人造心脏瓣膜的膨胀和收缩受控的经导管传送系统和方法

文档序号:907267阅读:211来源:国知局
专利名称:人造心脏瓣膜的膨胀和收缩受控的经导管传送系统和方法
技术领域
本公开涉及经皮植入人造心脏瓣膜的系统和方法。更具体地,本公开涉及带支架人造心脏瓣膜传送系统和方法。
背景技术
诸如二尖瓣、三尖瓣、主动脉和肺动脉瓣膜之类的心脏瓣膜有时因疾病或衰老而损伤,导致瓣膜正常机能产生问题。心脏瓣膜问题通常呈一种或两种形式器官狭窄,其中瓣膜不能完全打开或者开口太小,导致血流受限;或者机能不全,其中在瓣膜应当闭合时,血液穿过瓣膜向后渗漏。心脏瓣膜置换已成为用于患有瓣膜回流或者小叶狭窄钙化的常规手术程序。通常,大多数瓣膜置换必须在使患者处于体外循环时进行全胸骨切开术。传统的开放性手术对患者造成显著的创伤和不适,其要求长时间恢复期,并且可能导致有生命危险的并发症。为了解决这些顾虑,在最近的十年中,已做出使用微创技术执行贲门瓣置换的努力。在这些方法中,使用腹腔镜器械来做出通过患者的肋骨的小开口,以提供到心脏的通路。虽然已向该技术投入大量的努力,但是其要被广泛接受受到临床医生仅能使用腹腔镜器械达到心脏的特定区域的能力的限制。其他努力也关注与贲门瓣置换中经皮和经导管(或经腔)的传送,以解决传统开放手术或微创手术方法所呈现的问题。在这些方法中,压紧人造瓣膜,以在导管中传送,并且随后例如通过股动脉中的开口以及通过降主动脉前进到心脏,然后,在心脏中将该人造瓣膜布置在瓣膜环(例如,主动脉瓣膜环)中。已在经皮瓣膜程序中使用各种类型和构造的人造心脏瓣膜以置换患病的天然人类心脏瓣膜。任何特定人造心脏瓣膜的实际形状和构造都在一定程度上取决于所要置换的瓣膜(即,二尖瓣、三尖瓣、主动脉瓣或肺动脉瓣)。总的来说,人造心脏瓣膜设计尝试复制所替换的瓣膜的功能,并且因而将包括与生物假体或人造机械心脏瓣膜一起使用的瓣膜小叶状结构。如果选择生物假体,置换瓣膜就可能包括带瓣膜的血管段或者心包制造组织瓣膜,其以某种方式安装在可膨胀支架框架内以制成带瓣膜的支架。为了制备用于经皮移植的这种瓣膜,最初能够提供处于膨胀或未褶皱条件下的一种带瓣膜支架,然后将其绕导管单元的气囊的一部分压握或压缩,直到其接近导管的直径。在其他经皮移植系统中,带瓣膜支架的支架框架能够由自膨胀材料制成。通过这些系统,带瓣膜支架被压握到所期望的尺寸,并且例如由套管保持为压缩状态。从该带瓣膜支架缩回套管使得支架能膨胀至更大直径,比如当带瓣膜支架处于患者体内的期望位置时。通过这些类型的经皮支架传送系统中任一种,通常不需要通常的将人造心脏瓣膜缝合至患者的天然组织。在从导管完全展开前,必须相对于天然环面精确定位带支架的人造心脏瓣膜。成功的移植要求经导管人造心脏瓣膜紧靠天然环面安置并且密封。当膨胀以将自身适当地锚固在心脏的解剖结构中时,自膨胀经导管心脏瓣膜必须具有高径向力。如果人造瓣膜体相对于天然环面不正确地定位,就会导致严重的并发症,因为展开装置会渗漏,并且甚至会从移植点移位。使该努力极大程度地复杂化的是以下事实,即,一旦人造心脏瓣膜(例如,自展开支架)从导管展开,就非常难以通过传统的传送工具(例如,外部套管或导管)重新皱缩或“重新捕捉”假体。在其他脉管支架的情况下不会发生该相同顾虑;通过这些程序,如果“错过”目标点位,就简单地展开另一支架以“弥补”差异。虽然已使用显影技术作为移植程序的一部分以帮助临床医生在展开前立即更好地评估经导管人造心脏瓣膜的位置,但是在许多情况下,仅仅该评估是不够的。