一种氧化物薄膜晶体管及其制造方法、阵列基板、显示装置与流程

文档序号:12725389阅读:239来源:国知局
一种氧化物薄膜晶体管及其制造方法、阵列基板、显示装置与流程

本发明涉及显示技术,尤指一种氧化物薄膜晶体管及其制造方法、阵列基板、显示装置。



背景技术:

随着显示器件的越发成熟,氧化物有源层的需求越来越高。氧化物半导体作为有源层材料,相比传统的非晶硅(a-Si)材料具有载流子迁移率高、制备温度低、大面积均匀性优良、光学透过率高等优势,这些优势也决定了氧化物薄膜晶体管(Oxide TFT)适用于制备高分辨率的薄膜晶体管液晶显示器(TFT-LCD)、有源矩阵有机发光二极体面板(AM-OLED)、柔性显示、透明显示等新型显示器件。



技术实现要素:

为了解决上述技术问题,本发明至少一实施例提供了一种氧化物薄膜晶体管及其制造方法、阵列基板、显示装置,提高了氧化物薄膜晶体管的电学性能。

本发明一实施例提供了一种种氧化物薄膜晶体管的制造方法,包括:

提供衬底基板;

在所述衬底基板上依次形成栅极金属层、栅极绝缘层、有源层、源/漏电极层;

从所述衬底基板背面进行激光退火工艺处理,以使所述有源层未与所述栅极金属层重叠的部分的电阻率低于所述有源层与所述栅极金属层重叠的部分的电阻率,其中,所述有源层未与所述栅极金属层重叠的部分与所述源/漏电极层电连接。

在本发明一可选实施例中,所述方法还包括:

在形成所述源漏极电极层之前,在所述有源层上形成刻蚀阻挡层。

在本发明一可选实施例中,所述激光退火工艺为准分子激光退火工艺。

在本发明一可选实施例中,所述从所述衬底基板背面进行激光退火工艺处理在形成所述源/漏电极层上的绝缘层后执行。

在本发明一可选实施例中,所述从所述衬底基板背面进行激光退火工艺处理在形成所述有源层后且形成所述源/漏电极层前执行。

在本发明一可选实施例中,所述从所述衬底基板背面进行激光退火工艺处理在形成所述刻蚀阻挡层后且形成所述源/漏电极层前执行。

在本发明一可选实施例中,所述从所述衬底基板背面进行激光退火工艺处理在形成所述源/漏电极层后执行。

本发明一实施例提供一种氧化物薄膜晶体管,包括:依次设置在衬底基板上的栅极金属层、栅极绝缘层、有源层、源/漏电极层,其中:

所述有源层包括被从所述衬底基板背面进行的激光退火工艺处理形成的两个部分:与所述栅极金属层重叠的第一部分,未与所述栅极金属层重叠的第二部分,且所述第二部分的电阻率低于所述第一部分的电阻率,且所述第二部分与所述源/漏电极层电连接。

在本发明一可选实施例中,所述氧化物薄膜晶体管还包括:设置在所述有源层上的刻蚀阻挡层。

本发明一实施例提供一种阵列基板,包括上述氧化物薄膜晶体管。

本发明一实施例提供一种显示装置,包括上述阵列基板。

本发明实施例中,对氧化物半导体形成的有源层进行激光退火处理,提升了氧化物薄膜晶体管的开态电流,迁移率和开关比。

本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。

附图说明

附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。

图1(a)~1(h)为本发明一实施例提供的氧化物薄膜晶体管的制造方法过程图;

图2为本发明一实施例提供的氧化物薄膜晶体管的制造方法示意图;

图3为本发明一实施例提供的氧化物薄膜晶体管的制造方法示意图;

图4(a)~4(h)为本发明一实施例提供的氧化物薄膜晶体管的制造方法过程图;

图5为本发明一实施例提供的氧化物薄膜晶体管的制造方法示意图;

图6为本发明一实施例提供的氧化物薄膜晶体管的制造方法示意图;

图7为本发明一实施例提供的氧化物薄膜晶体管示意图;

图8为本发明一实施例提供的氧化物薄膜晶体管示意图;

图9为本发明一实施例提供的阵列基板示意图;

图10为本发明一实施例提供的阵列基板示意图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。

本文中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。

在用于描述本发明的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。本发明实施例附图只涉及到与本发明实施例相关的结构,其他结构可参考通常设计。

