含有阳离子微粒和hcve1e2dna的组合物及其使用方法

文档序号:1091746阅读:339来源:国知局
专利名称:含有阳离子微粒和hcv e1e2 dna的组合物及其使用方法
技术领域
本发明总体上涉及含有编码HCV免疫原的DNA的免疫原性组合物。特别是,本发明涉及吸收到阳离子微粒上的含有编码HCV E1E2多肽的DNA的组合物及其使用方法。
背景技术
丙型肝炎病毒(HCV)在十多年前得到鉴定,现在已知该病毒是非甲型和非乙型肝炎的主要起因(Choo等.,Science(1989)244359-362;Armstrong等.,Hepatology(2000)31777)。HCV感染了世界约3%的人口,估计为两亿(Cohen,J.,Science(1999)28526)。每年美国有约30,000人发生获得性HCV感染。此外,发展中国家的HCV感染发病率高。虽然免疫反应能清除HCV感染,但大多数感染变成慢性的。大多数急性感染维持无症状的并且通常仅在慢性感染几年后发生肝病。
HCV的病毒基因组序列已知,获得该序列的方法也是已知的。参见,例如国际公布号WO 89/04669、WO 90/11089和WO 90/14436。HCV具有9.5kb正义、单链RNA基因组并且是黄病毒家族的一员。基于系统发育分析,至少6个不同但相关的HCV基因型(Simmonds等.,J.Gen.Virol.(1993)742391-2399)已经鉴定。该病毒编码具有多于3000个氨基酸残基的单一多蛋白(Choo等.,Science(1989)244359-362;Choo等.,Proc.Natl.Acad.Sci.美国(1991)882451-2455;Han等.,Proc.Natl.Acad.Sci.美国(1991)881711-1715)。该多蛋白是在翻译的同时或之后加工为结构性和非结构性(NS)蛋白质。两个结构性蛋白质已知为E1和E2的包膜糖蛋白。HCV E1和糖蛋白E2在灵长类研究中表现出抗病毒攻击的保护性作用。(Choo等.,Proc.Natl.Acad.Sci.美国(1994)911294-1298)。
目前HCV可用的治疗药物仅有IFN-α和利巴韦林。不幸的是,这些药物仅对少于50%的治疗患者有效(Poynard等.,Lancet(1998)3521426;McHutchison等.,Engl.J.Med.(1998)3391485)。因此,急需开发一种有效的疫苗以预防HCV感染,以及用作免疫治疗的替代品或与现有的疗法联用。
T细胞对HCV的免疫性可决定HCV感染和疾病的结果(Missale等.,J.Clin.Invest.(1996)98706;Cooper等.,Immunity(1999)10439和Lechner等.,J Exp.Med.(2000)1911499)。一项研究得到的结论是主要表现出Th0/Th1CD4+T辅助应答的个体清除了其HCV感染,而具有Th2-应答的固体倾向于进展为慢性(Tsai等.,Hepatology(1997)25449-458)。此外,HCV-特异性细胞毒性T淋巴细胞(CTL)的频率和病毒负荷之间表现出逆相关(Nelson等.,J.Immuon.(1997)1581473)。近来,在黑猩猩中对HCV的控制表现出与Th1 T细胞应答相关(Major等.,J.Virol.(2002)766586-6595)。因此,HCV-特异性T细胞应答似乎在控制HCV感染中起着重要作用。抗体在保护中的作用也是以患者中慢性感染自发性消除的罕见病例为基础提出的(Abrignani等.,J.Hepatol.(1999)31增刊1259-263)。此外,灵长类动物中的保护作用直接与抗-E1E2抗体的滴度相关,这证明了抗体在保护中可能的作用(Choo等.,Proc.Natl.Acad.Sci.美国(1994)911294-1298)。
在一系列动物模型中,DNA疫苗均能诱导强有力的长期CLT和Th1细胞应答(Gurunathan等.,Ann.Rev.Immunol.(2000)18927-974)。虽然,DNA疫苗在许多临床实验中施用于人志愿者并表现出是安全的,但其效力低于在较小的动物模型中得到的应答(Gurunathan等.,Ann.Rev.Immunol.(2000)18927-974)。例如,虽然在人志愿者中诱导了可检测的CTL应答,但是即使高剂量(2.5mg)的DNA有时也未能诱导可检测的抗体应答(Wang等.,Science(1998)282476-480)。即使当试图使用无针头喷射注射装置来传送DNA以改进效力时,在人志愿者中也未检测到抗体应答(Epstein等.,Hum.Gen.Ther(2002)131551-1560)。因此,明显需要改善DNA疫苗的效价和效率,特别是用于体液应答。
使用具有吸收或截留的抗原的颗粒载体来试图引发充足的免疫应答。颗粒载体的例子包括那些衍生自聚甲基丙烯酸甲酯聚合物和衍生自聚(丙交酯)的微粒(参见,例如,美国专利号3,773,919)、已知为PLG的衍生自聚(丙交酯-共-乙交酯)的微粒(参见,例如,美国专利号4,767,628)和称为PEG的衍生自聚乙二醇的微粒(参见,例如,美国专利号5,648,095)。聚甲基丙烯酸甲酯聚合物是非降解的,而PLG颗粒可通过将酯键随机非酶水解为乳酸和乙醇酸从而被生物降解,乳酸和乙醇酸可沿着正常的代谢途径排出。
这种载体将多份选择的大分子呈递到免疫系统并促使该分子在局部淋巴节的俘获和保留。颗粒可被巨嗜细胞吞噬并能通过细胞因子释放来提高抗原的呈递。国际公布号WO 00/050006描述了具有吸附表面的阳离子微粒的生产。使用阳离子微粒作为DNA疫苗的传递系统表现出可极大地提高效力(Singh等.,Proc.Natl.Acad.Sci.美国(2000)97811-816)。例如,当与编码HIV抗原的质粒结合传递时,在一系列动物模型中微粒表现出增加体液和T细胞应答(Singh等.,Proc.Natl.Acad.Sci.美国(2000)97811-816;Briones等.,Pharm.Res.(2001)18709-712;O′Hagan等.,J.Virol.(2000)59037-9043)。
已开展了大量研究来确定阳离子PLG微粒诱导提高了的针对吸附DNA的应答的作用机理。初步研究表明PLG/DNA,而非质粒DNA能介导树状细胞的体外转染(Denis-Mize等.,Gene Ther.(2000)72105-2112)。此外,PLG/DNA保护DNA以防降解并增强肌肉和局部淋巴节中的基因表达(Singh等.,Proc.Natl.Acad.Sci.美国(2000)97811-816;Briones等.,Pharm.Res.(2001)18709-712;Denis-Mize等.,Gene Ther.(2000)7_2105-2112)。
经管使用了这种颗粒传递系统,常规疫苗常不能提供充足的抗目标病原体的保护作用。因此,继续需要含有安全且非毒性传递剂的抗HCV的有效免疫原性组合物。
发明概述本发明部分是基于以下的意外发现,即,使用吸附在阳离子微粒上的HCV E1E2809DNA比仅使用E1E2DNA产生了显著较高的抗体滴度。阳离子微粒强烈吸附DNA、具有高载荷效率、保护吸附的DNA以防降解并增强了肌肉和局部淋巴节中的基因表达。此外,与仅单独传递DNA相反,使用微粒传递的DNA在免疫接种后也能在注射部位募集显著量的活化APC。所以,使用这种组合能提供安全且有效的方法来提高HCV E1E2抗原的免疫原性。
因此,在一个实施方案中,本发明涉及基本上由药学上可接受的赋型剂和吸附在阳离子微粒上的多核苷酸组成的组合物。该多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该编码序列操作性地连接于指导编码序列在体内转录和翻译的控制元件。HCV免疫原是具有毗连氨基酸序列的免疫原性HCV E1E2复合物,该序列与图2A-2C中192-809位所描述的毗连氨基酸序列具有至少80%的序列相同性,条件是该多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原。
在某些实施方案中,HCV E1E2复合物由图2A-2C中192-809位所描述的氨基酸序列组成。
在其它的实施方案中,阳离子微粒由选自下组的聚合物形成聚(α-羟酸)、聚羟基丁酸、聚己内酯、聚原酸酯和聚酐,例如选自聚(L-丙交酯)、聚(D,L-丙交酯)和聚(D,L-丙交酯-共-乙交酯)的聚(α-羟酸)。
在其它的实施方案中,本发明涉及基本上由以下物质组成的组合物(a)药学上可接受的赋形剂,和(b)吸附到由聚(D,L-丙交酯-共-乙交酯)形成的阳离子微粒上的多核苷酸。该多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该编码序列操作性地连接于指导编码序列的体内转录和翻译的控制元件,并且HCV免疫原是由图2A-2C中192-809位所描述的氨基酸序列组成的HCV E1E2复合物,条件是该多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原。
在还有其它的实施方案中,本发明涉及刺激脊椎动物受试者的免疫应答的方法,该方法包括向受试者施用治疗有效量的基本上由药学上可接受的赋形剂和吸附到阳离子微粒上的多核苷酸组成的第一组合物。该多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该免疫原操作性地连接于指导编码序列的体内转录和翻译的控制元件。HCV免疫原是具有毗连氨基酸序列的免疫原性HCV E1E2复合物,而该序列与图2A-2C中192-809位所描述的毗连氨基酸序列具有至少80%的序列相同性,条件是该多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原,其中HCV E1E2复合物在体内表达来引发免疫应答。
在某些实施方案中,HCV E1E2复合物由图2A-2C中192-809位所描述的氨基酸序列组成。
在其它实施方案中,阳离子微粒由选自下组的聚合物形成聚(α-羟酸)、聚羟基丁酸、聚己内酯、聚原酸酯和聚酐,例如选自聚(L-丙交酯)、聚(D,L-丙交酯)和聚(D,L-丙交酯-共-乙交酯)的聚(α-羟酸)。
在另外的实施方案中,该方法还包括向受试者施用治疗有效量的第二组合物,其中第二组合物含有免疫原性HCV多肽和药学上可接受的赋形剂。
在某些实施方案中,第二组合物在第一组合物之后施用。此外,第二组合物中的免疫原性HCV多肽可是具有毗连氨基酸序列的免疫原性HCVE1E2复合物,而该序列与图2A-2C中192-809位所描述的毗连氨基酸序列具有至少80%的序列相同性。在另一个实施方案中,HCV E1E2复合物由图2A-2C中192-809位描述的氨基酸序列组成。
在另一个实施方案中,第二组合物还含有佐剂,例如能增强针对免疫原性HCV多肽的免疫应答的亚微米水包油乳剂。该亚微米水包油乳剂含有(i)可代谢的油,其中油的量占总体积的1%到12%,和(ii)乳化剂,其中乳化剂占0.01到1重量%(w/v)并含有聚氧乙烯失水山梨糖醇单酯、二酯或三酯和/或失水山梨糖醇单酯、二酯或三酯,其中油和乳化剂以具有油滴的水包油乳剂的形式存在,几乎所有油滴的直径约为100nm到小于1微米。
在某些实施方案中,亚微米水包油乳剂含有4-5%w/v角鲨烯、0.25-1.0%w/v聚氧乙烯失水山梨糖醇单油酸酯和/或0.25-1.0%失水山梨糖醇三油酸酯并任选含有N-乙酰胞壁酰-L-丙氨酰-D-异谷氨酰胺酰-L-丙氨酸-2-(1′-2′-二棕榈酰-sn-甘油-3-羟基磷酰基氧)-乙胺(MTP-PE)。
在其它的实施方案中,亚微米水包油乳剂基本上由约5体积%的角鲨烯,和一种或多种选自聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯的乳化剂组成,其中乳化剂的总量约为1重量%(w/v)。
在另外的实施方案中,一种或多种乳化剂是聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯并且聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯的总量约为1重量%(w/v)。
在还有另外的实施方案中,第二组合物还含有CpG寡核苷酸。
在另一个实施方案中,本发明涉及一种刺激脊椎动物受试者的免疫应答的方法,该方法包括(a)向受试者施用基本上由吸附到阳离子微粒上的多核苷酸组成的治疗有效量的第一组合物,该微粒由聚(D,L-丙交酯-共-乙交酯)形成,其中该多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该编码序列操作性地连接于指导编码序列在体内转录和翻译的控制元件,并且HCV免疫原是由图2A-2C中192-809位所描述的氨基酸序列组成的免疫原性HCV E1E2复合物,条件是该多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原,并且其中HCV E1E2复合物在体内表达,和(b)向受试者施用治疗有效量的第二组合物来引发受试者的免疫应答,其中该第二组合物含有(i)由图2A-2C中192-809位所描述的氨基酸序列组成的免疫原性HCV E1E2复合物,(ii)一种佐剂,和(iii)药学上可接受的赋形剂。
在某些实施方案中,佐剂是能增强针对第二组合物中的免疫原性HCVE1E2复合物的免疫应答的亚微米水包油乳剂。该亚微米水包油乳剂含有(i)可代谢的油,其中油的量占总体积的1%到12%,和(ii)一种乳化剂,其中乳化剂占0.01到1重量%(w/v)并含有聚氧乙烯失水山梨糖醇单酯、二酯或三酯和/或失水山梨糖醇单酯、二酯或三酯,其中油和乳化剂以具有油滴的水包油乳剂的形式存在,几乎所有油滴的直径约为100nm到小于1微米。
在其它实施方案中,亚微米水包油乳剂含有4-5%w/v角鲨烯、0.25-1.0%w/v聚氧乙烯失水山梨糖醇单油酸酯和/或0.25-1.0%失水山梨糖醇三油酸酯并任选含有N-乙酰胞壁酰-L-丙氨酰-D-异谷氨酰胺酰-L-丙氨酸-2-(1′-2′-二棕榈酰-sn-甘油-3-羟基磷酰基氧)-乙胺(MTP-PE)。
在其它实施方案中,亚微米水包油乳剂基本上由约5体积%的角鲨烯,和一种或多种选自聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯的乳化剂组成,其中乳化剂的总量约为1重量%(w/v)。
在另外的实施方案中,一种或多种乳化剂是聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯并且聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯的总量约为1重量%(w/v)。
在某些实施方案中,第二组合物还含有CpG寡核苷酸。
在还有另一个实施方案中,本发明涉及一种制备含有结合了药学上可接受的赋形剂与吸附到阳离子微粒上的多核苷酸的组合物的方法。该多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该编码序列操作性地连接于指导编码序列在体内转录和翻译的控制元件。HCV免疫原是具有毗连氨基酸序列的免疫原性HCV E1E2复合物,而该毗连氨基酸序列与图2A-2C中192-809位所描述的毗连氨基酸序列具有至少80%的序列相同性,条件是该多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原。