相反,临床医生期望这样的能力,即,部分展开假体,并且然后在完全展开前评估相对于天然环面的位 置。虽然在理论上,对部分展开带支架人造心脏瓣膜的“重新捕捉”是直接进行的,但是在实际情况中,移植点位和带支架心脏瓣膜本身的限制致使该技术非常困难。基于上文所述,虽然在经皮瓣膜替换技术和装置中已有进展,但是存在这样的持久需求,即,以微创和经皮方式将贲门置换瓣膜、尤其是自膨胀带支架人造心脏瓣膜传送和重新定位至移植点位的不同传送系统。也存在这样的持久需求,即能够提供一种更可控的置换瓣膜展开,并且一旦已将瓣膜展开或部分展开,能够重新定位和/或缩回瓣膜,以确保瓣膜在患者体内的最佳布置。

发明内容
一个实施例涉及一种与具有支架框架的人造心脏瓣膜一起使用的传送系统,该支架框架附接有瓣膜结构。该系统包括轴组件,其包括远端和联接结构,该联接结构靠近远端布置并且经构造以被联接至人造心脏瓣膜的远端。该系统包括套管组件,其限定出腔体,该腔体的的尺寸被设置为可滑动地接纳轴组件。该传送系统被构造成从装载状态转变为展开状态,在装载状态中,套管组件包围着人造心脏瓣膜,在展开状态中,套管组件从人造心脏瓣膜缩回。联接结构被构造成基于轴组件远端的纵向运动提供人造心脏瓣膜远端的受控膨胀或收缩。另一个实施例涉及一种在患者的有缺陷心脏瓣膜上执行治疗程序的系统。该系统包括传送系统,其包括轴组件,该轴组件具有远端和联接结构,该联接结构靠近远端布置并且被构造成联接至人造心脏瓣膜的远端。该传送系统包括套管组件,其限定尺寸被设置为可滑动地接收轴组件的腔体。该系统包括人造心脏瓣膜,其具有支架框架和附接至支架框架并且形成至少两个瓣膜小叶的瓣膜结构。人造心脏瓣膜可从压缩构造自膨胀至自然构造。该传送系统被构造成可滑动地将人造心脏瓣膜接收在套管组件内,并且经构造以可操作地从装载状态转变为展开状态,在装载状态中,套管组件包围着人造心脏瓣膜,在展开状态中,套管组件从人造心脏瓣膜缩回,以允许人造心脏瓣膜自膨胀至自然构造并且从传送系统释放。联接结构被构造成基于轴组件远端在第一方向的纵向运动来提供人造心脏瓣膜远端的受控膨胀,并且基于轴组件远端在与该第一方向相反的第二方向的纵向运动来提供人造心脏瓣膜远端的受控收缩。再一个实施例涉及一种在患者的有缺陷心脏瓣膜上执行治疗程序的方法。该方法包括接收一种装载有自膨胀人造心脏瓣膜的传送系统,该自膨胀人造心脏瓣膜包括附接有瓣膜结构的支架框架。传送系统包括轴组件,其可滑动地定位在传送套管内。轴组件包括联接结构,其靠近轴组件的远端布置并且联接至人造心脏瓣膜的远端。传送套管容纳有处于压缩布置的人造心脏瓣膜。该方法包括操作传送系统,以引导人造心脏瓣膜通过患者的脉管系统并且进入有缺陷的心脏瓣膜,以及从人造心脏瓣膜缩回传送套管。轴组件的远端沿第一纵向运动,以使得联接结构提供人造心脏瓣膜远端的受控膨胀,以及从传送系统释放人造心脏瓣膜。



图1A-1D是示出根据一个实施例的用于将经导管人造心脏瓣膜传送至移植点位的系统的图。图2A-2C是示出图1B-1D中所示一个人造心脏瓣膜实施例的示图。图3A和3B是示出根据一个实施例的联接结构的图。图4是示出根据一个实施例的可释放地联接至人造心脏瓣膜的联接结构的图。图5A和5B是示出根据另一实施例的联接结构的图。图6是示出根据一个实施例的与图5A和5B中所示的联接结构一起相容使用的前端锥体。图7是示出一种根据实施例的在心脏瓣膜上执行治疗程序的方法的流程图。