本发明一实施例提供一种氧化物薄膜晶体管,包括依次在衬底基板上形成的栅极金属层,栅极绝缘层,有源层(由氧化物半导体形成),源/漏电极层。其中,在衬底基板背面进行激光退火工艺处理,使得有源层的结构发生变化,有源层与源/漏极电极层相连的区域的电阻变低,趋于导体化,减少有源层和源/漏电极层间的搭接电阻,从而达到提升氧化物薄膜晶体管的开态电流,迁移率和开关比的技术效果。

下面通过几个实施例进一步说明本发明。

实施例一

本实施例提供一种氧化物薄膜晶体管的制造方法,包括:

提供衬底基板;

在所述衬底基板上依次形成栅极金属层、栅极绝缘层、有源层、源/漏电极层;

从所述衬底基板背面进行激光退火工艺处理,以使所述有源层未与所述栅极金属层重叠的部分的电阻率低于所述有源层与所述栅极金属层重叠的部分的电阻率,其中,所述有源层未与所述栅极金属层重叠的部分与所述源/漏电极层电连接。

在本发明的一可选实施例中,所述激光退火工艺为ELA(Excimer Laser Annealing,准分子激光退火)工艺。当然,也可使用其他激光退火工艺。

在本发明的一可选实施例中,所述从所述衬底基板背面进行激光退火工艺处理在形成所述源/漏电极层上的绝缘层后执行;或者,在形成所述有源层后且形成所述源/漏电极层前执行,或者,在形成所述源/漏电极层后执行。

在本发明的一可选实施例中,在形成所述源漏极电极层之前,在所述有源层上形成刻蚀阻挡层。所述从所述衬底基板背面进行激光退火工艺处理在形成所述刻蚀阻挡层后且形成所述源/漏电极层前执行,或者,在在形成所述源/漏电极层后执行;或者,在形成所述源/漏电极层上的绝缘层后执行;或者,在形成所述有源层后,所述刻蚀阻挡层之前执行。

下面通过如图1(a)至图1(g)进一步说明本发明实施例提供的氧化物薄膜晶体管的制造方法。

如图1(a)所示,在衬底基板1上沉积栅极金属层薄膜并对该栅极金属层薄膜进行构图工艺以形成栅极金属层2。该衬底基板1可以是一个玻璃基板。该栅极金属层2的材料可以为铜基金属,例如,铜(Cu)、铜钼合金(Cu/Mo)、铜钛合金(Cu/Ti)、铜钼钛合金(Cu/Mo/Ti)、铜钼钨合金(Cu/Mo/W)、铜钼铌合金(Cu/Mo/Nb)等;该栅极金属层2的材料也可以为铬基金属,例如,铬钼合金(Cr/Mo)、铬钛合金(Cr/Ti)、铬钼钛合金(Cr/Mo/Ti)等。

在本实施例中,构图工艺例如为光刻构图工艺,其例如包括:在需要被构图的结构层上涂覆光刻胶层,使用掩膜板对光刻胶层进行曝光,对曝光的光刻胶层进行显影以得到光刻胶图案,使用光刻胶图案对结构层进行蚀刻,然后可选地去除光刻胶图案。根据需要,构图工艺还可以是丝网印刷、喷墨打印方法等。

如图1(b)所示,在所述栅极金属层2上沉积栅极绝缘层薄膜并对该栅极绝缘层薄膜进行构图工艺以形成栅极绝缘层3,在栅极绝缘层3上沉积一层有源层薄膜并对该有源层薄膜进行构图工艺形成有源层4。所述有源层4与所述栅极金属层2存在重叠区域,所述有源层4的大小大于所述栅极金属层2。其中,栅极绝缘层3材料包括氮化硅(SiNx)、氧化硅(SiOx)、氧化铝(Al2O3)、氮化铝(AlN)或其他适合的材料。所述有源层4采用氧化物半导体材料制备,具体可以是氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化镓锌(GZO)等金属氧化物。

如图1(c)所示,在所述有源层4上沉积源/漏电极层薄膜并对该源/漏电极层薄膜进行构图工艺以形成源/漏电极层5;

如图1(d)所示,在所述有源/漏电极层5上沉积绝缘层薄膜并对该绝缘层薄膜进行构图工艺以形成绝缘层6;所述绝缘层6的材料包括如下之一或其组合:硅的氧化物、硅的氮化物、硅的氮氧化物等。