鉴于本文的内容,本发明主题的这些和其它实施方案对于本领域的技术人员是显而易见的。
附图简述

图1是描述HCV多蛋白的各种区域的HCV基因组的示意图。
图2A-2C(SEQ ID NOS1和2)显示了HCV-1E1/E2/p7区域的核苷酸和对应的氨基酸序列。图中的数字与全长的HCV-1多蛋白有关。该图显示了E1、E2和p7区域。
图3显示了单独使用E1E2809质粒DNA或PLG/CTAB/E1E2809DNA(图中以PLG/DNA表示)以10μg和100μg(N=10,+/-SEM)免疫接种小鼠后在0周和4周的血清IgG滴度。
图4显示了用10μg的E1E2809质粒DNA、1μg和10μg的PLG/CTAB/E1E2809DNA或用MF59佐剂配制的2μg的E1E2E1E2809重组蛋白质(N=10,+/-SEM)免疫接种小鼠后在0周和4周的血清IgG滴度。
图5显示了用10μg的E1E2809质粒DNA或PLG/CTAB/E1E2809DNA,或用MF59佐剂配制的5μg E1E2809重组蛋白质免疫接种小鼠后在0周、4周和8周的血清IgG滴度。此外,两组小鼠在0和4周10μg用E1E2809质粒DNA或PLG/CTAB/E1E2809DNA免疫接种两次,并在8周用MF59配制的5μg E1E2809重组蛋白质激发(N=10,+/-SEM)。D=E1E2809DNA 10μg;P=5μg用MF59配制的E1E2809蛋白质。
发明详述除非另有说明,实践本发明将使用本领域技术人员能力范围内的化学、生物化学、重组DNA技术和免疫学的常规方法。参考文献中完整地解释了这些技术。参见,例如《基础病毒学》(Fundamental Virology),第二版,卷I和II(B.N.Fields和D.M.Knipe编);《实验免疫学手册》(Handbook ofExperimental Immunology),卷I-IV(D.M.Weir和C.C.Blackwell编.,BlackwellScientific Publications);T.E.Creighton,“蛋白质结构与分子特性”(ProteinsStructures and Molecular Properties),(W.H.Freeman和Company,1993);A.L.Lehninger,《生物化学》(Biochemistry)(Worth Publishers,Inc.,最新增补);Sambrook等.,《分子克隆实验室手册》(MolecularCloningLaboratory Manual),(第二版,1989);《酶学方法》(Methods InEnzymology),(S.Colowick和N.Kaplan编.,Academic Press,Inc.)。
以下的氨基酸缩写用于全文丙氨酸Ala(A) 精氨酸Arg(R)天门冬酰胺Asn(N) 天冬氨酸Asp(D)半胱氨酸Cys(C)谷氨酰胺Gln(Q)谷氨酸Glu(E) 甘氨酸Gly(G)组氨酸His(H) 异亮氨酸Ile(I)亮氨酸Leu(L) 赖氨酸Lys(K)甲硫氨酸Met(M)苯丙氨酸Phe(F)脯氨酸Pro(P) 丝氨酸Ser(S)苏氨酸Thr(T) 色氨酸Trp(W)酪氨酸Tyr(Y) 缬氨酸Val(V)1.定义在本发明的描述中,采用以下术语并按以下所示定义。
必须注意的是,除非文中另有明确规定,用于本说明书和附加的权利要求中的单数形式“一”和“该”包括复数形式。所以,例如提到“一个E1E2多肽”包括两个或多个这种多肽的混合物等。
术语“多肽”和“蛋白质”指氨基酸残基的聚合物并且不限于最小长度的产物。所以,肽、寡肽、二聚体、多聚体等包括在该定义内。全长的蛋白质和其片段均包括在该定义中。该术语也包括多肽的表达后修饰,例如糖基化、乙酰化、磷酸化等。此外,出于本发明的目的,只要蛋白质保留所需的活性,“多肽”指含有修饰的蛋白质(例如缺失、添加和取代(一般性质上是保守的))以及天然序列。这些修饰可是故意的,例如通过定点诱变;或是随机的,例如通过生产蛋白质的宿主的突变或由于PCR扩增的错误。
“E1多肽”指得自HCV E1区域的分子。HCV-1的成熟的E1区域约始于该多蛋白的氨基酸192处并约连续至氨基酸383处(相对于全长的HCV-1多蛋白编号)。(参见,图1和2A-2C。图2A-2C的氨基酸192-383对应于SEQ ID NO2的氨基酸20-211位)。约从173到191的氨基酸(SEQ IDNO2的氨基酸1-19)用作E1的信号序列。所以,“E1多肽”指包括信号序列的前体E1蛋白或缺乏这种序列的成熟的E1多肽,或甚至是具有异源信号序列的E1多肽。E1多肽包括约存在于氨基酸360-383位的C-末端膜锚定序列(参见,国际公布号WO 96/04301,1996年2月15日发表)。如文中所定义的,一个E1多肽可(或不)包括C-末端锚定序列或其部分。
“E2多肽”指得自HCV E2区域的分子。HCV-1的成熟的E2区域约始于氨基酸383-385处(相对于全长的HCV-1多蛋白编号)。(参见,图1和2A-2C。图2A-2C的氨基酸383-385对应于SEQ ID NO2的氨基酸211-213位)。信号肽约始于该多蛋白的氨基酸364。所以,“E1多肽”指包括信号序列的前体E2蛋白或缺乏这种序列的成熟的E2多肽,甚至是具有异源信号序列的E2多肽。E2多肽包括约存在于氨基酸715-730位的C-末端膜锚定序列并约延伸远至氨基酸残基746(参见,Lin等.,J Virol.(1994)685063-5073)。如文中所定义的,一个E2多肽可包括(或不包括)C-末端锚定序列或其部分。此外,E2多肽也可包括紧接着E2的C末端的全部p7区域或其一部分。如图1和2A-2C所示,该p7区域在747-809位发现(相对于全长的HCV-1多蛋白编号(SEQ ID NO2的氨基酸575-637位))。另外,已知存在多种的HCV E2(Spaete等.,Virol.(1992)188819-830;Selby等.,J.Virol.(1996)705177-5182;Grakoui等.,J.Virol.(1993)71385-1395;Tomei等.,J.Virol.(1993)674017-4026)。因此,出于本发明的目的,术语“E2”包括任何种类的E2,包括(但不限于)从E2的N末端缺失1-20个或更多氨基酸的种类,例如缺失1、2、3、4、5....10...15、16、17、18、19个等氨基酸。这种E2包括那些始于氨基酸387、氨基酸402、氨基酸403的等。
HCV-1的代表性E1和E2区域示于图2A-2C和SEQ ID NO2。出于本发明的目的,按照HCV-1的基因组编码的多蛋白的氨基酸编号定义E1和E2区域,将起始子甲硫氨酸指定为位置1。参见,例如Choo等.,Proc.Natl.Acad.Sci.美国(1991)882451-2455。然而,应该注意的是,文中使用的术语“E1多肽”或“E2多肽”不限于HCV-1序列。在这方面,其它HCV分离物中相应的E1或E2区域可以使序列进行最大比对的方式通过比对分离物的序列来方便地确定。这可使用弗吉尼亚大学生物化学系(AttnWilliam R.Pearson博士)的大量计算机软件包中的任何一种进行。参见,Pearson等.,Proc.Natl.Acad Sci.美国(1988)852444-2448。
此外,文中定义的“E1多肽”或“E2多肽”不限于具有附图所述的确切序列的多肽。实际上,HCV基因组在体内是处于恒流状态并含有在分离物之间表现出相对高程度可变性的几个可变区域。已知这些毒株之间有大量的保守区域和可变区域,总体上,得自这些区域的表位的氨基酸序列具有高度的序列同源性,例如当比对两条序列时有大于30%的序列同源性、较好的是大于40%、大于60%、甚至大于80-90%的同源性。很明显,术语包括来自各种HCV毒株和分离物以及新鉴定的分离物和这些分离物的亚型(例如HCV1a、HCV1b等)中任一种的E1和E2多肽,所述分离物包括具有如Simmonds等(J.Gen.Virol.(1993)742391-2399)所述的HCV的6种亚型中任一种的分离物(例如毒株2、3、4等)。
所以,例如术语“E1”或“E2”多肽指来自如下所述的各种HCV毒株、以及类似物、突变蛋白和免疫原性片段中任一种的天然E1或E2序列。已知许多这些毒株的完整的基因型。参见,例如美国专利号6,150,087和GenBank登录号AJ238800和AJ238799。
此外,术语“E1多肽”和“E2多肽”包括对天然序列修饰,例如内部缺失、添加和取代(一般性质上是保守的)的蛋白质,例如基本上与亲本序列同源的。这些修饰可是故意的,例如通过定点诱变;或是随机的,例如通过天然产生的突变现象。所有这些修饰物均包括于本发明中,条件是修饰的E1和E2多肽的功能可实现其原有的目的。所以,例如,如果E1和/或E2多肽要用于疫苗组合物,修饰物必须未丧失免疫活性(即,引发对该多肽的体液或细胞的免疫应答的能力)。
“E1E2”复合物指含有上述的一种E1多肽和至少一种E2多肽的蛋白质。这种复合物也可包括紧接着E2的C末端的全部p7区域或其一部分。如图1和2A-2C所示,该p7区域位在747-809位发现,相对于全长的HCV-1多蛋白编号(SEQ ID NO2的氨基酸575-637位)。文中将包括p7蛋白质的代表性E1E2复合物命名为“E1E2809”。
E1和E2在E1E2复合物中的结合方式是不重要的。E1和E2多肽可通过非共价相互作用(例如通过静电)或通过共价键结合。例如,本发明的E1E2多肽可以包括上述免疫原性E1多肽和免疫原性E2多肽的融合蛋白的形式。该融合蛋白可从编码E1E2嵌合体的多核苷酸表达。或者,E1E2复合物可通过将分别生产的E1和E2蛋白质简单混合来自发形成。类似地,当E1和E2蛋白质共表达并分泌进培养基时,二者可自发形成复合物。所以,该术语包括E1和/或E2纯化时自发形成的E1E2复合物(也称为聚集体)。这种聚集体可包括与一个或多个E2单体结合的一个或多个E1单体。E1和E2单体的数目无需相同,条件是至少存在一个E1单体和一个E2单体。使用标准蛋白质检测技术,例如聚丙烯酰胺凝胶电泳和免疫学技术(例如免疫沉淀)可方便地确定E1E2复合物的存在。
术语“类似物”和“突变蛋白”指参考分子的生物活性衍生物(例如E1E2809)或保留所需活性(例如文中所述在测定中的免疫反应性)的这种衍生物的片段。大体上,相对于天然分子,术语“类似物”指具有天然多肽序列和结构的化合物,该化合物具有一个或多个氨基酸添加、取代(一般性质上是保守性的)和/或缺失,条件是这些形式不破坏免疫原性活性。术语“突变蛋白”指具有一个或多个肽模拟物(“类肽”)的肽,例如国际公布号WO91/04282描述的那些。类似物或突变蛋白优选至少具有和天然分子相同的免疫反应性。制备多肽类似物和突变蛋白的方法是本领域已知的并将描述于下文。
尤其优选的类似物包括性质上是保守性的取代,即那些发生在与侧链相关的氨基酸家族内的取代。具体地,氨基酸一般分为4个家族(1)酸性氨基酸—天冬氨酸和谷氨酸;(2)碱性氨基酸—赖氨酸、精氨酸、组氨酸;(3)非极性氨基酸—丙氨酸、缬氨酸、亮氨酸、异亮氨酸、脯氨酸、苯丙氨酸、甲硫氨酸、色氨酸;和(4)不带电的极性氨基酸—甘氨酸、天冬酰胺、谷氨酰胺、半胱氨酸、丝氨酸、苏氨酸、酪氨酸。苯丙氨酸、色氨酸和酪氨酸有时分类为芳香族氨基酸。例如,可合理地预计以下独立替换对生物活性不会有主要的影响即用异亮氨酸或缬氨酸取代亮氨酸、用谷氨酸取代天冬氨酸、用丝氨酸取代苏氨酸或用结构相关的氨基酸进行类似的保守性取代。例如,感兴趣的多肽(如E1E2多肽)可包括约5-10个保守性或非保守性氨基酸取代,或者甚至约达15-25或50个保守性或非保守性氨基酸取代,或是5-50中的任一整数,条件是该分子的所需功能保持完整。参考本领域熟知的Hopp/Woods和Kyte-Doolittle图表,本领域的技术人员可方便地确定感兴趣的分子能耐受改变的区域“片段”指仅由完整的全长多肽序列和结构的一部分组成的多肽。该片段可包括天然多肽的C-末端缺失、N-末端缺失和/或内部缺失。具体HCV蛋白质的“免疫原性片段”一般包括确定表位的全长分子的至少约5-10个毗连的氨基酸残基,优选至少约15-25个毗连的氨基酸残基,最优选全长分子的至少20-50或更多个毗连的氨基酸残基,或5个氨基酸和全长序列之间的任一整数,条件是讨论的片段保留引发文中所述免疫应答的能力。对已知HCV E1和E2免疫原性片段的描述参见,例如Chien等.,国际公布号WO 93/00365。
文中使用的术语“表位”指含有确定一条序列的至少约3-5个、优选约5-10或15个、和约不超过500个氨基酸(或其中任一整数)的序列,该序列通过其自身或作为较大序列的部分在施用的受试者中引发免疫应答。表位通常与响应于这种序列而产生的抗体结合。片段的长度没有临界上限,它几乎可含有蛋白质序列的全长,或甚至是含有两个或多个来自HCV多蛋白的表位的融合蛋白。本发明使用的表位不限于具有从其中衍生的亲本蛋白质部分的确切序列的多肽。实际上,病毒基因组处于恒流状态并含有在分离物之间表现出相对高程度可变性的几个可变区域。所以术语“表位”包括与天然序列相同的序列,以及天然序列的修饰物,例如缺失、添加和取代(一般性质上是保守性的)。
包括表位的给定多肽的区域可使用本领域熟知的任何种表位作图技术来鉴定。参见,例如《分子生物学方法中的表位作图方案》(Epitope MappingProtocols in Methods in Molecular Biology),66卷(Glenn E.Morris编,1996),Humana Press,Totowa,新泽西。例如,线形的表位可通过以下方式确定,如在固体支持物上同时合成大量对应于蛋白质分子各部分的肽,再将依旧连接在支持物上的肽与抗体反应。这些技术是本领域已知的并描述于,例如美国专利号4,708,871;Geysen等,(1984)Proc.Natl.Acad.Sci.美国813998-4002;Geysen等,(1985)Proc.Natl.Acad.Sci.美国82178-182;Geysen等,(1986)Molec.Inamunol.23709-715。使用这些技术已鉴定大量的HCV表位。参见,例如Chien等.,“病毒性肝炎和肝病”(Viral Hepatitisand Live Disease),(1994)320-324页和以下的其它文献。类似地,可通过确定氨基酸的空间构象(例如通过X-射线晶体学和二维核磁共振)来方便地鉴定构象表位。参见,例如《表位作图方案》(Epitope Mapping Protocols),同上。使用标准的抗原性和亲水性图表也可鉴定蛋白质的抗原区域,例如可用得自Oxford Molecular Group的Omiga 1.0版软件程序计算那些区域。该计算机程序使用Hopp/Woods方法(Hopp等.,Proc.Natl.Acad.Sci美国(1981)783824-3828)来确定抗原性分布以及Kyte-Doolittle技术(Kyte等.,J.Mol.Biol.(1982)157105-132)用于亲水性图表。
文中使用的术语“构象表位”指全长蛋白质的一部分,或其类似物或突变蛋白,该表位具有编码全长天然蛋白质内的表位的天然氨基酸序列的结构特征。天然结构特征包括(但不限于)糖基化和三维结构。表位确定序列的长度可有宽的变化,因为据信这些表位通过抗原的三维形状(例如折叠)形成。所以,确定表位的氨基酸数量可相对较少,但沿着分子的长度(或者甚至在二聚体的情况中可以位于不同的分子上)广泛分散,通过折叠产生正确的表位构象。确定表位的残基之间的抗原的部分对于表位的构象结构不是关键的。例如,只要保留对表位构象关键的序列(例如涉及二硫键、糖基化位点的半胱氨酸等),这些间插序列的缺失或取代可能不影响构象表位。
