDQ)2 (acac):NPB (5%)/TAPC/CuPc/ITO,其中,相应层中“:”表示掺杂,括弧内百分比数据表示前者在相应层中的掺杂质量百分比,“/”表示层叠,具体制备过程如下:
[0064]将玻璃基板放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理20分钟,再用氮气吹干,得到洁净的玻璃基板。
[0065]采用真空镀膜法,在洁净的玻璃基板表面蒸镀制备厚度为IOOnm的Ag阴极层。
[0066]在Ag阴极层上制备由3层子传输层构成的电子传输层,其中,每层子传输层中的掺杂材料为RbF,主体材料为Alq3,随远离Ag阴极层每层子传输层中RbF的掺杂质量百分比依次为 12%、8% 及 5%,表示为:RbF:Alq3 (12%)/RbF:Alq3(8%)/RbF:Alq3(5%);厚度依次为20nm、15nm 及 IOnm0
[0067]在电子传输层上依次蒸镀制备空穴阻挡层、发光层、电子阻挡层及空穴传输层,其中,空穴阻挡层材料为BAlq、发光层材料为Ir (MDQ)2 (acac)按照5%质量比掺杂在NPB的掺杂混合材料,电子阻挡层材料为TAPC,空穴传输层的材料为CuPc,空穴阻挡层、发光层、电子阻挡层及空穴传输层的厚度分别为10nm、15nm、20nm及40nm。
[0068]使用低频磁控溅射法在空穴传输层上制备厚度为70nm的ITO薄膜作为阳极。
[0069]实施例5
[0070]本实施例的顶发射有机电致发光器件的结构为:玻璃基板/Ag/(NaF:TAZ(12%)/NaF:TAZ(4%))/BAlq/Ir (MDQ)2(acac):NPB(5%)/TAPC/CuPc/IT0,其中,相应层中“:”表示掺杂,括弧内百分比数据表示前者在相应层中的掺杂质量百分比,“/”表示层叠,具体制备过程如下:
[0071]将玻璃基板放在含有洗涤剂的去离子水中进行超声清洗,清洗干净后依次用异丙醇,丙酮在超声波中处理20分钟,再用氮气吹干,得到洁净的玻璃基板。
[0072]采用真空镀膜法,在洁净的玻璃基板表面蒸镀制备厚度为IOOnm的Ag阴极层。
[0073]在Ag阴极层表面蒸镀制备由2层子传输层构成的电子传输层,其中,每层子传输层中的掺杂材料为NaF,主体材料为TAZ,随远离Ag阴极层每层子传输层中NaF的掺杂质量百分比依次为12%及4%,表示为:NaF: TAZ (12%)/NaF: TAZ (4%);厚度依次为30nm及15nm。[0074]在电子传输层上依次蒸镀制备空穴阻挡层、发光层、电子阻挡层及空穴传输层,其中,空穴阻挡层材料为BAlq、发光层材料为Ir (MDQ)2 (acac)按照5%质量比掺杂在NPB的掺杂混合材料,电子阻挡层材料为TAPC,空穴传输层的材料为CuPc,空穴阻挡层、发光层、电子阻挡层及空穴传输层的厚度分别为10nm、15nm、20nm及40nm。
[0075]使用低频磁控溅射法在空穴传输层上制备厚度为70nm的ITO薄膜作为阳极。
[0076]对比例I
[0077]对比例I的顶发射有机电致发光器件的结构为:玻璃基板/Ag阳极层/CuPc空穴传输层/TAPC电子阻挡层/Ir (MDQ) 2 (acac): NPB (5%)发光层/BAlq空穴阻挡层/CsN3:Bphen (15%)电子传输层/Ag,其中,相应层中“:”表不掺杂,括弧内百分比数据表不前者在相应层中的掺杂质量百分比,“ / ”表示层叠。
[0078]相比实施例1,其采用的是普通的正置结构,采用厚度为IOOnm的Ag作为阳极,厚度为20nm的Ag作为阴极层出光,制备过程参照实施例1。
[0079]对比例2
[0080]对比例2的顶发射有机电致发光器件的结构为:玻璃基板/Ag/CSN3:Bphen(15%)电子传输层/BAlq空穴阻挡层/Ir (MDQ)2 (acac):NPB(5%)发光层/TAPC电子阻挡层/CuPc空穴传输层/ITO阳极,其中,相应层中“:”表示掺杂,括弧内百分比数据表示前者在相应层中的掺杂质量百分比,“ / ”表示层叠。
[0081]相比实施例1,对比例2没有采用梯度掺杂的电子传输层。
[0082]表1是实施例1-5和对比例1、2所制备的顶发射有机电致发光器件的发光性能数据,如下:
[0083]表1
[0084]
【权利要求】
1.一种顶发射有机电致发光器件,包括依次层叠设置的基板、阴极层、电子传输层、空穴阻挡层、发光层、电子阻挡层、空穴传输层及阳极,其特征在于,所述电子传输层包括多个层叠设置的子传输层,每层所述子传输层的材料包括主体材料及掺杂在所述主体材料中的掺杂材料,所述主体材料为2- (4-联苯基)-5- (4-叔丁基)苯基-1,3,4- 二唑,(8-羟基喹啉)_铝、4,7-二苯基-邻菲咯啉、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲、1,2,4-三唑衍生物或双(2-甲基-8-羟基喹啉-NI,08)-(1, 1’ -联苯-4-羟基)铝,所述掺杂材料为叠氮化锂、叠氮化铯、碳酸铷、氟化铷或氟化钠,所述掺杂材料在所述子传输层中的掺杂质量百分比随靠近所述阴极层至靠近所述发光层的方向逐层递减。