如图1(e)所示,在所述绝缘层6形成后,从所述衬底基板1背面进行激光退火工艺,有源层4中未被栅极金属层2遮挡的区域42在高能激光的照射下电阻率急剧降低,趋于导体化,从而使得有源层4与源/漏电极层5间的搭接电阻可显著降低;而被栅极金属层2遮挡的区域41受栅极金属层2的保护,电阻率变化不大,不影响其作为高迁移率的有源层使用。其中,进行激光退火时,所使用的激光的波长可以为200-350nm,激光能量可以为100-300mj/cm2。比如,当有源层使用氧化铟镓锌(IGZO)实现时,使用能量为100-300mj/cm2的激光进行激光退火后,所述有源层未与所述栅极金属层重叠的部分的电阻降低约5个数量级。IGZO电阻随激光能量不同变化的曲线如图1(f)所示,随着激光能量在0-150mj/cm2增加,IGZO电阻下降,激光能量在150~300mj/cm2之间时,对IGZO电阻的下降效果差不多。需要说明的是,此处激光工艺参数仅为示例,可以根据需要使用其他参数。

在形成绝缘层6后进行激光退火有如下优势:

1、栅极金属层2对高能激光有一定的反射作用,使得照射到有源层4的光强增加,更有利于降低区域42的电阻。

2、绝缘层6具有保温作用,也更有利于有源层4对激光能量的吸收。

如图1(g)所示,在绝缘层6上形成过孔7;该过孔7暴露漏/源漏电极层5。

如图1(h)所示,在所述过孔7和所述绝缘层6上沉积像素电极层薄膜并对所述像素电极层薄膜进行构图工艺以形成像素电极层8。

需要说明的是,从所述衬底基板1背面进行激光退火工艺不仅可以在绝缘层6形成后进行。也可以在形成有源层4之后,形成源/漏电极层5之前进行,如图2所示;或者,在形成源/漏电极层5之后,绝缘层6之前进行,如图3所示。

实施例二

实施例一以BCE型oxide TFT为例进行说明。本发明实施例提供的方法也适用于ESL(刻蚀阻挡层)型oxide TFT。以图4(a)至4(h)说明本实施例提供的氧化物薄膜晶体管的制造方法。

如图4(a)所示,在衬底基板1上沉积栅极金属层薄膜并对该栅极金属层薄膜进行构图工艺以形成栅极金属层2。该衬底基板1可以是一个玻璃基板。该栅极金属层2的材料可以为铜基金属,例如,铜(Cu)、铜钼合金(Cu/Mo)、铜钛合金(Cu/Ti)、铜钼钛合金(Cu/Mo/Ti)、铜钼钨合金(Cu/Mo/W)、铜钼铌合金(Cu/Mo/Nb)等;该栅极金属层2的材料也可以为铬基金属,例如,铬钼合金(Cr/Mo)、铬钛合金(Cr/Ti)、铬钼钛合金(Cr/Mo/Ti)等。

如图4(b)所示,在所述栅极金属层2上沉积栅极绝缘层薄膜并对该栅极绝缘层薄膜进行构图工艺以形成栅极绝缘层3,在栅极绝缘层3上沉积一层有源层薄膜并对该有源层薄膜进行构图工艺形成有源层4,。所述有源层4与所述栅极金属层2存在重叠区域,所述有源层4的大小大于所述栅极金属层2。其中,栅极绝缘层3材料包括氮化硅(SiNx)、氧化硅(SiOx)、氧化铝(Al2O3)、氮化铝(AlN)或其他适合的材料。所述有源层4采用氧化物半导体材料制备,具体可以是氧化铟镓锌(IGZO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化镓锌(GZO)等金属氧化物。

如图4(c)所示,在所述有源层4上沉积刻蚀阻挡层薄膜并对该刻蚀阻挡层薄膜进行构图工艺以形成刻蚀阻挡层9。所述刻蚀阻挡层9为金属层,比如可以为金属钛、或其他通过氧等离子体氧化处理后能转变形成非导电性介质薄膜的金属。

如图4(d)所示,在所述有源层4和刻蚀阻挡层9上沉积源/漏电极层薄膜并对该源/漏电极层薄膜进行构图工艺以形成源/漏电极层5;

如图4(e)所示,在所述有源/漏电极层5上沉积绝缘层薄膜并对该绝缘层薄膜进行构图工艺以形成绝缘层6;所述绝缘层6的材料包括硅的氧化物,或者,硅的氮化物等。

如图4(f)所示,在所述绝缘层6形成后,从所述衬底基板1背面进行激光退火工艺,有源层4中未被栅极金属层2遮挡的区域42在高能激光的照射下电阻率急剧降低,趋于导体化,从而使得有源层4与源/漏电极层5间的搭接电阻可显著降低;而被栅极金属层2遮挡的区域41受栅极金属层2的保护,电阻率变化不大,不影响其作为高迁移率的有源层使用。