具体实施例方式本文使用的术语“远端”和“近端”是在使用导管系统期间以治疗临床医生为基准;“远端”表示远离临床医生的器械部分或者离开临床医生的方向,而“近端”表示靠近临床医生的器械部分或者指向临床医生的方向。本文在心脏瓣膜的场景下所使用的术语“治疗”或“治疗程序”意在包括修复心脏瓣膜、置换心脏瓣膜或修复和置换心脏瓣膜的组合。虽然本文的一些说明可能特别地涉及大动脉瓣膜治疗,但是本文公开的系统和方法通常也可用于治疗天然或生物二尖瓣、肺或三尖瓣。图1A-1D是示出根据一个实施例的将经导管人造心脏瓣膜传送至移植点位的系统100的图。在所示实施例中,系统100包括轴组件110和套管组件106。轴组件110包括把手装置112、载体轴120、连接器轴115、前端锥体102以及联接结构122。连接器轴115将载体轴120和前端锥体102互连,并且在一些结构中具有较小尺寸的直径,以允许在连接器轴115上布置人造心脏瓣膜114。在一个实施例中,可通过把手装置112单独地控制轴115和120。前端锥体102布置在轴组件110的远端。虽然图1A-1D中未示出,但是能够经轴115和120而形成引导线腔体。在一个实施例中,轴115为限定引导线腔体的引导线轴。载体轴120的尺寸被设置成被可滑动地接纳在套管组件106中,并且在所述实施例中被构造成可释放地联接人造心脏瓣膜114。载体轴120形成或包括联接装置117。联接装置117被构造成选择性地保持人造心脏瓣膜114的近端部分。联接装置117被构造成,当迫使人造心脏瓣膜114在套管组件106内处于皱缩状态时,可释放地将人造心脏瓣膜114安装至轴组件117。然后在该皱缩状态中,人造心脏瓣膜114将随着轴组件110的运动而纵向运动。套管组件106被构造成允许心脏瓣膜114从图IA和IB中所示的装载状态展开。传送系统100被构造成从装载状态转变为展开状态,在装载状态中,套管组件106包围着人造心脏瓣膜114,在展开状态中,套管组件106从人造心脏瓣膜114缩回。联接结构122靠近轴组件110的远端布置。联接结构122附接(例如,粘合)至前端锥体102的近端,并且从前端锥体102的近端向近端地朝人造心脏瓣膜114延伸。在所示实施例中,联接结构122包括管状基部124,以及远离基部124延伸的多个支腿126。人造心脏瓣膜114的远端可释放地联接至该联接结构122的支腿126。联接结构126被构造成随着前端锥体102的相应运动而向远端和向近端运动,以提供人造心脏瓣膜114远端的受控膨胀和收缩。因而,根据一个实施例的联接结构122基于轴组件110的远端和前端锥体102的纵向运动提供受控膨胀和收缩。在一个实施例中,临床医生推动或拉动轴115(例如,通过把手装置112),其导致前端锥体102、包括联接结构122的相应纵向运动。前端锥体102能够采取多种形式,并且通常被构造成便于经患者的脉管系统和心·脏来无损伤地布置传送系统100。把手装置112安装或连接至载体轴120的近端,并且提供便于临床医生抓握的表面。套管组件106大致包括套管104和把手装置108。套管104能够为传统的导管状构造(例如,生物相容聚合物,其有或无包囊金属丝编织层)。在一些结构中,套管104还能够包括各种转向部件。无论如何,套管104都大致为顺应性的,并且能够横越与经导管心脏瓣膜移植相关联的曲折路径。把手装置108能够采取多种形式,并且通常安装或连接至套管104的近端。