使用上述方法可方便地鉴定构象表位。此外,可通过使用抗体筛选感兴趣的抗原(对构象表位的多克隆血清或单克隆)以及比较其对仅保留线形表位(如果有的话)的变性抗原的表位的反应性来方便地确定给定多肽中构象抗原的存在或不存在。在这种使用多克隆抗体的筛选中,首先用变性抗原吸收多克隆血清并观察其是否保留对感兴趣抗原的抗体是有利的。得自E1和E2区域的构象表位描述于,例如国际公布号WO 94/01778。
对HCV抗原或组合物的“免疫应答”是受试者中产生对存在于感兴趣的组合物中分子的体液和/或细胞免疫应答。出于本发明的目的,“体液免疫应答”指由抗体分子介导的免疫应答,而“细胞免疫应答”指由T淋巴细胞和/或其它白细胞介导的免疫应答。细胞免疫的一个重要的方面包括溶细胞性T-细胞(“CLT”)介导的抗原特异性应答。CTL具有肽抗原特异性,该肽抗原与由主要的组织相容性复合物(MHC)编码并表达在细胞表面的蛋白质结合存在。CTL辅助诱导和促使胞内微生物的胞内破坏或者被这种微生物感染的细胞裂解。细胞免疫的另一方面包括辅助T细胞介导的抗原特异性应答。辅助T-细胞起到帮助刺激功能的作用并将非特异性效应细胞的活性集中于针对在其表面展示与MHC分子结合的肽抗原的细胞。“细胞免疫应答”也指产生了由激活的T-细胞和/或其它白细胞(包括那些衍生自CD4+和CD8+T-细胞)产生的细胞因子、趋化因子和其它这种分子。引发细胞免疫应答的组合物或疫苗可通过与细胞表面的MHC分子结合的抗原呈递来使脊椎动物受试者致敏。细胞介导的免疫应答定向于或接近在其表面呈递抗原的细胞。此外,可产生抗原特异性的T-淋巴细胞来允许进一步保护免疫的宿主。具体抗原刺激细胞介导的免疫应答的能力可通过各种实验来确定,例如通过淋巴组织增殖(淋巴细胞激活)实验、CTL细胞毒性细胞测定或通过测定对致敏受试者中的抗原特异性淋巴细胞来确定。这些测定是本领域熟知的。参见,例如Erickson等.,J.Immunol.(1993)1514189-4199;Doe等.,Eur.J.Immuriol.(1994)242369-2376。
所以,文中使用的免疫应答可是能刺激CTL产生,和/或辅助T-细胞产生或激活的免疫应答。感兴趣的抗原也可引发抗体介导的免疫应答,包括,例如结合中和(NOB)抗体。NOB抗体应答的存在可通过,例如Rosa等(Proc.Natl.Acad.Sci.美国(1996)931759)描述的技术方便地确定。因此,免疫应答可包括一个或多个以下作用通过B-细胞产生抗体;和/或激活抑制性T-细胞和/或特异性定向于组合物中存在的一种抗原或多种抗原或感兴趣疫苗的γδT-细胞。这些应答可用于中和感染性,和/或介导抗体-补体,或抗体依赖性细胞毒性(ADCC)来为免疫的宿主提供保护或缓解症状。这种应答可用本领域熟知的标准免疫测定与中和测定来确定。
当组合物能引发大于不用阳离子微粒传递的等量E1E2 DNA引发的免疫应答时,HCV E1E2 DNA组合物的一种成分(例如阳离子微粒)增强了对由组合物中DNA产生的HCV E1E2多肽的免疫应答。这种增强的免疫原性可通过将E1E2 DNA与或不与额外的成分一起施用,并使用本领域熟知的标准测定来比较两种情况产生的抗体滴度或细胞免疫应答,例如放射免疫测定、ELISA、淋巴组织增殖测定等。
当用于指一条多肽时,“分离的”意味着所指的分子是独立的且脱离于具有天然发现的分子的整个生物体,或者该分子是存在于基本上无其它相同类型生物大分子的环境中。关于多核苷酸的术语“分离的”指一种缺乏天然与其结合的整个或部分序列的核酸分子,或天然存在但具有与其结合的异源序列的序列,或从染色体分离的分子。
“等价抗原决定簇”指来自HCV不同亚种或毒株(例如来自毒株1、2、3等),由于序列变异抗原决定簇无需相同的HCV毒株的抗原决定簇,但哪种发生在HCV序列的等价位置尚未知。大体上,等价抗原决定簇的氨基酸序列具有高度的序列同源性,例如当两条序列比对时,大于30%的氨基酸序列同源性,通常大于40%,例如大于60%、甚至大于80-90%的同源性。
“同源性”指两条多核苷酸或两条多肽部分之间的相同性百分比。当两条DNA或两条多肽序列在确定的分子长度上表现出至少约50%、优选至少约75%、更优选至少约80%-85%、再优选至少约90%、最优选约95%-98%的序列相同性,则这些序列互相是“基本上同源的”。
总体上,“相同性”指两条多核苷酸或多肽序列各自的精确的核苷酸-对-核苷酸或氨基酸-对-氨基酸的对应性。相同性百分比可通过直接比较两个分子之间的序列信息来确定比对序列,记下两条比对序列之间的确切匹配数目,除以较短序列的长度并将结果乘以100。可使用方便可用的计算机程序来帮助分析,例如Dayhoff,M.O.的《蛋白质序列和结构图集》(M.O.Dayhoff编.,5增刊3353-358,National biomedical ResearchFoundation,华盛顿,哥伦比亚特区)中的ALIGN,该程序采用了Smith和Waterman(Advances in Appl.Math.2482-489,1981)的用于肽分析的局部同源性算法。确定核苷酸序列相同性的程序可用威斯康星序列分析包(Wisconsin Sequence Analysis Package),第八版(得自Genetics ComputerGroup,Madison,WI),例如BESTFIT、FASTA和GAP程序,这些程序也依赖于Smith和Waterman算法。这些程序可方便地使用生产商推荐的和以上威斯康星序列分析包中描述的默认参数。例如,具体核苷酸序列与参考序列的相同性百分比可使用默认计分表和6个核苷酸位置的间隔罚分的Smith和Waterman同源性算法来确定。
本发明中建立相同性百分比的另一个方法是使用John F.Collins和Shane S.Sturrok开发的、爱丁堡大学版权所有、IntelliGenetics,Inc.(MountainView,CA)经销的MPSRCH程序包。这套程序包可使用Smith-Waterman算法,其中计分表使用默认参数(例如,间隔开放罚12分、间隔延伸罚1分、一个间隔罚6分)。产生“匹配值”的数据反映了“序列相同性”。其它计算相同性或类似性百分比的使用默认参数的合适程序一般是本领域公知的,例如另一个比对程序是BLAST。例如,使用以下默认参数的BLASTN和BLASTP是可用的遗传密码=标准;过滤器=无;链=两条;截断值=60;预期值=10;矩阵=BLOSUM62;描述=50条序列;分类标准=高分;数据库=非冗余,GenBank+EMBL+DDBJ+PDB+GenBank CDS翻译+Swiss蛋白+Spupdate+PIR。这些程序的细节参见以下因特网的网址http//www.ncbi.nlm.gov/cgi-bin/BLAST。
此外,可通过在同源区域之间形成稳定双螺旋的条件下使多核苷酸杂交,然后用单链特异性核酶消化并确定消化片段的大小来确定同源性。如该具体系统确定的,基本上同源的DNA序列可在,例如严谨条件下进行的Southern杂交实验中鉴定。确定合适的杂交条件在本领域技术人员的能力范围内。参见,例如Sambrook等.,同上;《DNA克隆》(DNA Cloning),同上;《核酸杂交》(Nucleic Acid Hybridization),同上。
术语“简并变体”指在其核酸序列中含有变化的多核苷酸,该多核苷酸编码和由简并变体衍生的多核苷酸编码的多肽具有相同氨基酸序列的多肽。所以,EIE2809DNA的一种简并变体是具有一个或多个碱基异于其衍生自的DNA序列的分子,但该变体编码相同的E1E2809氨基酸序列。
“编码序列”或“编码”选择的多肽的序列是指当将其置于合适的调控序列控制下时,可在体外或体内转录(在DNA的情况中)并翻译(在mRNA的情况中)为多肽的核酸分子。编码序列的界限由位于5’(氨基)末端的起始密码子和位于3’(羧基)末端的翻译终止密码子来确定。转录终止序列可位于编码序列的3’端。
“核酸”分子或“多核苷酸”包括双链和单链序列并指(但不限于)病毒的cDNA、原核或真核mRNA、病毒或原核DNA的基因组DNA序列(例如,DNA病毒和逆转录病毒)和合成的DNA序列。该术语也包括含有DNA和RNA的已知碱基类似物的序列。
“HCV多核苷酸”是编码上述HCV多肽的多核苷酸。
“操作性连接”指元件的排列方式,其中描述的成分配置成可行使其所需的功能的方式。所以,当存在合适的转录因子等时,操作性连接于编码序列的给定的启动子能有效地表达编码序列。启动子无需和编码序列相连,只要它能指导其表达。所以,例如与转录的内含子一样,启动子序列和编码序列之间可存在不翻译却转录的间插序列,并且该启动子序列仍可认为是“操作性连接”于编码序列。
文中用来描述核酸分子的术语“重组”指一种基因组、cDNA、病毒、半合成或合成来源的多核苷酸,由于其起点或操纵序列不与其天然结合的多核苷酸的全部或一部分结合。用在关于蛋白质或多肽的术语“重组”指通过重组多核苷酸表达产生的多肽。总体上如下所述,感兴趣的基因被克隆,然后在转化的生物体中表达。宿主生物体在表达条件下表达外源基因来生产蛋白质。
“控制元件”指有助于和其相连的编码序列表达的多核苷酸序列。该术语包括启动子、转录终止序列、上游调节区域、聚腺苷酸化信号、非翻译区(包括5′-UTR和3′-UTR并且当合适时也包括前导序列和增强子),这些元件共同地提供宿主细胞中编码序列的转录和翻译。
文中使用的“启动子”是能结合宿主细胞中的RNA聚合酶的DNA调节区域并且能启动与其操作性相连的下游(3’方向)编码序列的转录。出于本发明的目的,启动子序列包括启动感兴趣基因在背景之上可检测水平的转录必需的最低数量的碱基或元件。启动子序列中是转录起始位点以及负责RNA聚合酶结合的蛋白质结合区域(共有序列)。真核启动子经常(但不总是)含有“TATA”盒与“CAT”盒。
当RNA聚合酶与启动子序列结合并将编码序列转录为mRNA,然后该mRNA翻译为编码序列所编码的多肽时,控制序列“指导”细胞中编码序列的转录。
“表达盒”或“表达构建物”指能指导感兴趣的序列或基因表达的组件。表达盒包括上述的控制元件,例如操作性连接于感兴趣的序列或基因的启动子(以便指导转录)并经常包括聚腺苷酸化序列。在本发明的某些实施方案中,文中所述的表达盒可包含于质粒构建物中。除了表达盒的成分,该质粒构建物也包括一个或多个可选择标记、使得质粒构建物可以单链DNA存在的信号(例如,复制的M13起点)、至少一个多克隆位点和一个哺乳动物复制起点(例如,SV40或腺病毒复制起点)。
文中使用的术语“转化”指将外源多核苷酸插入宿主细胞,而不管插入使用的方法例如,直接摄取转化、转染、感染等。以下是具体的转染方法。外源多核苷酸可维持为非整合性载体(例如一种附加体),或者可整合进宿主基因组。
术语“核酸免疫接种”指为了在体内表达免疫原而将编码一种或多种免疫原(例如E1E2)的核酸分子引入宿主细胞。该核酸分子可直接引入受试对象,例如通过注射、吸入、口服、鼻内和粘膜施用等,或者可通过先体外后体内的方式引入从宿主中取出的细胞。在后一种情况中,转化的细胞重新引入受试者,这样可增加针对核酸分子编码的免疫原的免疫应答。
文中使用的免疫原性组合物的术语“有效量”或“药学有效量”指无毒但足够量的组合物来提供所需的应答(例如免疫应答)和任选的相应疗效。确切需要的量在受试者之间不等,这取决于种类、年龄和受试者的总体情况、有待治疗的病症的严重性、具体的感兴趣的大分子、施用方式等。在任何个体情况中的合适的“有效”量可由本领域的普通技术人员使用常规实验来确定。
术语“脊椎动物受试者”指脊索动物亚门中的任一员,包括(但不限于)人和其它灵长类动物,包括非人灵长类动物,例如黑猩猩和其它猿和猴类;农畜,例如牛、绵羊、猪、山羊和马;家养哺乳动物,例如狗和猫;实验室动物,包括啮齿类动物,例如小鼠、大鼠和豚鼠;鸟类,包括家养、野生和狩猎野禽,例如小鸡、火鸡和其它家禽的鸟类、鸭、鹅等。该术语不指明具体的年龄。所以,包括了成年的和新生的个体。既然所有这些脊椎动物的免疫系统以相似的方式起作用,文中描述的本发明可用于上述任一种脊椎动物。
文中使用的术语“治疗”指(1)防止感染或再感染(预防),或(2)感兴趣疾病症状的减少或消除(治疗)。
2.实施本发明的方式在详细描述本发明之前,要理解的是,本发明不受具体制剂或方法参数的限制,因为这些当然是能变化的。也要理解的是,文中使用术语的目的仅是描述本发明具体的实施方案,而非限制。
虽然有许多与文中描述的相似或等价的方法或材料可用于实践本发明,优选的材料和方法仍是文中所描述的。
本发明的核心是发现与使用非吸附的质粒E1E2 DNA相比,吸附到阳离子微粒上的编码HCV E1E2包膜蛋白质的质粒DNA能引发显著提高的抗体应答。此外,与使用非吸附的DNA来产生可检测抗体需要的剂量相比,吸附的DNA以较低数量级的剂量来诱导可检测应答。另外,由吸附的DNA诱导的抗体应答与施用E1E2蛋白质达到的应答相当,而传递非吸附的E1E2DNA仅诱导可检测的应答。使用重组蛋白质的加强免疫后用吸附到阳离子微粒上的E1E2 DNA比单独使用质粒DNA更有效地引发强有力的应答。此外,以下实施例证实了吸附的E1E2 DNA产生细胞免疫应答的能力。
所以,如以下更详细描述的,最初向受试者施用吸附到阳离子微粒的编码E1E2809复合物的DNA。然后可用含有编码E1E2复合物的DNA的DNA组合物和/或含有E1E2蛋白质复合物的蛋白质组合物来激发受试者。如下所述,只要产生免疫应答,用于激发的E1E2复合物可是E1E2809或其它E1E2蛋白质。
此外,以上组合物可单独使用或与其它组合物联合使用,例如含有其它HCV蛋白质的组合物、含有编码其它HCV蛋白质的DNA的组合物以及含有辅助物质的组合物。如果与其它组合物联合使用,这种组合物能在E1E2组合物之前施用、同时施用或在其后施用。
为进一步理解本发明,以下将提供关于在受试者方法中使用的E1E2DNA和蛋白质组合物、阳离子微粒和其它组合物的更详细讨论。
E1E2多肽和多核苷酸E1E2复合物含有通过非共价或共价相互作用连接的E1和E2多肽。如上所解释,HCV E1多肽是糖蛋白并从约氨基酸192延伸至氨基酸383(相对于HCV的多蛋白编号)。参见Choo等.,Proc.Natl.Acad.Sci.美国(1991)882451-2455。约173到约191的氨基酸代表了E1的信号序列。HCVE2多肽也是糖蛋白并从约氨基酸383或384延伸至氨基酸746。E2的信号肽始于该多蛋白的约氨基酸364。所以,文中使用的术语“全长”E1或“非截短”E1指至少包括HCV多蛋白的氨基酸192-383的多肽(相对于HCV-1编号)。文中使用的关于E2的术语“全长”或“非截短”指至少包括HCV多蛋白的氨基酸383或384至氨基酸746的多肽(相对于HCV-1编号)。如从本文中会明白,本发明使用的E2多肽可包括来自P7区域的其它氨基酸,例如氨基酸747-809。