在形成绝缘层6后进行激光退火有如下优势:1、SD金属对高能激光有一定的反射作用,使得照射到有源层4的光强增加,更有利于降低区域42的电阻。2,绝缘层6具有保温作用,也更有利于有源层4对激光能量的吸收。

如图4(g)所示,在所示绝缘层6上形成过孔7;该过孔7暴露漏/源漏电极层5。

如图4(h)所示,在所述过孔7和所述绝缘层6上沉积像素电极层薄膜并对所述像素电极层薄膜进行构图工艺以形成像素电极层8。

需要说明的是,从所述衬底基板1背面进行激光退火工艺不仅可以在绝缘层6形成后进行。也可以在形成有源层4和刻蚀阻挡层9之后,形成源/漏电极层5之前进行,如图5所示;或者,在形成源/漏电极层5之后,绝缘层6之前进行,如图6所示。

实施例三

本实施例提供一种氧化物薄膜晶体管,如图7所示,包括:依次设置在衬底基板1上的栅极金属层2、栅极绝缘层3、有源层4、源/漏电极层5,其中:

所述有源层4包括被从所述衬底基板1背面进行的激光退火工艺处理形成的两个部分:与所述栅极金属层重叠的第一部分41,未与所述栅极金属层重叠的第二部分42,且所述第二部分42的电阻率低于所述第一部分41的电阻率,且所述第二部分42与所述源/漏电极层5电连接。

有源层4采用氧化物半导体材料制备,并通过激光退火工艺处理后使其与源/漏电极层5连接的区域电阻降低,达到提升氧化物薄膜晶体管的开态电流,迁移率和开关比的技术效果。

该氧化物薄膜晶体管具体细节请参考实施例一,此处不再赘述。

实施例四

本实施例提供一种氧化物薄膜晶体管,如图8所示,包括:依次设置在衬底基板上的栅极金属层2、栅极绝缘层3、有源层4、刻蚀阻挡层9、源/漏电极层5,其中:

所述有源层4包括被从所述衬底基板1背面进行的激光退火工艺处理形成的两个部分:与所述栅极金属层重叠的第一部分41,未与所述栅极金属层重叠的第二部分42,且所述第二部分42的电阻率低于所述第一部分41的电阻率,且所述第二部分与所述源/漏电极层5电连接。

该氧化物薄膜晶体管具体细节请参考实施例二,此处不再赘述。

实施例五

本实施例提供一种阵列基板,图9为本发明一实施例提供的一种阵列基板的结构示意图。如图9所示,该阵列基板包括实施例三中的氧化物薄膜晶体管,该阵列基板还包括绝缘层6和像素电极层8,像素电极层8通过形成在绝缘层6中的过孔7与薄膜晶体管的源漏电极层5电连接(更具体的说,与漏极电极层5中的漏极电连接)。该氧化物薄膜晶体管作为该阵列基板上子像素的开关元件。例如,像素电极层8采用透明导电材料形成或金属材料形成,例如,形成该像素电极层8的材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。

例如,该阵列基板可应用于例如液晶显示面板、有机发光二极管显示面板、电子纸显示面板等。

实施例六

本实施例提供一种阵列基板,如图10所示,包括实施例四中的氧化物薄膜晶体管,该阵列基板还包括绝缘层6和像素电极层8,像素电极层8通过形成在绝缘层6中的过孔7与薄膜晶体管的源漏电极层5电连接(更具体的说,与漏极电连接)。该薄膜晶体管作为该阵列基板上子像素的开关元件。例如,像素电极层8采用透明导电材料形成或金属材料形成,例如,形成该像素电极层8的材料包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。

例如,该阵列基板可应用于例如液晶显示面板、有机发光二极管显示面板、电子纸显示面板等。

实施例七

本实施例还提供了一种显示装置,其包括上述实施例的阵列基板。

该显示装置的一个示例为液晶显示装置,其中,阵列基板与对置基板彼此对置以形成液晶盒,在液晶盒中填充有液晶材料。该对置基板例如为彩膜基板。阵列基板的每个子像素的像素电极用于施加电场对液晶材料的旋转的程度进行控制从而进行显示操作。在一些示例中,该显示装置还包括为阵列基板提供背光的背光源。

该显示装置的另一个示例为有机发光二极管显示装置(OLED),其中,阵列基板上形成有有机发光材料叠层,每个像素单元的像素电极作为阳极或阴极用于驱动有机发光材料发光以进行显示操作。

该显示装置的再一个示例为电子纸显示装置,其中,阵列基板上形成有电子墨水层,每个像素单元的像素电极作为用于施加驱动电子墨水中的带电微颗粒移动以进行显示操作的电压。

虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1