套管104限定腔体,其尺寸被设定成可滑动地接收载体轴120以及处于皱缩状态的人造心脏瓣膜114。如下文更详细所述,传送系统100可操作,以传送或移植人造心脏瓣膜114。图IA和IB示出装载有展开前的人造心脏瓣膜114的系统100。具体地,人造心脏瓣膜114例如通过联接装置117连接至载体轴120,并且被径向约束在套管体104内。如下文更详细所述,传送系统100被构造成可操作地从装载状态转变为展开状态,在装载状态中,套管104包围着人造心脏瓣膜114,在展开状态中,套管体104从人造心脏瓣膜114缩回,以允许人造心脏瓣膜114自膨胀至自然构造并且从传送系统100释放。加载的传送系统100例如以倒退方式通过切口而朝着移植目标点位前进,到达股动脉并且进入患者的降主动脉。然后在荧光镜引导下,传送系统100在主动脉弓上经过升主动脉前进,并且中途穿过有缺陷的大动脉瓣膜(用于大动脉置换)。如图IC中所示,在定位传送系统100后,套管104相对于人造心脏瓣膜114部分缩回。例如,设置有套管组件106的把手装置108朝轴组件110的把手装置112缩回。如图所示,人造心脏瓣膜114的远端区域130由此相对于套管104向外部暴露,并且开始自膨胀和自展开。然而,在一个实施例中,人造心脏瓣膜114的远端区域130的自膨胀可控地受联接结构122约束。允许人造心脏瓣膜114通过以下方式逐渐自膨胀,即通过经把手装置112使联接结构122沿第一纵向(例如,向近端的方向)运动。随着联接结构122在第一方向运动,联接结构122更靠近人造心脏瓣膜114地运动,导致联接结构122对人造心脏瓣膜114施加较小压缩力,并且允许瓣膜114的远端自膨胀。图IC示出已在向近端方向移动联接结构122以提供瓣膜114的受控膨胀之后的传送系统100。套管104的这种向近端收缩和人造心脏瓣膜114的受控膨胀继续进行,伴随着人造心脏瓣膜114的暴露的长度持续增加并由此部分地展开,直到在天然心脏瓣膜中完全展开人造心脏瓣膜114。在一个实施例中,联接结构122沿第一方向的继续运动导致支腿126最终使人造心脏瓣膜114的远端滑落,并由此释放瓣膜114。因而,根据一个实施例的联接结构122被构造成当人造心脏瓣膜114膨胀超过阈值量时,从人造心脏瓣膜114的远端自动释放。展开后,透过展开的瓣膜114向后拉前端锥体102和联接结构122,并且从患者体内移除传送系统100。在完全展开前,当人造心脏瓣膜114处于部分展开状态,比如图IC中所示的状态时,也可评估人造心脏瓣膜114相对于移植点位的位置。在临床医生基于上述评估相信应相对于移植点重新定位人造心脏瓣膜114的情况下,人造心脏瓣膜114首先收缩或者“重新收入套管”。
根据一个实施例的重新收入套管的进程包括沿与第一方向相反的第二纵向方向(例如,在向远端的方向)经把手装置112移动联接结构122。随着联接结构122沿第二方向移动,联接结构122更加远离人造心脏瓣膜114地移动,导致联接结构122向人造心脏瓣膜114施加更大的压缩力,并且导致瓣膜114的远端的受控收缩。然后,套管104相对于轴组件110、并由此相对于人造心脏瓣膜114而向远端前进。套管体104向远端的运动持续进行,直到人造心脏瓣膜114被完全重新收入套管104内。人造心脏瓣膜114的远端通过联接结构122的受控收缩减小了将瓣膜114重新收入套管所需的力。图ID示出联接结构122已向远端方向移动以提供瓣膜114的受控收缩之后的传送系统100。