E2以多种类存在(Spaete等.,Virol.(1992)188819-830;Selby等.,J.Virol.(1996)705177-5182;Grakoui等.,J.Virol.(1993)671385-1395;Tomei等.,J.Virol.(1993).4017-4026)并且剪切和蛋白水解发生在E1和E2多肽的N-末端和C-末端。所以,本发明使用的E2多肽可至少含有HCV多蛋白的氨基酸405-661,例如,400、401、402...到661,如383或384-661、383或384-715、383或384-746、383或384-749、383或384-809、或383或384到661-809之间的任一C-末端(相对于全长HCV-1多蛋白编号)。类似的,本发明使用的优选的E1多肽可含有HCV多蛋白的氨基酸192-326、192-330、192-333、192-360、192-363、192-383或192至326-383之间的任一C-末端。
E1E2复合物也可由含有表位的E1和E2的免疫原性片段组成。例如,E1多肽的片段可含有从约5到几乎该分子全长的氨基酸,例如6、10、25、50、75、100、125、150、175、185或多个E1多肽的氨基酸,或是所述数字之间的任一整数。类似地,E2多肽的片段可含有E2多肽的6、10、25、50、75、100、150、200、250、300或350个氨基酸,或是所述数字之间的任一整数。E1和E2多肽可来自相同或不同的HCV毒株。
例如,E2多肽中可包括得自E2高变区(如跨越氨基酸384-410或390-410的区域)的表位。可引入E2序列的尤其有效的E2表位是包括衍生自该区域的共有序列的表位,例如共有序列Gly-Ser-Ala-Ala-Arg-Thr-Thr-Ser-Gly-Phe-Val-Ser-Leu-Phe-Ala-Pro-Gly-Ala-Lys-Gln-Asn,该序列代表了1型HCV基因组的氨基酸390-410的共有序列。其它的E1和E2表位是己知的并描述于,例如Chien等.,国际公布号WO 93/00365。
此外,复合物的E1和E2多肽可缺少全部或一部分跨膜结构域。膜锚定序列的功能是将多肽与内质网相连。这种多肽一般能分泌进培养表达蛋白质的生物体的生长培养基。然而,如国际公布号WO 98/50556所述,这种多肽也可在胞内获得。分泌进生长培养基的多肽可用多种检测技术方便地测定,这些技术包括,例如聚丙烯酰胺凝胶电泳等和免疫学技术,如1996年2月15日公布的国际公布号WO 96/04301描述的免疫沉淀测定。就E1而言,约终止于氨基酸370位和更高(基于HCV-1E1的编号)的多肽一般被ER保留,因此不分泌进生长培养基。就E2而言,约终止于氨基酸位置731和更高(也基于HCV E2的编号)的多肽一般被ER保留而不分泌(参见,例如国际公布号WO 96/04301,1996年2月15日公布)。应该注意的是,这些氨基酸位置不是绝对的并在一定程度上可变。所以,本发明考虑了保留跨膜结合区域的E1和E2多肽的用途,并且本发明包括缺乏全部或一部分跨膜结合区域的多肽,包括约终止于氨基酸369和更低的E1多肽以及约终止于氨基酸730和更低的E2多肽。此外,C-末端截短可超出跨膜区域向N-末端延伸。所以,本发明也包括例如,发生在低于如360位的E1截短和发生在低于如715位的E2截短。所有这些需截短的E1和E2多肽保留实现其所需目的的功能。然而,尤其优选的截短E1构建物是未延伸出约氨基酸300的那些构建物。最优选的是终止于360位的那些构建物。优选的截短E2构建物是C-末端截短未延伸出约氨基酸715位的那些构建物。尤其优选的E2截短物是在任何氨基酸715-730(例如725)之后截短的那些分子。如果使用截短分子,优选使用均截短的E1和E2分子。
E1和E2多肽及其复合物也可作为脱唾液酸糖蛋白存在。这种脱唾液酸糖蛋白可用本领域已知的方法生产,例如使用末端糖基化位点被封闭的细胞。当在这种细胞中表达这些蛋白质并通过GNA凝集素亲和层析分离时,E1和E2蛋白自发地聚集。生产这些E1E2聚集体的详细方法描述于,例如美国专利号6,074,852。
此外,由于上述的剪切和蛋白酶解切割作用,E1E2复合物可含有异源的分子混合物。所以,包括E1E2复合物的组合物可含有多种E1E2,例如终止于氨基酸746的E1E2(E1E2746)、终止于氨基酸809的E1E2(E1E2809)或上述的任何其它各种E1和E2分子,如具有1-20个氨基酸的N-末端截短的E2分子(如始于氨基酸387、氨基酸402、氨基酸403等的E2种类)。
应该注意的是,为了方便起见,E1和E2区域一般按照相对于HCV-1a基因组编码的多蛋白的所述氨基酸编号来定义如Choo等((1991)Proc.Natl.Acad.Sci.美国882451),起始子甲硫氨酸指定为位置1。然而,本发明使用的多肽不限于衍生自HCV-1a序列的那些。任何HCV毒株或分离物可作为提供本发明使用的免疫原性序列的基础。在这一方面,另一个HCV分离物的对应区域可通过对比两个分离物的序列来方便地确定,该对比以使序列进行最大排序的方式进行。
各种HCV毒株和分离物是本领域已知的,这些毒株和分离物通过核苷酸和氨基酸序列的改变而互相区别。例如,描述于Kubo等,(1989)Japan.Nucl.Acids Res.1710367-10372;Takeuchi等,(1990)Gene91287-291;Takeuchi等,(1990)J.Gen.Virol.713027-3033和Takeuchi等,(1990)Nucl.Acids Res.184626的分离物HCV J1.1。两个独立分离物,HCV-J和BK的完全编码序列分别描述于Kato等,(1990)Proc.Natl.Acad.Sci.美国879524-9528和Takamizawa等,(1991)J.Virol.651105-1113。HCV-1分离物描述于Choo等,(1990)Brit.Med.Bull.46423-441;Choo等,(1991)Proc.Natl.Acad.Sci.美国882451-2455和Han等,(1991)Proc.Natl.Acad.Sci.美国881711-1715。HCV分离物HC-J1和HC-J4描述于Okamoto等,(1991)Japan J.Exp.Med.60167-177。HCV分离物HCT 18、HCT 23、Th、HCT 27、EC1和EC10描述于Weiner等,(1991)Virol.180842-848。HCV分离物Pt-1、HCV-K1和HCV-K2描述于Enomoto等,(1990)Biochem.Biophys.Res.Commun.1701021-1025。HCV分离物A、C、D和E描述于Tsukiyama-Kohara等,(1991)Virus Genes5243-254。用于本发明的组合物和方法中的HCV E1E2多核苷酸和多肽可得自任何上述的HCV毒株或分离自感染患者的组织或体液的新发现分离物。
如果需要作为蛋白质传递E1E2复合物(例如,激发免疫应答),这种E1E2复合物可作为融合蛋白或通过用例如编码感兴趣的E1和E2多肽的构建物共转染宿主细胞来方便地重组制备。共转染可以反式或顺式的方式完成,即通过使用独立的载体或通过使用携带E1和E2基因的单一载体进行。如果使用单一载体进行共转染,两种基因可被一套控制元件驱动,或者基因可存在于独立的表达盒内的载体上,由独立的控制元件驱动。表达后,E1和E2蛋白会自发地结合。或者可通过将独立的蛋白质混合到一起以形成复合物,这些蛋白质可独立产生、处于纯化或半纯化的形式,或者如果蛋白质是分泌的,甚至可混合宿主细胞在其中表达蛋白质的培养基。最后,本发明的E1E2复合物可作为融合蛋白表达,其中E1的所需部分与E2的所需部分融合。
从分泌进培养基的全长、截短的E1和E2蛋白质以及胞内产生的截短的蛋白质制备E1E2复合物的方法是本领域已知的。例如,如美国专利号6,121,020;Ralston等,J Virol.(1993)676753-6761,Grakoui等,J.Virol.(1993)671385-1395和Lanford等,Virology(1993)197225-235所述,这种复合物可重组制备。
所以,可使用标准的分子生物学技术来制备编码本发明使用的HCV E1和E2多肽的多核苷酸。例如,编码上述分子的多核苷酸序列可使用重组方法得到,如通过从表达该基因的细胞中筛选cDNA和基因组文库或从已知含有相同基因的载体中获得该基因。此外,可使用本领域所述的技术直接从病毒核酸分子分离所需的基因,例如Houghton等,美国专利号5,350,671所述的。感兴趣的基因也可通过合成而非克隆来制备。可用合适的用于特定序列的密码子来设计分子。然后从通过标准方法制备的重叠寡核苷酸装配完整序列并装配成完整的编码序列。参见,例如Edge(1981)Nature292756;Nambair等,(1984)Science2231299和Jay等,(1984)J.Biol.Chem.2596311。
所以,具体的核苷酸序列可从含有所需序列的载体获得或可使用本领域已知的各种寡核苷酸合成技术全合成或部分合成来获得,例如在合适的地方使用定点诱变和聚合酶链式反应(PCR)技术。参见,例如Sambrook,同上。尤其是,一种获得编码所需序列的核苷酸序列的方法是将互补的多套重叠的合成寡核苷酸退火,这些寡核苷酸在常规的自动多核苷酸合成仪中制备,然后用合适的DNA连接酶连接并通过PCR扩增连接的核苷酸序列。参见,例如Jayaraman等,(1991)Proc.Natl.Acad.Sci.美国884084-4088。此外,寡核苷酸定向合成(Jones等,(1986)Nature5475-82)、预存在的核苷酸区域的寡核苷酸定向诱变(Riechmam等,(1988)Nature332323-327和Verhoeyen等,(1988)Science2391534-1536)和使用T4 DNA聚合酶的缺口寡核苷酸的酶补平(Queen等,(1989)Proc.Natl.Acad.Sci.美国8610029-10033)可用于提供具有抗原结合能力和免疫原性改变或增强的分子。
一旦制备或分离了编码序列,这种序列可克隆进任何合适的载体或复制子中。本领域的技术人员已知许多克隆载体,并且选择合适的克隆载体仅是个选择的问题。合适的载体包括(但不限于)质粒、噬菌体、转座子、粘粒、染色体或病毒,当这些载体与合适的控制元件结合时能复制。
然后将编码序列置于取决于用来表达的系统的合适控制元件的控制下。所以,编码序列可受启动子、核糖体结合位点(用于细菌表达)和任选的操纵子的控制,从而使感兴趣的DNA序列被合适的转化子转录为RNA。编码序列可含有或不含有信号肽或前导序列,这些可在翻译后加工过程中被宿主除去。参见,例如美国专利号4,431,739;4,425,437;4,338,397。
除了控制序列,可能需要加入用于调节与宿主细胞生长有关的序列表达的调节序列。调节序列是本领域的技术人员已知的,其例子包括响应于化学或物理刺激(包括调节化合物的存在)来开启或关闭基因表达的那些序列。其它类型的调节元件也可存在于载体中。例如,本发明可使用增强子元件来增加构建物的表达水平。其例子包括SV40早期基因增强子(Dijkema等,(1985)EMBO J.4761)、衍生自Rous肉瘤病毒的长末端重复序列(LTR)的增强子/启动子(Gorman等,(1982)Proc.Natl.Acad.Sci.美国796777)和衍生自人CMV的元件(Boshart等,(1985)Cell41521),例如包括在CMV内含子A序列的元件(美国专利号5,688,688)。表达盒还可包括在合适的宿主细胞中自主复制的复制起点、一个或多个选择性标记、一个或多个限制性位点、潜在的高拷贝数和一个强的启动子。
构建病毒载体以便将特定编码序列与合适的调节序列放置于载体中,编码序列相对控制序列的定位和定向要使编码序列在控制序列的“控制”下转录(即,在控制序列上的结合到DNA分子的RNA聚合酶转录编码序列)。可能需要对编码感兴趣分子的序列进行修饰来实现此目的。例如,在一些情况中,需要修饰序列使之在合适的方向与控制序列结合;即维持读框。控制序列和其它调节序列在插入载体之前可与编码序列相连。编码序列可直接克隆插入已经含有控制序列和合适的限制性位点的表达载体中。
如上所解释的,也需要制备感兴趣多肽的突变体或类似物。用于主题组合物中的HCV多肽的突变体或类似物通过以下方式制备删除编码感兴趣多肽的序列的一部分、插入一条序列、和/或取代序列中的一个或多个核苷酸。修饰核苷酸序列的技术为本领域的技术人员所熟知,例如定点诱变等。参见,例如Sambrook等,同上;Kunkel,T.A.(1985)Proc.Natl.Acad.Sci.美国(1985)82448;Geisselsoder等,(1987)BioTechniques5786;Zoller和Smith(1983)Methods Enzymol.100468;Dalbie-McFarland等,(1982)Proc.Natl.Acad.Sci.美国796409。
该分子可在各种系统中表达,包括昆虫、哺乳动物、细菌、病毒和酵母表达系统,所有这些均是本领域熟知的。例如,昆虫细胞表达系统(例如杆状病毒系统)是本领域的技术人员熟知的并描述于,如Summers和Smith,Texas Agricultural Experiment Station Bulletin No.1555(1987)。其中,用于杆状病毒/昆虫表达系统的材料与方法以来自Invitrogen(San Diego CA)的试剂盒(“MaxBac”试剂盒)的形式市售可得。类似地,细菌和哺乳动物细胞表达系统是本领域熟知的并描述于,例如Sambrook等,同上。酵母表达系统也是本领域已知的并描述于,例如《酵母遗传工程》(Yeast GeneticEngineering)(Barr等编,1989)Butterworths,London。
与上述系统一起使用的大量合适宿主细胞也是已知的。例如,哺乳动物细胞系是本领域已知的并且包括来自美国模式培养物保藏所(ATCC)的无限增殖细胞系,例如(但不限于)中国仓鼠卵巢(CHO)细胞、HeLa细胞、幼仓鼠肾(BHK)细胞、猴肾细胞(COS)、人胚胎肾细胞、人肝细胞癌细胞(例如,HeP G2)、Madin-Darby牛肾(“MDBK”)细胞、以及其它细胞。类似地,发现细菌宿主可与这些表达构建物一起使用,例如大肠杆菌、枯草芽胞杆菌(Bacillus subtilis)和链球菌(Streptococcus spp)。其中,本发明中有用的酵母宿主包括酿酒酵母(Saccharomyces cerevisiae)、白色念珠菌(Candidaalbicans)、麦芽糖假丝酵母(Candida maltosa)、多形汉逊酵母(Hansenulapolymorpha)、脆壁克鲁维酵母(Kluyveromyces fragilis)、乳酸克鲁维酵母(Kluyveromyces lactis)、季也蒙毕赤酵母(Pichia guillerimondii)、巴斯德毕赤酵母(Pichia pastoris)、粟酒裂殖酵母(Schizosaccharomyces pombe)和解脂耶罗威亚酵母(Yarrowia lipolytica)。其中,与杆状病毒表达载体一起使用的昆虫细胞包括埃及伊蚊(Aedes aegypti)、加州苜蓿银纹夜蛾(Autographacalfiornica)、家蚕(Bombyx mori)、黑腹果蝇(Dosophila melanogaster)、草地贪夜蛾(Spodoptera frugiperda)和粉纹夜蛾(Trichoplusia ni)。
使用本领域熟知的各种基因传递技术可将含有感兴趣核苷酸序列的核酸分子稳定地整合进宿主细胞基因组或维持于合适的宿主细胞的稳定的附加型元件。参见,例如美国专利号5,399,346。