2.如权利要求1所述的顶发射有机电致发光器件,其特征在于,所述子传输层中掺杂材料占所述子传输层的掺杂质量百分比的变化范围为广20%。
3.如权利要求1或2所述的顶发射有机电致发光器件,其特征在于,所述子传输层的层叠数量为2飞层,每层所述子传输层的厚度为5~30nm。
4.如权利要求1所述的顶发射有机电致发光器件,其特征在于,所述阴极层的材料为Ag、Al、Sm、Yb、Mg-Ag合金或Mg-Al合金,所述阴极层的厚度为70_200nm。
5.如权利要求1所述的顶发射有机电致发光器件,其特征在于,所述发光层的材料为二(2-甲基-二苯基[f,h]喹喔啉)(乙酰丙酮)合铱按照5%的质量比掺杂到N,N’ - (1-萘基)-N, N’ - 二苯基-4,4’ -联苯二胺中组成的惨杂混合材料、或者为4- (二臆甲基)-2- 丁基-6- (1, 1, 7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃按照1%的质量比掺杂到8-羟基喹啉铝中组成的掺杂混合材料,或者为4,4’-双(9-乙基-3-咔唑乙烯基)-1,1'-联苯;所述发光层的厚度为15nm。
6.如权利要求1所述的顶发射有机电致发光器件,其特征在于,所述阳极的材料为铟锡氧化物薄膜、铟锌氧化物、铝锌氧化物或镓锌氧化物,厚度为70nm。
7.如权利要求1所述的顶发射有机电致发光器件,其特征在于,所述空穴阻挡层的材料为双(2-甲基-8-羟基喹啉-NI,08)-(1,1’-联苯-4-羟基)铝;所述空穴阻挡层的厚度为 10nm。
8.如权利要求1所述的顶发射有机电致发光器件,其特征在于,所述电子阻挡层的材料为酞菁锋、酞菁铜、酞菁氧f凡、酞菁氧钦、酞菁钼、4,4’,4 " -二(2-萘基苯基氨基)三苯基胺、4,4’,4 "-三(1-萘基苯基氨基)三苯基胺、N, N’ - 二苯基-N,N’ - 二(1-萘基)_1,1'-联苯-4,4’_ 二胺、4,4’,4"-三(N-3-甲基苯基-N-苯基氨基)三苯胺、N, N’ - 二苯基-N,N’ - 二(3-甲基苯基)-1, I’ -联苯-4,4’ - 二胺、N,N,N’,N’ -四甲氧基苯基)_对二氣基联苯、2,7-双(N, N- _.(4-甲氧基苯基)氣基)-9, 9-螺二荷、4,4’,4 " -二(咔唑-9-基)三苯胺)、1,1_ 二(4-(N,N' - 二(P-甲苯基)氨基)苯基)环己烷或2,2’,7,7’ -四(N,N- 二苯胺基)-9,9’ -螺二芴。
9.如权利要求1所述的顶发射有机电致发光器件,其特征在于,所述空穴传输层的材料为所述空穴阻挡层的材料为酞菁锌、酞菁铜、酞菁氧钒、酞菁氧钛、酞菁钼、4,4’,4"-三(2-萘基苯基氨基)三苯基胺、4,4’,4 "-三(1-萘基苯基氨基)三苯基胺、N,N’ - 二苯基-N,N’-二 (1-萘基)_1,1’-联苯-4,4’-二胺、4,4’,4"-三(N-3-甲基苯基-N-苯基氨基)三苯胺、N,N’-二苯基-N,N’-二(3-甲基苯基)-1,1'-联苯-4,4’-二胺、N,N,N,,N,-四甲氧基苯基)_对二氛基联苯、2,7-双(N, N-二(4-甲氧基苯基)氛基)-9, 9-螺二荷、.4,4’,4"-三(咔唑-9-基)三苯胺)、1,1_ 二(4-(N,N' -二(p-甲苯基)氨基)苯基)环己烧或2,2' ,7,7' _四(N, N-二苯胺基)-9,9' _螺二荷。
10.一种顶发射有机电致发光器件的制备方法,其特征在于,包括如下步骤: 采用真空镀膜法,在洁净的基板蒸镀制备阴极层; 采用真空镀膜法,在所述阴极层上蒸镀多层子传输层构成电子传输层,其中,每层所述子传输层的材料包括主体材料及掺杂在所述主体材料中的掺杂材料,所述主体材料为.2- (4-联苯基)-5- (4-叔丁基)苯基-1,3,4-二唑,(8-羟基喹啉)-铝、4,7-二苯基-邻菲咯啉、1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯、2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲、1,2,4-三唑衍生物或双(2-甲基-8-羟基喹啉-NI,08)-(1,I’-联苯_4_羟基)铝,所述掺杂材料为叠氮化锂、叠氮化铯、碳酸铷、氟化铷或氟化钠,所述掺杂材料在所述子传输层中的掺杂质量百分比随远离所述阴极层的方向而逐层递减; 采用真空镀膜法,在所述电子传输层上蒸镀空穴阻挡层、发光层、电子阻挡层及空穴传输层,并所述发光层 上使用低频磁控溅射法制备阳极,得到所述有机电致发光器件。
【文档编号】H01L51/52GK103730589SQ201210384435
【公开日】2014年4月16日 申请日期:2012年10月11日 优先权日:2012年10月11日
【发明者】周明杰, 王平, 冯小明, 钟铁涛 申请人:海洋王照明科技股份有限公司, 深圳市海洋王照明技术有限公司, 深圳市海洋王照明工程有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1