一旦人造心脏瓣膜114被重新收入套管或重新捕捉,系统100就能够相对于移植点位重新定位,并且该进程重复进行,直到临床医生满意所获得的定位。作为替换方式,能够从患者体内取出该重新收入套管的人造心脏瓣膜114。也可不完全重新收入套管地重新定位人造心脏瓣膜114。传送系统100可与多种不同构造的带支架人造心脏瓣膜一起使用。总的来说,人造心脏瓣膜114包括维持瓣膜结构(组织或人造体)的支架框架,该支架框架具有正常、膨胀状态,并且可皱缩为用于在系统100内装载的皱缩状态。支架框架能够被构造成当从传送系统100释放时自展开或自膨胀,或者能够提供单独的膨胀构件(例如,膨胀气囊)。例如,人造心脏瓣膜114能够为Medtronic CoreValve有限责任公司市售的商标为CoreValveR'的人造体。在美国专利公开号2006/0265056、2007/0239266和2007/0239269中描述了可与系统100 —起使用的经导管人造心脏瓣膜的其他非限制性例子,这些专利公开的教导都包含在此以供参考。图2A是示出图1B-1D中所示的人造心脏瓣膜114的一个实施例的俯视图。图2B是示出根据一个实施例的图2A中所示的人造心脏瓣膜114的侧视图。图2C是示出根据一个实施例的图2A中所示的人造心脏瓣膜114的立体图。人造心脏瓣膜114可被压缩至相对小的直径,用于经皮传送至患者的心脏,并随后可通过撤去外部压缩力而自膨胀。根据一个实施例的人造心脏瓣膜114可从压缩构造自膨胀至自然构造。如图2A-2C中所示,人造心脏瓣膜114包括支架框架202和瓣膜结构204。支架框架202为自膨胀支撑结构,其包括相对彼此布置以向人造心脏瓣膜114提供所需的可压缩性和强度的多个支柱或金属丝部分206。支架框架202能够由诸如镍钛诺之类的形状记忆材料制成。瓣膜结构204安装在支架框架202的内部,并且包括多个小叶208A-208C(将其总称为小叶208)。在所示实施例中,瓣膜结构204包括三个小叶208。在其他实施例中,瓣膜结构204可包括多于或少于三个的小叶208。图2B也示出人造心脏瓣膜114的近侧流出端210和远侧流入端212。图3A和3B示出根 据一个实施例的联接结构122的图。联接结构122包括管状基部124和远离基部124径向延伸的多个支腿126。在所示实施例中,支腿126垂直于或基本垂直于管状基部124的纵向轴线。在一个实施例中,联接结构122由诸如镍钛诺之类的形状记忆材料制成。图3A和3B示出处于其自然状态的联接结构122。作为对比,图IB示出联接结构122处于压缩状态,其中支腿126朝管状基部124弯曲。在其他实施例中,联接结构122可由聚合物、缝合材料或其他材料形成。如下文参考图4更详细所述,每个支腿126都包括端部302,其形成环状体,该环状体被构造成可释放地联接至人造心脏瓣膜114的远侧入流端212上的钩状体。在另一实施例中,人造心脏瓣膜114的远端为出流端,并且联接结构122可释放地联接至该远侧出流端。图4是示出根据一个实施例的可释放地联接至人造心脏瓣膜114的联接结构122的图。人造心脏瓣膜114包括形成在瓣膜114的远侧入流端112的钩状体402。每个钩状体402都被构造成可释放地联接至支腿126中的一个。随着人造心脏瓣膜114膨胀,联接结构122的支腿126从压缩状态(如图IB中所示)转变,并且每个支腿126和管状基部124的纵向轴线之间的角度增大。最后,支腿126达到这样的角度,其导致支腿126的环状端部302从其相应的钩状体402滑落,由此释放人造心脏瓣膜114。