在蛋白质得以表达的条件下,这些分子依赖于选择的表达系统和宿主通过所述表达载体由生长中的转化宿主细胞生产。然后从宿主细胞分离表达的蛋白质并纯化。如果表达系统将蛋白质分泌入生长培养基,该产物可从培养基直接纯化。如果未分泌,可从细胞裂解物中分离产物。选择合适的生长条件和纯化方法是本领域的技术人员能力范围内的。
以上重组生产的方法可用于获得其它与E1E2组合物一起施用的多肽(例如下述的其它HCV多肽)。
微粒如上所解释的,E1E2809DNA在传递之前要吸附到阳离子微粒上。此外,微粒可用于传递其它HCV蛋白免疫原以及编码这些物质的DNA。例如,阳离子、阴离子或不带电的微粒也可用于组合物中来激发免疫应答,例如用于连续传递E1E2 DNA、E1E2蛋白质或用于传递其它的免疫原。如果用于传递蛋白免疫原,该免疫原可截留在微粒内或吸附到微粒上。
文中使用的术语“微粒”指直径约100nm到约150μm的颗粒,更优选直径约200nm到约30μm,最优选直径约500nm到约10μm。优选微粒的直径是无需咬合针头和毛细管就可胃肠外施用的。微粒的大小可方便地通过本领域熟知的技术测量,例如光子相关光谱、激光衍射术和/或扫描电子显微镜。
本发明使用的微粒可从能灭菌、无毒和生物可降解的材料制得。这些材料包括(不限于)聚(α-羟酸)、聚羟基丁酸、聚己内酯、聚原酸酯、聚酐、聚乙烯醇和乙烯乙酸乙烯酯。本发明使用的微粒优选衍生自聚(α-羟酸),尤其是聚(丙交酯)(“PLA”)(参见,例如美国专利号3,773,919)或D,L-丙交酯和乙交酯或乙醇酸的共聚物,例如聚(D,L-丙交酯-共-乙交酯)(“PLG”或“PLGA”)(参见,例如美国专利号4,767,628),或D,L-丙交酯和己内酯的共聚物。微粒可衍生自具有不同分子量的各种聚合的起始物质,并且在使用共聚物,例如PLG的情况中,丙交酯∶乙交酯各种比例的选择很大程度上取决于多肽的所需剂量和有待治疗的疾病。这些参数将在下文全面讨论。用于生产本发明有用的微粒的生物可降解聚合物可方便地通过市售从,例如从Boehringer Ingelheim,德国和Birmingham Polymers,Inc.,Birmingham,AL购得。
尤其优选的本发明使用的聚合物是PLA和PLG聚合物。各种分子量的这些聚合物均可用,并且本领域的技术人员可方便地测定合适的分子量来提供讨论中的多核苷酸或多肽的所需释放速率。所以,例如就PLA而言,合适的分子量是约2000到250,000。就PLG而言,合适的分子量的范围一般约从10,000到约200,000,优选约15,000到约150,000,最优选约50,000到约100,000。
如果使用一种共聚物(例如PLG)来制备微粒,丙交酯∶乙交酯的各种比例均是可用的,并且该比例的选择在很大程度上部分取决于所需的降解速率。例如,含有50%D,L-丙交酯和50%乙交酯的50∶50 PLG聚合物可提供快速的吸附共聚物,而由于增加了丙交酯成分,75∶25 PLG降解的比较慢,85∶15和90∶10降解得更慢。很明显,基于有待治疗疾病的性质,本领域的技术人员可容易地决定丙交酯∶乙交酯的合适比例。此外,为达到所需的释放动力学,制剂中可使用具有各种丙交酯∶乙交酯比例的微粒的混合物。具有各种丙交酯∶乙交酯比例和分子量的PLG共聚物可方便地得自各种来源,包括Boehringer Ingelheim,德国和Birmingham Polymers,Inc.,Birmingham,AL。这些聚合物也可使用本领域熟知的技术通过简单的乳酸成分缩聚来合成,例如描述于Tabata等.,J.Biomed.Mater.Res.(1988)22837-858。
当使用微粒传递E1E2 DNA(或编码其它HCV免疫原等的其它DNA)时,通常将微粒制备成能使DNA吸附在其表面。为了传递蛋白质,抗原可截留在或吸附在微粒上。制备这种微粒的几种技术是本领域已知的。例如,本发明可使用如美国专利号3,523,907和Ogawa等,Chem.Pharm.Bull.(1988)361095-1103所述的双重乳剂/溶剂蒸发技术来制备微粒。这些技术包括形成由聚合物溶液的液滴组成的初级乳剂,然后将其与含有颗粒稳定剂/表面活性剂的连续水相混合。
更具体地,如O′Hagan等,Vaccine(1993)11965-969和Jeffery等,PharmRes.(1993)10362所述,水包(油包水)(w/o/w)溶剂蒸发系统可用于形成微粒。在该技术中,特定的聚合物与有机溶剂结合,例如乙酸乙酯、二甲基氯(也称为亚甲基氯或二氯甲烷)、乙腈、丙酮、氯仿等。聚合物以有机溶剂中约2-15%,更优选4-10%,最优选6%的溶液提供。使用,例如匀浆器使聚合物溶液乳化。然后乳剂与较大体积的乳剂稳定剂的水溶液合并,例如聚乙烯醇(PVA)或聚乙烯吡咯烷酮。乳剂稳定剂通常以约2-15%溶液提供,更常见是以约4-10%溶液提供。然后使混合物均匀化来生产稳定的w/o/w双重乳剂。然后蒸发有机溶剂。
制剂参数应可操作来制备小(<5μm)和大(>30μm)的微粒。参见,例如Jeffery等.,Pharm.Res.(1993)10362-368;McGee等.,J Microencap.(1996)。例如,降低搅拌速率得到较大的微粒,使得内相体积增加。通过少的水相体积和高浓度的PVA产生了小微粒。微粒也可使用以下技术形成例如Thomasin等,J.Controlled Release(1996)41131;美国专利号2,800,457;Masters,K.(1976)《喷雾干燥》,第二版.Wiley,纽约所述的喷雾-干燥和凝聚技术;空气悬浮包衣技术,例如Hall等.,(1980)《受控释放技术方法、原理及其应用》中的“Wurster方法”(The″Wurster Process″in ControlledRelease TechnologiesMethods,Theory,and Applications)(A.F.Kydonieus编),第2卷,133-154页,CRC Press,Boca Raton,Florida和Deasy,P.B.,Crit.Rev.Ther.Drug Carrier Syst.(1988)S(2)99-139所述的锅包衣法(pancoating)和Wurster包衣法;以及如Lim等.,Science(1980)210908-910所述的离子胶凝作用。
颗粒大小可使用如掺有氦-氖激光的分光仪通过例如激光散射测定。颗粒大小一般在室温下测定并涉及对所测样品的多次分析(例如,5-10次)来得到颗粒直径的平均值。颗粒大小也可使用扫描电子显微术(SEM)来方便地测定。
为引发合适的免疫应答,在使用微粒之前,可测定DNA或蛋白质含量(例如,吸附到微粒上或截留于其中的DNA或蛋白质的量),使得可向受试者传递合适量的微粒。微粒的DNA和蛋白质的含量可按照本领域已知的方法测定,例如通过破坏微粒并提取截留或吸附的分子。例如,如Cohen等.,Pharm.Res.(1991)8713;Eldridge等.,Infect Immun.(1991)592978和Eldridge等.,J.Controlled Release(1990)11205所述可将微粒溶解于二氯甲烷并将药物萃取进蒸馏水。或者,微粒也可分散在含有5%(w/v)SDS的0.1M NaOH中。样品经搅拌、离心并使用合适的测定方法分析上清液中具体的药物。参见,例如O′Hagan等,Int.J.Pharm.(1994)10337-45。
颗粒优选含有约0.5%到约40%(w/w)的DNA或多肽,例如1%到30%,如0.5%...1%...1.5%...2%等到25%(w/v),更优选约0.5%-4%到约18%-20%(w/v)。微粒的DNA和多肽的载荷取决于所需剂量和治疗的病症,以下将更详细讨论。
制备后,微粒可保存或冷冻干燥待用。为将DNA和/或蛋白质吸附到微粒上,微粒制剂与感兴趣的分子简单混合并且得到的制剂在使用前可再次冻干。出于本发明的目的,文中所述的微粒一般可吸附约1μg到100mgDNA,例如10μg到5mg、或100μg到500μg,如1...5...10...20...30...40...50...60...100μg等到500μg DNA。
将大分子吸附到制备的微粒上的一种优选方法描述于国际公布号WO00/050006。简言之,微粒再水化并使用可透析的阴离子或阳离子洗涤剂使微粒分散为基本上是单体的悬浮液。有用的洗涤剂包括(但不限于)各种N-甲基葡糖酰胺(称为MEGA)中的任一种,例如庚酰基-N-甲基葡糖酰胺(MEGA-7)、辛酰基-N-甲基葡糖酰胺(MEGA-8)、壬酰基-N-甲基葡糖酰胺(MEGA-9)和癸酰基-N-甲基葡糖酰胺(MEGA-10);胆酸;胆酸钠;脱氧胆酸;脱氧胆酸钠;牛磺胆酸;牛磺胆酸钠;牛磺脱氧胆酸;牛磺脱氧胆酸钠;3-[(3-胆氨酰丙基)二甲基胺基]-1-丙烷-磺酸酯(CHAPS);3-[(3-胆氨酰丙基)二甲基胺基]-2-羟基-1-丙烷-磺酸酯(CHAPSO);B十二烷基-N,N-二甲基-3-胺基-1-丙烷-磺酸酯(两性洗涤剂3-12);N,N-双-(3-D-葡糖酰胺丙基)-脱氧胆酰胺(DEOXY-BIGCHAP);B辛基葡糖苷;蔗糖单月桂酸酯;葡糖胆酸/葡糖胆酸钠;月桂肌氨酸(钠盐);葡糖脱氧胆酸/葡糖脱氧胆酸钠;十二烷基硫酸钠(SDS);3-(三甲硅烷基)-1-丙烷磺酸(DSS);西曲溴铵(CTAB,其主要成分是溴化三甲基十六烷基铵);溴化三甲基十六烷基铵;溴化三甲基十二烷基铵;溴化三甲基十六烷基铵;溴化三甲基十四烷基铵;溴化卞基二甲基十二烷基铵;氯化卞基二甲基十六烷基铵和溴化卞基二甲基十四烷基铵。上述洗涤剂可市售得自,例如Sigma Chemical Co.,St.Louis,MO。本领域已知的各种阳离子脂质体也可用作洗涤剂。参见Balasubramaniam等.,1996,Gene Ther.,3163-72和Gao,X.和L.Huang.1995,Gene Ther.,27110-722。
然后使用,例如陶瓷研钵和杵物理研碎微粒/洗涤剂混合物直至形成光滑的浆状物。然后加入合适的水性缓冲液,例如磷酸缓冲盐水(PBS)或Tris缓冲盐水,得到的混合物超声处理或匀浆化直至微粒全部悬浮。然后将感兴趣的大分子,例如E1E2 DNA或多肽加入微粒悬浮液并透析该系统以除去洗涤剂。最好选择聚合物微粒和洗涤剂系统使得感兴趣的大分子吸附到微粒表面而仍能维持大分子的活性。如下所述,得到的含有表面吸附大分子的微粒可洗去未结合的大分子并作为悬浮液保存于合适的缓冲制剂中,或与合适的赋形剂一起冻干。
在有带电洗涤剂(例如阴离子或阳离子洗涤剂)的情况中生产的微粒具有带净负电或净正电的带电表面。这些微粒可吸附更大量的分子。例如,用阴离子洗涤剂(例如十二烷基硫酸钠(SDS)或3-(三甲硅烷基)-1-丙烷磺酸(DSS),即PLG/SDS或PLG/DSS)微粒生产的微粒吸附带正电的免疫原(例如蛋白质)并在文中命名为“阴离子的”。类似地,用阳离子洗涤剂(例如CTAB,即PLG/CTAB微粒)生产的微粒吸附带负电的大分子(例如DNA)并在文中命名为“阳离子的”。
其它HCV多肽和多核苷酸如上所解释的,本发明的方法可使用含有HCV抗原或编码这种抗原的DNA的其它组合物。这种组合物可在传递E1E2809DNA组合物之前、之后或同时传递,如果使用激发免疫应答的组合物,这种组合物也可在此之前、之后或同时传递。
丙型肝炎病毒的基因组一般含有转录为多蛋白的、单一的、约9,600个核苷酸的开放读框。该多蛋白的全长序列披露于欧洲公布号388,232和美国专利号6,150,087。如表1和图1所示,HCV多蛋白在切割时产生了10个不同的产物,其顺序为NH2Core-E1-E2-p7-NS2-NS3-NS4a-NS4b-NS5a-NS5b-COOH。核心多肽位于相对于HCV-1编号的1-191位(参见,关于HCV-1基因组的Choo等.,(1991)Proc.Natl.Acad.Sci.美国882451-2455)。该多肽进一步加工来产生具有约1-173个氨基酸的HCV多肽。包膜蛋白,E1和E2分别位于192-383位和384-746位。P7结构域发现约位于747-809位。NS2是一种具有蛋白水解活性的膜内在蛋白质并发现约位于多蛋白的810-1026位。单独的NS2或与NS3(发现约位于1027-1657位)结合的NS2切断NS2-NS3sissle键,依次产生NS3N-末端并释放出包括丝氨酸蛋白酶和RNA解旋酶活性的大的多蛋白。发现约位于1027-1207位的NS3蛋白酶用于加工剩余的多蛋白。解旋酶活性发现约位于1193-1657位。多蛋白成熟的完成由NS3丝氨酸蛋白酶催化通过在NS3-NS4a接头处自催化切割来启动。接下来HCV多蛋白的NS3-介导切割表现出包括通过另一个多肽的NS3分子来识别多蛋白切割接头。在这些反应中,NS3释放一种NS3辅助因子(发现约位于1658-1711位的NS4a)、两种蛋白质(发现约位于1712-1972位的NS4b和发现约位于1973-2420位的NS5a)和一种RNA-依赖性RNA聚合酶(发现约位于2421-3011位的NS5b)。

*相对于HCV-1编号。参见,例如Choo等.,(1991)Proc.Natl.Acad.Sci.美国882451-2455。
以上HCV多蛋白产物、编码这些产物的DNA和从中衍生的免疫原性多肽是的序列已知(参见,例如美国专利号5,350,671)。例如,许多常规和特殊的衍生自HCV多蛋白的免疫原性多肽已得到描述。参见,例如Houghton等.,欧洲公布号318,216和388,232;Choo等.,Science(1989)244359-362;Kuo等.,Science(1989)244362-364;Houghton等.,Hepatology(1991)14381-388;Chien等.,Proc.Natl.Acad.Sci.美国(1992)8910011-10015;Chien等,J.Gastroent.Hepatol.(1993)8S33-39;Chien等.,国际公布号WO 93/00365;Chien,D.Y.,国际公布号WO 94/01778。这些出版物一般提供了有关HCV的广泛背景以及HCV多肽免疫试剂的制备和用途。
本发明可使用任何所需的免疫原性HCV多肽或编码该多肽的DNA。例如,衍生自Core区域的HCV多肽发现可用于主题组合物和方法,如衍生自以下所发现区域的多肽氨基酸1-191、氨基酸10-53、氨基酸10-45、氨基酸67-88、氨基酸86-100、氨基酸81-130、氨基酸121-135、氨基酸120-130、氨基酸121-170;和任何在以下文献中鉴定的Core表位,例如Houghton等.,美国专利号5,350,671;Chien等.,Proc.Natl.Acad.Sci.美国(1992)8910011-10015;Chien等.,J.Gastroent.Hepatol.(1993)8S33-39;Chien等.,国际公布号WO 93/00365;Chien,D.Y.,国际公布号WO 94/01778和美国专利号6,150,087。
此外,本发明也可用衍生自该病毒的非结构区域的多肽。HCV多蛋白的NS3/4a区域已得到描述并且该蛋白质的氨基酸序列和全部结构披露于Yao等.,Structure(1999年11月)71353-1363。也参见,Dasmahapatra等.,美国专利号5,843,752。如上所解释的,天然序列或免疫原性类似物可用于主题制剂中。Dasmahapatra等.,美国专利号5,843,752和Zhang等.,美国专利号5,990,276均描述了NS3/4a的类似物及其制备方法。
此外,用于主题组合物和方法的多肽可衍生自HCV多蛋白的NS3区域。许多这种多肽是已知的,包括(但不限于)衍生自c33c和c100区域的多肽以及含有一种NS3表位(例如c25)的融合蛋白。这些和其它NS3多肽在本发明中有用且是本领域已知的并描述于,例如Houghton等.,美国专利号5,350,671;Chien等.,Proc.Natl.Acad.Sci.美国(1992)910011-10015;Chien等.,J.Gastroenf.Hepatol.(1993)8S33-39;Chien等.,国际公布号WO93/00365;Chien,D.Y.,国际公布号WO 94/01778和美国专利号6,150,087。
另外,如美国专利号6,514,731和6,428,792所述,多表位融合抗原(命名为“MEFA”)可用于主题组合物中。这种MEFA包括衍生自两个或多个各种的病毒区域的多表位。这些表位优选来自多于一种HCV毒株,从而可在单一的疫苗中增加对多种HCV毒株的保护能力。
如以上所解释,为了方便起见,各种HCV区域按照相对于HCV-1a基因组编码的多蛋白的氨基酸编号来定义如Choo等((1991)Proc.Natl.Acad.Sci.美国882451)所述,起始子甲硫氨酸指定为位置1。然而,如以上所详细解释的,本发明使用HCV多肽和多核苷酸不限于那些衍生自HCV-1a序列的并且任何HCV毒株或分离物可用作提供本发明使用的抗原性序列的基础。
以上多核苷酸和多肽可使用上述用于E1E2多肽和多核苷酸的重组生产的方法获得。
免疫原性组合物及施用A.组合物一旦生产后,E1E2多核苷酸、多肽或其它免疫原就可在免疫原性组合物中提供,例如在预防性(即防止感染)或治疗性(即在感染后治疗HCV)疫苗组合物中。组合物一般可包括一种或多种“药学上可接受的赋形剂或载体”,例如水、盐水、甘油、乙醇等。此外,这种载体中可存在辅助物质,例如湿润剂或乳化剂、pH缓冲物质等。
运载体可任选存在于,例如用于激发对E1E2809DNA的免疫应答的蛋白质组合物中。运载体是其自身不诱导产生有害于接受组合物的个体的抗体的分子。合适的运载体一般是大的、代谢缓慢的大分子,例如蛋白质、多糖、聚乳酸、聚乙醇酸、聚合氨基酸、氨基酸共聚物、脂质聚集体(例如油滴或脂质体)和惰性病毒颗粒。这种运载体是本领域的那些普通技术人员所熟知的。此外,免疫原性多肽可与细菌类毒素偶联,例如来自白喉、破伤风、霍乱等的类毒素。
组合物中也可含有佐剂来增加免疫应答,例如(但不限于)(1)铝盐(矾),例如氢氧化铝、磷酸铝、硫酸铝等;(2)水包油乳剂试剂(具有或不具有其它特异性免疫刺激剂,例如胞壁酰肽(见下文)或细菌细胞壁成分),例如(a)含有5%角鲨烯、0.5%吐温80和0.5%司盘85,使用,例如110Y型微流化器(Microfluidics,Newton,MA)配制成亚微米颗粒的MF59(PCT公布号WO90/14837;美国专利号6,299,884和6,451,325),(b)含有10%角鲨烯、0.4%吐温80、5%聚氧丙烯-封闭的聚合物L121与thr-MDP(见下文),并且微流化为亚微米乳剂或旋转产生较大粒径的乳剂的SAF,和(c)含有2%角鲨烯、0.2%吐温80和一种或多种由以下组成的细菌细胞壁成分的RibiTM佐剂系统(Ribi Immunochem,Hamilton,MT)单磷酰脂质A(MPL)、海藻糖二霉菌酸(TDM)和细胞壁骨架(CWS),优选MPL+CWS(DetoxTM);(3)皂苷佐剂,例如可使用QS21或StimulonTM(Cambridge Bioscience,Worcester,MA)或从中产生的颗粒,如ISCOM(免疫刺激复合物),其中ISCOM可除去其它的洗涤剂(参见,例如国际公布号WO 00/07621);(4)完全氟氏佐剂(CFA)和非完全氟氏佐剂(IFA);(5)细胞因子,例如白介素,如IL-1、IL-2、IL-4、IL-5、IL-6、IL-7、IL-12等(参见,例如国际公布号WO 99/44636);干扰素,如γ干扰素;巨噬细胞集落刺激因子(M-CSF);肿瘤坏死因子(TNF)等;(6)细菌ADP-核糖基化毒素的解毒突变体,例如霍乱毒素(CT)、百日咳毒素(pT)或大肠杆菌不耐热毒素(LT),特别是LT-K63(其中位置63处的野生型氨基酸被赖氨酸取代)、LT-R72(其中72位的野生型氨基酸被精氨酸取代)、CT-S109(其中109位的野生型氨基酸被丝氨酸取代)和PT-K9/G129(其中9和129位的野生型氨基酸被赖氨酸和甘氨酸取代)(参见,例如国际公布号WO93/13202和WO92/19265);(7)单磷酰脂质A(MPL)或3-O-脱酰基化MPL(3dMPL)(参见,例如GB 2220221;EPA 0689454),任选在基本上无明矾的情况中(参见,例如国际公布号WO 00/56358);(8)3dMPL与,例如QS21和/水包油乳剂的组合(参见,例如EPA 0835318;EPA 0735898;EPA0761231);(9)聚氧乙烯醚或聚氧乙烯酯(见,例如国际公布号WO99/52549);(10)一种皂苷和免疫刺激寡核苷酸,例如CpG寡核苷酸(参见,例如国际公布号WO 00/62800);(11)一种免疫刺激剂和一种金属盐颗粒(参见,例如国际公布号WO 00/23105);(12)一种皂苷和一种水包油乳剂(参见,例如国际公布号WO99/11241);(13)一种皂苷(例如,QS21)+3dMPL+IL-12(任选+一种甾醇)(参见,例如国际公布号WO 98/57659);和(14)其它作为免疫刺激制剂来提高组合物效力的物质。
胞壁酰肽包括(但不限于)N-乙酰-胞壁酰-L-苏氨酰-D-异谷氨酰胺(thr-MDP)、N-乙酰-去甲胞壁酰-L-丙氨酰1-D-异谷氨酰胺(去甲-MDP)、N-乙酰胞壁酰-L-丙氨酰-D-异谷氨酰胺酰-L-丙氨酸-2-(1′-2′-二棕榈酰-sn-甘油-3-羟基磷酰基氧)-乙胺(MTP-PE)等。
特别优选的用于组合物中的佐剂是亚微米水包油乳剂。本发明使用的亚微米水包油乳剂是任选含有各种量的MTP-PE的角鲨烯/水乳剂,例如含有4-5%w/v角鲨烯、0.25-1.0%w/v吐温80TM(单油酸聚氧乙烯失水山梨糖醇酯)和/或0.25-1.0%司盘85TM(三油酸失水山梨糖醇酯)和任选含有的N-乙酰胞壁酰-L-丙氨酰-D-异谷氨酰胺酰-L-丙氨酸-2-(1′-2′-二棕榈酰-sn-甘油-3-羟基磷酰基氧)-乙胺(MTP-PE)的亚微米水包油乳剂,例如,称为“MF59”的亚微米水包油乳剂(国际公布号WO90/14837;美国专利号6,299,884和6,451,325;和Ott等.,《疫苗设计亚单位和佐剂方法》中的“MF59-安全而强有力的用于人疫苗佐剂的设计与评估”(“MF59-Design and Evaluationof a Safe and Potent Adjuvant for Human Vaccines″in Vaccirae DesignTheSubunit and Adjuvant Approach)(Powell,M.F.和Newman,M.J.编),PlenumPress,纽约,1995,277-296页)。MF59含有4-5%w/v角鲨烯(例如,4.3%)、0.25-0.5%w/v吐温80TM和0.5%w/v司盘85TM并且可任选含有各种量的MTP-PE,使用,例如110Y型微流化器(Microfluidics,Newton,MA)配制成亚微米颗粒。例如,MTP-PE存在的量可是约0-500μg/剂量,更优选0-250μg/剂量并且最优选0-100μg/剂量。如文中所用的,术语“MF59-0”指缺乏MTP-PE的上述亚微米水包油乳剂,而术语MF59-MTP指含有MTP-PE的制剂。例如,“MF59-100”每剂量含有100μg MTP-PE等。另一种本发明使用的水包油乳剂MF69含有4.3%w/v角鲨烯、0.25%w/v吐温80TM和0.75%w/v司盘85TM并任选含有MTP-PE。还有另一种亚微米水包油乳剂MF75(也是称为SAF)含有10%角鲨烯、0.4%吐温80TM、5%聚氧丙烯-封闭聚合物L121和thr-MDP,该乳剂也微流化成亚微米乳剂。MF75-MTP指包括MTP的MF75制剂,例如每剂量100-400μg MTP-PE。
用于组合物中的亚微米水包油乳剂、其制备方法和免疫刺激剂(例如胞壁酰肽)详述于国际公布号WO 90/14837和美国专利号6,299,884和6,451,325。
主题组合物中包括的其它优选试剂是免疫刺激分子,例如免疫刺激核酸(ISS),包括(但不限于)未甲基化的CpG基序,如CpG寡核苷酸。
含有未甲基化的CpG基序的寡核苷酸表现出能诱导B细胞、NK细胞和抗原呈递细胞(APC)的激活,例如单核细胞和巨嗜细胞。参见,例如美国专利号6,207,646。所以,衍生自CpG家族分子、CpG二核苷酸的佐剂和含有CpG基序的合成寡核苷酸(参见,例如Krieg等.,Nature(1995)374546和Davis等.,J.Immunol.(1998)160870-876),例如任何披露于美国专利号6,207,646的各种免疫刺激CpG寡核苷酸均可用于主题方法和组合物。这种CpG寡核苷酸通常含有至少8到约100个碱基对,优选8到40个碱基对,更优选15-35个碱基对,优选15-25个碱基对,和在这些数值之间的任何数目的碱基对。例如,以式5′-X1CGX23′表示的含有共有CpG基序的寡核苷酸发现可用作免疫刺激CpG分子,其中X1和X2是核苷酸并且C是未甲基化的。通常,X1是A、G或T,而X2是C或T。其它有用的CpG分子包括那些式5′-XiX2CGX3X4所代表的分子,其中X1和X2是序列,例如GpT、GpG、GpA、ApA、ApT、ApG、CpT、CpA、CpG、TpA、TpT或TpG,而X3和X4是TpT、CpT、ApT、ApG、CpG、TpC、ApC、CpC、TpA、ApA、GpT、CpA或TpG,其中“p”代表磷酸键。寡核苷酸在或接近5’和/或3’末端优选不包括GCG序列。此外,CpG在其5′-端侧翼优选具有两个嘌呤(优选是GpA二核苷酸)或是一个嘌呤一个嘧啶(优选是GpT),并且在其3′-端的侧翼具有两个嘧啶,优选是TpT或TpC二核苷酸。所以,优选的分子含有序列GACGTT、GACGTC、GTCGTT或GTCGCT,并且这些序列的侧翼是几个其它的核苷酸。该中心核心区域外的核苷酸似乎极其易变。
此外,本发明使用的CpG寡核苷酸可是双链或单链。双链分子在体内更稳定而单链分子表现出提高了的免疫活性。此外,为了提高CpG分子的免疫刺激活性,可修饰磷酸骨架,例如二硫代磷酸盐修饰。如美国专利号6,207,646所述,具有二硫代磷酸盐骨架的CpG分子优选激活B-细胞,而那些具有磷酸二酯骨架的优选激活单核细胞的(巨嗜细胞、树突细胞和单核细胞)和NK细胞。
使用本领域熟知的标准技术可方便地测试CpG分子的刺激免疫应答的能力。例如,使用上述的免疫测定可方便地测定该分子的刺激体液和/或细胞免疫应答的能力。此外,免疫原性组合物可与或不与CpG分子一起施用来测定免疫应答是否得到提高。
本发明使用的组合物含有治疗有效量的编码E1E2复合物的DNA(或治疗有效量的蛋白质)并且如果需要可含有任何其它上述的成分。“治疗有效量”指蛋白质或编码该蛋白的DNA的量,该量可在施用的个体中诱导免疫应答,优选保护性的免疫应答。这种应答通常可导致受试者产生针对组合物的抗体介导的和/或分泌的或细胞的免疫应答。一般这种应答包括(但不限于)一种或多种以下作用产生任何免疫类型的抗体,例如免疫球蛋白A、D、E、G或M;B和T淋巴细胞的增殖;提供免疫细胞的激活、生长和分化信号;辅助T细胞、抑制性T细胞和/或细胞毒性T细胞和/或γδT细胞的扩增。
E1E2蛋白质组合物(例如在施用E1E2809DNA后用于激发免疫应答)可含有一种或多种E1E2复合物的混合物(例如得自多于一种病毒分离物的E1E2复合物)以及其它的HCV抗原。此外,如上所解释的,由于剪切和蛋白酶切割,E1E2复合物可以异源分子的混合物存在。所以,包括E1E2复合物的组合物可含有多种E1E2,例如终止于氨基酸746的E1E2(E1E2746)、终止于氨基酸809的E1E2(E1E2809)或任何其它上述的各种E1和E2分子,如具有1-20个氨基酸N-末端截短的E2分子、始于氨基酸387、氨基酸402、氨基酸403等的E2种类。
组合物(DNA和蛋白质)可与其它抗原和免疫调节剂联合施用,例如免疫球蛋白、细胞因子、淋巴因子和趋化因子,包括(但不限于)如IL-2、修饰的IL-2(半胱氨酸125换为丝氨酸125)、GM-CSF、IL-12、γ-干扰素、IP-10、MIP1β、FLP-3、利巴韦林和RANTES的细胞因子。
B.施用免疫原性组合物(DNA或蛋白质)一般制备为液体溶液或悬浮液的注射剂;也可制备为在注射前适于溶解在或悬浮在液体载体中的固体形式。所以,组合物一旦配制好,可常规地通过胃肠外施用,例如通过皮下或肌肉内注射。适于其它施用方式的其它制剂包括口服和肺部制剂,栓剂和透皮应用。剂量治疗可是单剂量方案或多剂量方案。有效量优选足以导致对疾病症状的治疗或预防。确切的需要量取决于以下因素而变接受治疗的对象;有待治疗的个体的年龄和总体状况;个体的免疫系统合成抗体的能力;所需保护的程度;所治疗病症的严重性;所选的特定大分子及其施用方式。本领域的技术人员可方便地确定合适的有效量。“治疗有效量”的范围相对较宽,该范围可使用本领域已知的体内和体外模型通过常规实验确定。用于以下实施例的E1E2 DNA和多肽的量提供了可用来最优化地引发抗-E1、抗-E2和/或抗-E1E2的抗体的常规指导。
例如,免疫原优选肌肉内注射入大型哺乳动物,例如灵长类动物,如狒狒、黑猩猩或人。吸附到阳离子微粒上的E1E2 DNA的量通常约为1μg到100mg DNA,例如5μg到100mg DNA,如10μg到50mg或100μg到5mg,如20...30...40...50...60...100...200μg等到500μg DNA和所述范围内的任一整数。本发明的E1E2表达构建物使用标准的基因传递方案施用。基因传递的方法是本领域已知的。参见,例如美国专利号5,399,346;5,580,859;5,589,466。EIE2809DNA可直接传递至脊椎动物受试者或可先体外后体内地传递至得自受试者的细胞再将细胞重新植入受试者。
施用编码E1E2多肽的DNA可在哺乳动物中引发持续至少1周、2周、1月、2月、3月、4月、6月、1年或更长时间的细胞免疫应答和/或抗-E1、抗-E2和/或抗-E1E2抗体滴度。也可施用E1E2 DNA来提供记忆应答。如果实现了这种应答,抗体滴度会随时间而降低,但暴露于HCV病毒或免疫原导致快速诱导抗体,例如仅在几天内。任选地,如上所解释的,通过提供一种或多种E1E2多肽的激发注射,抗体滴度可在初始注射后在哺乳动物中维持2周、1月、2月、3月、4月、5月、6月、1年或更长时间。
优选引发至少10、100、150、175、200、300、400、500、750、1,000、1,500、2,000、3,000、5,000、10,000、20,000、30,000、40,000、50,00(几何平均滴度)或更高的滴度,或所述滴度之间的任何数量,该滴度使用标准免疫测定来测量,例如以下实施例中所述的免疫测定。参见,例如,Chien等.,Lancet(1993)342933和Chien等.,Proc.Natl.Acad.Sci.美国(1992)8910011。
就E1E2蛋白质激发而言,一般每剂量传递约0.1μg到约0.5mg免疫原,或所述范围内任何量,例如0.5μg到约10mg、1μg到约2mg、2.5μg到约250μg、4μg到约200μg,如每剂量4、5、6、7、8、9、10...20...30...40...50...60...70...80...90...100等μg。免疫原可施用于未感染HCV的哺乳动物或可施用于感染HCV的哺乳动物。
用于实践本发明的毒株的保存以下毒株的生物纯培养物由美国模式培养物保藏所(10801 Boulevard大学,Manassas,VA)保存。按照国际承认用于专利程序的微生物保存布达佩斯条约(International Recognition of the Deposit of Microorganisms for thePurpose ofPatent Procedure)的条款及其(布达佩斯条约)细则规定,在生存力实验成功并支付了所需费用后分配了指明的登录号。这保证了从保存之日起该培养物维持30年可用。按照布达佩斯条约的条款,生物体为ATCC使用,该条约保证了按照35U.S.C.§122授权的美国专利和商标局长和按照该局长的法令(包括参照886 OG 638的37C.F.R.§1.12)确定的个人可永久且不受限制地使用其后代。一旦专利授权,公众对保存的培养物的可用性的所有限制条件均永久取消。
提供这些保存物仅是为了方便本领域的技术人员,而非承认保存是35U.S.C.§112规定所需的。如果与说明书发生冲突,这些基因的核酸序列以及其编码的分子的氨基酸序列是受控制的。制备、使用或出售保存的物质需要许可,并且本文未授予这种许可。
质粒 保存日期 ATCC号E1E2-809 2001年8月16日PTA-36432.实验以下是实践本发明的特定实施方案的实施例。提供这些实施例仅是为了说明,而决非为了限制本发明的范围。
我们努力保证有关使用的数字(例如,数量、温度等)的精确性,但一些实验差错和偏差当然是应该考虑到的。
材料与方法酶是购自市售来源并按照生产商的指导使用。
除非另有注明,在分离DNA片段中,所有的DNA操作均按照标准方法进行。参见,Sambrook等.,同上。限制性内切酶、T4 DNA连接酶、大肠杆菌、DNA聚合酶1I、Klenow片段和其它生物试剂购自市售来源并按照生产商的指导使用。在琼脂糖凝胶上分离双链DNA片段。
化学试剂的来源一般包括Sigma Chemical Company,St.Louis,MO;Alrich,Milwaukee,WI;Roche Molecular Biochemicals,Indianapolis,IN。
质粒设计通过将编码氨基酸192到809的HCV-1和上游组织纤溶酶原激活物(tpa)信号序列克隆进pnewCMV-II表达载体来构建质粒pCMVtpaE1E2p7(6275bp)。pnewCMV载体是基于pUC19的克隆载体,该载体含有以下元件SV40复制起点、人CMV增强子/启动子、人CMV内含子、人纤溶酶原激活物(tPA)前导序列、牛生长激素poly A终止子和氨苄青霉素抗性基因。
E1E2809从前述的重组CHO细胞表达(Spaete等.,Virology(1992)188819-830)。用Triton X-100洗涤剂从CHO细胞中提取E1E2抗原。使用雪白莲Galanthusnivalis凝集素琼脂糖(Vector Laboratories,Burlingame,Calif.)色谱和快速流动S-Sepharose阳离子交换色谱(Pharmacia)纯化E1E2抗原。水包油佐剂MF59生产于Chiron Vaccines,Marburg并详细描述于前文中(Ott等.,《疫苗设计亚单位和佐剂方法》中的“MF59-安全而强有力的用于人疫苗佐剂的设计与评估”(“MF59--Design and Evaluation of aSafe and Potent Adjuvant for Human Vaccines″in Vaccirae DesignTheSubunit and Adjuvant Approach)(Powell,M.F.和Newman,M.J.编),PlenumPress,纽约,1995,277-296页)。
由Chiron Mimotopes Pty.Ltd(Clayton,Australia)使用游离的胺N-末端和游离的酸C-末端合成了跨越HCV-1a的E1和E2蛋白质(氨基酸192-809)的54种肽(每种长度为20个氨基酸,重叠10个氨基酸)来进行CTL测定。冻干的肽重悬于含水的10%DMSO中,然后每种肽稀释至2mg/ml。使用等体积的每种肽合并成两组,每组27种肽合并组l(氨基酸192-470)和合并组2(氨基酸461-740)。通过前述方法(Choo等.,Proc.Natl.Acad.Sci.美国(1994)911294-1298)制备表达HCV-1a氨基酸134-966(Sc59 E12C/B)的重组牛痘病毒(vv)。U96-Nunc Maxisorp板(Nalgene Nunc International,Rochester,NY)、山羊抗-小鼠IgG-HRP偶联物(Caltag Laboratories,Burlingame,CA)和TMB Microwell过氧化物酶底物系统(Kirkegaard & Perry Laboratories,Gaithersburg,MD)用于进行ELISA。
聚丙交酯-共-乙交酯(RG 504,50∶50的丙交酯∶乙交酯单体比例)得自Boehringer Ingelheim,美国。CTAB得自Sigma Chemical Co.,St.Louis,美国并用于运送。使用基本上如前所述的溶剂蒸发技术(Singh等.,Proc.Natl.Acad.Sci.美国(2000)97811-816;Briones等.,Pharm.Res.(2001)18709-712)制备PLG/CTAB微粒。将100mg微粒与1×TE缓冲液配制的200g/ml DNA溶液于4℃轻柔搅拌12小时来使HCV E1E2质粒吸附到微粒上。然后离心分离微粒,接着冻干。通过水解PLG微粒确定吸附的DNA量。使用粒径分析仪(Malvern Instruments,Malvern,英国)确定微粒的大小分布。使用DELSA 440 SX Zeta分选机sizer(Coulter Corp.Miami,FL)测量zeta电势。
实施例1使用吸附到阳离子微粒上的E1E2 DNA免疫接种小鼠对小鼠进行了三项研究来确定吸附到阳离子微粒上的E1E2809质粒DNA的免疫原性。在第一项研究中,10只6-8周龄、体重约20-25g的雌性CB6F1小鼠在0天和28天用E1E2809质粒DNA或PLG/CTAB/E1E2809DNA(10和100μg)免疫接种。盐水配制的制剂通过TA途径注射入每只动物的两条后腿(每个位点50μl)。在42天从眼框后丛(retro-orbital plexus)取血并分离血清。通过ELISA定量HCV E1E2-特异性血清IgG滴度。
在第二项研究中,比较了每组10只小鼠的各组在0和28天用MF59制备的1和10μg PLG/CTAB/E1E2809DNA和2μg重组EIE2809蛋白质的免疫接种。另一组小鼠用10μg E1E2809质粒DNA免疫接种进行比较并在42天分离血清用于测定。
在第三项研究中,比较了E1E2809质粒DNA、PLG/CTAB/EIE2809DNA和DNA致敏/蛋白质激发引发的免疫应答。用MF59制备的E1E2809质粒DNA(10μg)、PLG/CTAB/E1E2809DNA(10μg)或5μg E1E2809蛋白质进行初次免疫接种。三组小鼠(每组10只)用MF59制备的PLG/CTAB/E1E2809DNA、E1E2809质粒DNA或EIE2809蛋白质独立地免疫接种三次。此外,另两组小鼠接受两剂量PLG/CTAB/E1E2809DNA或E1E2809质粒DNA(10μg),并且两组均用由MF59制备的E1E2809蛋白质(5μg)的单剂量组成的第三次免疫接种激发。所有动物组免疫接种3次、分开4周并在70天收集血清。
通过ELISA在每种免疫接种后两周收集的血清中测量小鼠中对HCVE1E2的抗体应答。用200μl 0.625g/ml纯化的HCV E1E2809于4℃涂布微滴定板过夜。涂布的孔用300μl以磷酸缓冲盐水(PBS)配制的1%BSA于37℃封闭1小时。用洗涤缓冲液(PBS,0.3%吐温-20)洗涤板5次、轻扣并干燥。首先将血清样品和标准血清稀释进封闭缓冲液,然后转移进涂布、封闭板中,板中的样品用相同的缓冲液连续稀释3倍。板于37℃孵育1小时后洗涤。使用特异性辣根过氧化物酶偶联的山羊抗-小鼠IgIγ链(CaltagLaboratories,Inc.)测定总的IgI滴度。于37℃孵育1小时后,洗涤板以除去未结合的抗体。使用OPD底物来展开板,30分钟后加入4N HCl来阻断显色反应。IgG抗体的滴度表示为样品稀释度的倒数,其中492和620nm处稀释样品的光密度等于0.5。
在第一项研究中,相比于在两种剂量(10和100μgDNA)单用E1E2809质粒DNA免疫接种,用吸附到PLG/CTAB微粒上的E1E2809质粒DNA诱导了显著提高的对E1E2的血清IgG抗体应答。此外,10μg E1E2809质粒DNA明显低于诱导可检测到的应答所需的阈值剂量。相反,PLG/CTAB/E1E2809DNA在10μg诱导了强有力的应答(图3)。
第二项研究证实了在10μg PLG/CTAB/E1E2809DNA能诱导明显高于单用E1E2809质粒DNA的应答,但同时也表明PLG/CTAB/E1E2809DNA在1μg未诱导强有力的应答。此外,该项研究也表明PLG/CTAB/E1E2809DNA(10μg)诱导的应答与MF59辅助的2μg E1E2809蛋白质诱导的应答相当(图4)。
第三项研究证实并拓展了早先研究的观察结果。在10μg,两或三剂量之后,PLG/CTAB/E1E2809DNA明显比单用E1E2809质粒DNA更强有力,并与用MF59配制的5μg E1E2809蛋白质免疫接种相当。此外,虽然三剂量的10μg E1E2809质粒DNA未诱导可检测的应答,两剂量PLG/CTAB/E1E2809DNA(10μg)诱导了强有力的应答(图5)。另外,用MF59配制的E1E2809蛋白质激发后的两剂量PLG/CTAB/E1E2809DNA(10μg)引发了强有力的应答,而单用E1E2809质粒DNA(10μg)作为引发方案效率较低。此外,在用MF59配制的5μg E1E2809蛋白质单剂量激发后,三剂量PLG/CTAB/E1E2809DNA(10μg)与两剂量PLG/CTAB/E1E2809DNA(10μg)的能力相当(图5)。
如文中所示,100μg剂量的E1E2809质粒能在小鼠中诱导了可检测的滴度。然而,吸附有E1E2809DNA的阳离子PLG微粒明显更强有力并且与MF59辅助的重组E1E2809蛋白质免疫接种诱导的应答相当。这与在小鼠中使用HCV E2质粒的早先研究相反(Song等.,J.Virol.(2000)742020-2025)。在那项研究中,质粒DNA即使在高剂量(100μg)也未能诱导可检测的抗体应答并且需要蛋白质加强剂量来诱导血清转变。虽然本结果与早先吸附在PLG微粒上的HIV质粒的数据一致(O′Hagan等.,J.viral.(2001)759037-9043),本发明使用的表达自质粒的E1E2809抗原与早先评价的与PLG结合的抗原极为不同。早先评价的env质粒(Briones等.,Pharm.Res.(2001)8709-712;O′Hagan等.,J.Virol.(2001)59037-9043)为在哺乳动物细胞中高水平表达和最优化地分泌抗原而最优化的密码子(Widera等.,J.Immunol.(2000)1644635-4640),而早先评价的gag质粒(Singh等.,Proc.Natl.Acad.Sci.美国(2000)97811-816;O′Hagan等.,J.Immunol.(2001)759037-9043)也使密码子最优化并可有效地从细胞分泌抗原(ZurMegede等.,J.Virol.(2000)742628-2635)。相反,现在的研究中使用的E1E2809质粒设计为在胞内产生抗原(参见,例如国际公布号98/50556)。因此,现在的研究中意外地观察到PLG微粒能诱导对抗原增强的抗体应答,而该抗原未设计为从细胞中分泌。
在第三项小鼠研究中,研究了在用MF59佐剂的重组E1E2809蛋白质激发后E1E2809质粒DNA对PLG/CTAB/E1E2809DNA引发强有力的抗体应答的能力。虽然E1E2809质粒DNA能通过蛋白质引发激发应答,但是即使单用三剂量E1E2809质粒DNA(10μg)不能引起初始应答。相反,两剂量PLG/CTAB/E1E2809DNA(10μg)诱导了强有力的血清抗体应答。此外,PLG/CTAB/E1E2809DNA也比单用E1E2809质粒DNA更有效地引发对蛋白质的激发应答。另外,出乎意料地观察到了蛋白质激发之后三剂量PLG/CTAB/E1E2809DNA与两剂量是相当的。在早先的几种情况中,DNA表现出不能有效地诱导强有力的抗体应答,但是通过蛋白质激发显著增强了应答。
实施例2使用吸附到阳离子微粒上的E1E2 DNA免疫接种恒河猴基于以上积极的结果,进行了以下灵长类研究。每组3只恒河猴用PLG/CTAB/E1E2809DNA(1mg)或MF59配制的50μg E1E2809蛋白质于0、4、8和24周免疫接种。此外,所有的动物在64周用MF59配制的40μg E1E2809蛋白质激发(参见,表2)。

表2.用PLG/CTAB/E1E2809DNA或MF59配制的E1E2809重组蛋白质免疫接种两组(每组3只恒河猴)的免疫接种方案。
在上述方案之后,测量恒河猴中针对HCV E1E2的抗体应答。唯一的区别在于山羊抗-恒河猴(Southern Biotech Association,Inc.)用作二抗。
在麻醉动物的条件下从股静脉抽取外周血。在Ficoll-Hypaque梯度离心后得到PBMC并以5×106细胞/孔培养在24-孔平皿中。这些细胞中,1×106个细胞于37℃用10μM肽合并物(由单个肽组成)敏化1小时,洗涤并加入补加了10ng/ml IL-7(R&D Systems,Minneapolis,MN)的2ml培养基(RPMI 1640,10%热灭活FBS和1%抗生素)中剩余未处理的4×106个PBMC中。48小时后,向培养物中加入含有5%(终浓度)IL2的上清液(无PHA的T-STIM,Becton Dickinson Biosciences-Discovery Labware,San Jose,CA)和50U/ml(终浓度)rIL-2。每3-4天向培养物中加料。培养10天后,按照生产商的建议用结合到磁性珠上的抗-CD8 Abs(Dynal,Oslo,挪威)分离CD8+T细胞。纯化的CD8+细胞(流式细胞术测定的>93%纯)在测定细胞毒性活性之前再培养2-3天。使用疱疹病毒papio生产细胞系S394的上清液从每只动物中得到B-LCL。
在标准51Cr释放测定中评价细胞毒性活性。自身B-LCL与9.25mg/ml肽和50mCi51Cr孵育1.5小时,洗涤三次并以5×103个细胞/孔涂布于96-孔板上。CD8+T细胞以三份效应物对靶(E∶T)细胞的比例一式两份涂布。效应物和靶细胞在每孔有3.75×105个未标记靶细胞的条件下一起孵育4小时,存在未标记的靶细胞是为使B-LCL被疱疹病毒papio和/或外源性泡沫病毒特异性CTL裂解最小。上清液(50ml)转移至Lumaplates(PackardBioscience,Meriden,CT)并用Wallac Microbeta 1450闪烁仪(Perkin Elmer,Boston,MA)测量放射性。特异性裂解的百分率以100×[(实验释放的平均值-自发释放的平均值)/(最大释放的平均值-自发释放的平均值)]计算。当两个最高的E∶T细胞比例的特异性裂解百分率大于或等于对照靶细胞的裂解百分率加上10个百分率时,CTL应答给予正分。
所有3只用MF59配制的E1E2809蛋白质免疫的恒河猴在第二次免疫接种两周后表现出血清IgG应答,该应答用第三次免疫接种激发。用PLG/CTAB/E1E2809DNA免疫的3只恒河猴中的两只在第二次免疫接种两周后表现出应答,在第三次免疫接种后所有3只动物均表现出应答。因此,在接受第三剂量后,用PLG/CTAB/E1E2809DNA免疫的所有3只恒河猴均实现了血清转化。虽然第四剂量PLG/CTAB/E1E2809DNA之后在所有的动物中均观察到激发,没有证据表明第三剂量激发了应答的两只动物(表3)。这说明,第三剂量DNA间隔第二剂量太近以至于未能获得有效的激发。第三剂量和第四剂量之间有较长的间隔,并且在第四剂量之后实现激发。但是,在每次免疫接种后,PLG/CTAB/E1E2809DNA诱导的IgG水平低于MF59配制的E1E2809蛋白质诱导的应答。然而,单剂量E1E2809蛋白质在先用PLG/CTAB/E1E2809DNA免疫过的恒河猴中诱导了极好的激发,而在先用蛋白质免疫四次的动物中使用一剂量蛋白质未诱导类似的激发水平。因此,用单剂量MF59配制的E1E2809蛋白质激发物后,单用MF59配制的蛋白质或用PLG/CTAB/E1E2809DNA免疫的各组在五次免疫接种后,均获得了相当的血清抗体应答。
用PLG/CTAB/E1E2809DNA第四次免疫接种两周后,在所有动物中评价来自PBMC的CTL应答。3只用PLG/CTAB/E1E2809DNA免疫的动物中的1只(BB227)表现出肽特异性CTL应答(表4)。该动物(BB227)是抗体应答最弱的并在第三剂量PLG/CTAB/E1E2809DNA之后仅有微弱的血清转化。
总而言之,PLG/CTAB/E1E2809DNA微粒在三次免疫接种后在3/3只动物中诱导了血清转化,并在第四剂量后激发了应答。虽然在第三次免疫接种后对DNA的应答激发小,第三剂量确实在1只剩余的未应答动物中诱导了血清转化。虽然用PLG/CTAB/E1E2809DNA诱导的血清IgG应答明显低于用MF59配制的重组E1E2809蛋白质诱导的应答,考虑到早先DNA疫苗即使大剂量多次施用后在灵长类中诱导抗体应答的低效率(Gurunathan等.,Ann.Rev.Immunol.(2000)18927-974),PLG/CTAB/E1E2809DNA能在恒河猴中诱导血清转化是令人震惊且鼓舞的。
虽然单用PLG/CTAB/E1E2809DNA不能诱导与用MF59配制的E1E2809蛋白质免疫接种相当的血清IgG应答,但是单剂量E1E2蛋白质激发在PLG/CTAB/E1E2809DNA-免疫的恒河猴中显著提高了抗体应答。使用单剂量MF59配制的重组E1E2809蛋白质激发后,使用PLG/CTAB/E1E2809DNA的组具有与仅使用5次MF59配制的E1E2809蛋白质免疫的恒河猴相当的血清IgG滴度。既然E1E2809作为胞内抗原性复合物产生(Heile等.,J.Virol.(2000)746885),这就难于在一般HCV疫苗所需的水平生产为重组蛋白质。所以,PLG/CTAB/E1E2809DNA引发可用单剂量MF59配制的E1E2蛋白质激发的抗-E1E2应答的能力为疫苗开发提供了蛋白质节省剂量(dose-sparing)蛋白质选择。此外,DNA疫苗可引发在针对HCV的保护性免疫应答中重要的CTL应答。总体上,基于蛋白质的疫苗在非人灵长类和人中不能有效地诱导CTL应答(Singh和O′Hagan,Nat.Biotechnol.(1999)171075-1081)。3只用PLG/CTAB/E1E2809DNA免疫的恒河猴中的1只在第四次免疫接种后检测到CTL应答。虽然CTL未在E1E2809/MF59免疫的动物中进行评价,本发明人对该佐剂具有足够的经验确信不会诱导CTL应答。

表3.用PLG/CTAB/E1E2809DNA或MF59配制的E1E2809蛋白质免疫的恒河猴中血清IgG抗体应答。

表4.第四次免疫接种后,用PLG/CTAB/E1E2809DNA免疫的恒河猴中的细胞毒性T淋巴细胞应答。不同效应物/靶细胞比例的特异性裂解百分率。
实施例3使用吸附到阳离子微粒上的E1E2 DNA免疫黑猩猩如表5和6所示,用3mg(每股)的以下所示质粒混合物在每股上免疫各组黑猩猩,PLG/CTAB/E1E2809DNA、PLG/CTAB/HCV NS34a、PLG/CTAB/HCV NS4aNS4b和PLG/CTAB/HCV NS5。对照动物不给予疫苗。在第六个月,用100CID的HCV-H毒株静脉内激发黑猩猩。
如表中所示,PLG DNA引发了抗-E1E2抗体。此外,激发后,接种疫苗的动物得了病毒血症,但施用PLG/CTAB/E1E2809DNA的4/5动物最终恢复了并且未发展为携带状态,这在人中伴随有主要HCV病原作用。相反,用HCV-H激发的总共14只对照动物中仅有6只能清除病毒感染。这些数据表明吸附到阳离子微粒上的E1E2DNA表现出预防作用。
此外,有证据表明激发后HCV-特异性T细胞比对照组更快地流入施用PLG/CTAB/E1E2809DNA的动物的肝脏,这进一步证实了吸附到阳离子微粒上的E1E2DNA的效力。
因此,本发明描述了E1E2809DNA组合物及其使用方法。虽然描述了主题发明的优选实施方案的一些细节,应该理解的是,在不脱离权利要求限定的本发明精神和范围的情况下可做出明显的变动。
表5针对CHO E1/E2的抗体滴度的Elisa


表6对CHO E1/E2的抗体滴度的Elisa


权利要求
1.一种基本上由药学上可接受的赋形剂和吸附于阳离子微粒上的多核苷酸组成的组合物,其中,所述多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该编码序列操作性地连接于指导所述编码序列在体内转录和翻译的控制元件,并且其中所述HCV免疫原是具有毗连氨基酸序列的免疫原性HCV E1E2复合物,该毗连氨基酸序列与图2A-2C中192-809位所描述的毗连氨基酸序列具有至少80%的序列相同性,条件是所述多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原。
2.如权利要求1所述的组合物,其特征在于,所述HCV E1E2复合物由图2A-2C中192-809位所描述的氨基酸序列组成。
3.如权利要求1所述的组合物,其特征在于,所述阳离子微粒由选自下组的聚合物形成聚(α-羟酸)、聚羟基丁酸、聚己内酯、聚原酸酯和聚酐。
4.如权利要求3所述的组合物,其特征在于,所述阳离子微粒由选自下组的聚(α-羟酸)形成聚(L-丙交酯)、聚(D,L-丙交酯)和聚(D,L-丙交酯-共-乙交酯)。
5.如权利要求4所述的组合物,其特征在于,所述阳离子微粒由聚(D,L-丙交酯-共-乙交酯)形成。
6.一种基本上由以下物质组成的组合物(a)药学上可接受的赋形剂;和(b)吸附于由聚(D,L-丙交酯-共-乙交酯)所形成的阳离子微粒上的多核苷酸,其中所述多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该编码序列操作性地连接于指导所述编码序列在体内转录和翻译的控制元件,并且其中所述HCV免疫原是由图2A-2C中192-809位所描述的氨基酸序列组成的HCV E1E2复合物,条件是所述多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原。
7.一种在脊椎动物受试者中刺激免疫应答的方法,该方法包括给予受试者治疗有效量的基本上由药学上可接受的赋形剂和吸附于阳离子微粒上的多核苷酸组成的第一组合物,其中,所述多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该编码序列操作性地连接于指导所述编码序列在体内转录和翻译的控制元件,并且其中所述HCV免疫原是具有毗连氨基酸序列的免疫原性HCV E1E2复合物,该毗连氨基酸序列与图2A-2C中192-809位所描述的毗连氨基酸序列具有至少80%的序列相同性,条件是所述多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原,其中所述HCVE1E2复合物在体内表达以引发免疫应答。
8.如权利要求7所述的方法,其特征在于,所述HCV E1E2复合物由图2A-2C中192-809位所描述的氨基酸序列组成。
9.如权利要求7所述的方法,其特征在于,所述阳离子微粒由选自下组的聚合物形成聚(α-羟酸)、聚羟基丁酸、聚己内酯、聚原酸酯和聚酐。
10.如权利要求9所述的方法,其特征在于,所述阳离子微粒由选自下组的聚(α-羟酸)形成聚(L-丙交酯)、聚(D,L-丙交酯)和聚(D,L-丙交酯-共-乙交酯)。
11.如权利要求10所述的方法,其特征在于,所述阳离子微粒由聚(D,L-丙交酯-共-乙交酯)形成。
12.如权利要求7所述的方法,其特征在于,所述方法还包括给予受试者治疗有效量的第二组合物,其中第二组合物含有免疫原性HCV多肽和药学上可接受的赋形剂。
13.如权利要求12所述的方法,其特征在于,所述第二组合物在第一组合物之后施用。
14.如权利要求12所述的方法,其特征在于,所述第二组合物中的所述免疫原性HCV多肽是具有毗连氨基酸序列的免疫原性HCV E1E2复合物,该毗连氨基酸序列与图2A-2C中192-809位所描述的毗连氨基酸序列具有至少80%的序列相同性。
15.如权利要求14所述的方法,其特征在于,所述HCV E1E2复合物由图2A-2C中192-809位所描述的氨基酸序列组成。
16.如权利要求12所述的方法,其特征在于,所述第二组合物还含有佐剂。
17.如权利要求16所述的方法,其特征在于,所述佐剂是能增强对免疫原性HCV多肽的免疫应答的亚微米水包油乳剂,其中该亚微米水包油乳剂含有(i)可代谢的油,其中油的量占总体积的1%到12%;和(ii)乳化剂,其中乳化剂占0.01到1重量%(w/v)并含有聚氧乙烯失水山梨糖醇单酯、二酯或三酯和/或失水山梨糖醇单酯、二酯或三酯,其中油和乳化剂以具有油滴的水包油乳剂形式存在,几乎所有油滴的直径约为100nm到小于1微米。
18.如权利要求17所述的方法,其特征在于,所述亚微米水包油乳剂含有4-5%w/v的角鲨烯、0.25-1.0%w/v的聚氧乙烯失水山梨糖醇单油酸酯和/或0.25-1.0%失水山梨糖醇三油酸酯,并任选含有N-乙酰胞壁酰-L-丙氨酰-D-异谷氨酰胺酰-L-丙氨酸-2-(1′-2′-二棕榈酰-sn-甘油基-3-羟基磷酰基氧)-乙胺(MTP-PE)。
19.如权利要求17所述的方法,其特征在于,所述亚微米水包油乳剂基本上由约5体积%的角鲨烯、和一种或多种选自聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯的乳化剂组成,其中乳化剂的总量约为1重量%(w/v)。
20.如权利要求19所述的方法,其特征在于,所述一种或多种乳化剂是聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯,且聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯的总量约为1重量%(w/v)。
21.如权利要求12所述的方法,其特征在于,所述第二组合物还含有CpG寡核苷酸。
22.一种在脊椎动物受试者中刺激免疫应答的方法,该方法包括(a)给予受试者治疗有效量的基本上由吸附于阳离子微粒上的多核苷酸组成的第一组合物,该微粒由聚(D,L-丙交酯-共-乙交酯)形成,其中所述多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该编码序列操作性地连接于指导所述编码序列在体内转录和翻译的控制元件,并且其中所述HCV免疫原是由图2A-2C中192-809位所描述的氨基酸序列组成的免疫原性HCV E1E2复合物,条件是所述多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原,且其中所述HCV E1E2复合物在体内表达;和(b)给予受试者治疗有效量的第二组合物以引发受试者的免疫应答,其中所述第二组合物含有(i)由图2A-2C中192-809位所描述的氨基酸序列组成的免疫原性HCV E1E2复合物,(ii)佐剂,和(iii)药学上可接受的赋形剂。
23.如权利要求22所述的方法,其特征在于,所述佐剂是能增强对第二组合物中的免疫原性HCV E1E2复合物的免疫应答的亚微米水包油乳剂,其中该亚微米水包油乳剂含有(i)可代谢的油,其中油的量占总体积的1%到12%,和(ii)乳化剂,其中乳化剂占0.01到1重量%(w/v)并含有聚氧乙烯失水山梨糖醇单酯、二酯或三酯和/或失水山梨糖醇单酯、二酯或三酯,其中油和乳化剂以具有油滴的水包油乳剂形式存在,几乎所有油滴的直径约为100nm到小于1微米。
24.如权利要求23所述方法,其特征在于,所述亚微米水包油乳剂含有4-5%w/v的角鲨烯、0.25-1.0%w/v聚氧乙烯失水山梨糖醇单油酸酯和/或0.25-1.0%失水山梨糖醇三油酸酯,并任选含有N-乙酰胞壁酰-L-丙氨酰-D-异谷氨酰胺酰-L-丙氨酸-2-(1′-2′-二棕榈酰-sn-甘油基-3-羟基磷酰基氧)-乙胺(MTP-PE)。
25.如权利要求23所述的方法,其特征在于,所述亚微米水包油乳剂基本上由约5体积%角鲨烯和一种或多种选自聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯的乳化剂组成,其中乳化剂的总量约为1重量%(w/v)。
26.如权利要求25所述的方法,其特征在于,所述一种或多种乳化剂是聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯,且聚氧乙烯失水山梨糖醇单油酸酯和失水山梨糖醇三油酸酯的总量约为1重量%(w/v)。
27.如权利要求23所述的方法,其特征在于,所述第二组合物还含有CpG寡核苷酸。
28.一种制备组合物的方法,所述方法包含混合药学上可接受的赋形剂和吸附于阳离子微粒上的多核苷酸,其中所述多核苷酸含有编码丙型肝炎病毒(HCV)免疫原的编码序列,该编码序列操作性地连接于指导所述编码序列在体内转录和翻译的控制元件,并且其中所述HCV免疫原是具有毗连氨基酸序列的免疫原性HCV E1E2复合物,而该毗连氨基酸序列与图2A-2C中192-809位所描述的毗连氨基酸序列具有至少80%的序列相同性,条件是所述多核苷酸不编码除HCV E1E2复合物以外的HCV免疫原。
29.如权利要求1-6中任一项所述的组合物在在脊椎动物受试者中刺激免疫应答的方法中的用途。
全文摘要
本发明描述了免疫原性HCVE1E文档编号A61K47/48GK1809584SQ200480017176
公开日2006年7月26日 申请日期2004年4月23日 优先权日2003年4月25日
发明者D·欧哈根, M·霍顿, M·辛格 申请人:希龙公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1