图5A和5B是示出根据另一实施例的联接结构502图。联接结构502被构造成可滑动地附接至前端锥体102,并且联接结构502和前端锥体102被构造成互相相对地沿纵向方向滑动。在所示实施例中,联接结构502包括管状基部504以及远离基部504而延伸的多个支腿506。人造心脏瓣膜114的远端被构造成可释放地联接至联接结构502的支腿506。在一个实施例中,联接结构502由诸如镍钛诺之类的形状记忆材料制成。图5A示出处于其自然状态的联接结构502,而图5B示出处于压缩状态的联接结构502。在联接结构502的管状基部504中形成至少一个狭槽508。虽然在图5A和5B中示出单个狭槽508,但是其他实施例可包括多个狭槽508。下面参考图6更详细描述狭槽508。图6示出根据一个实施例的与图5A和5B中所示联接结构502 —起相容使用的前端锥体102。前端锥体102包括尖端部分602和管状部分604。管状部分604限定有腔体606,其构造成可滑动地接收联接结构502。在管状部分604的内部表面上、在腔体606中形成部件608。部件608被构造成定位在联接结构502的狭槽508中,并且随着它在腔体606内的滑动而引导联接结构502。当将联接结构502定位在管状部分604内时,管状部分604将联接结构502保持在图5B中所示的压缩状态,这相应地压缩人造心脏瓣膜114的远端。随着联接结构502滑动到管状部分604的外部,就允许联接结构502朝着图5A中所示的其自然状态逐渐自我膨胀,这相应地允许人造心脏瓣膜114的远端自我膨胀。在另一实施例中,部件608形成在管状部分604的外表面上,并且联接结构502被构造成在管状部分604的外表面上纵向滑动。在该实施例的一种形式中,在传送系统100中提供单独的致动器,以控制联接结构502。根据一个实施例的联接结构502与联接结构122不同地操作。对于联接结构502,允许通过经把手装置112沿第一纵向(例如,在向远端的方向)移动前端锥体102,使人造心脏瓣膜114逐渐自膨胀。随着前端锥体102沿第一方向移动,联接结构502开始滑动到腔体606外部,导致联接结构502对人造心脏瓣膜114施加较小压缩力,并且允许瓣膜114的远端自膨胀。套管104向近端的收缩和人造心脏瓣膜114的受控膨胀继续进行,伴随着人造心脏瓣膜114被暴露和部分展开的长度持续增加,直到在天然心脏瓣膜中完全展开人造心脏瓣膜114。在一个实施例中,前端锥体102沿第一方向的持续运动导致支腿506最终从人造心脏瓣膜114的远端滑落并且由此释放瓣膜114。因而,根据一个实施例的联接结构502被构造成当人造心脏瓣膜114膨胀超过阈值量时,从人造心脏瓣膜114的远端自动释放。展开后,透过展开的瓣膜114向后拉前端锥体102和联接结构502,并且从患者体内取出传送系统100。为了重新定位,通过把手装置112使前端锥体102沿与第一方向相反的第二纵向 方向(例如,向近端的方向)移动。随着前端锥体102沿第二方向移动,联接结构502开始往回滑到腔体606内,导致联接结构502对人造心脏瓣膜114施加更大的压缩力,并且导致瓣膜114的远端的受控收缩。然后,套管104相对于轴组件110、并且因而相对于人造心脏瓣膜114向远端前进。套管104向远端的运动继续进行,直到人造心脏瓣膜114完全被重新收入在套管104内。一旦人造心脏瓣膜114被重新收入套管或重新捕捉,就能相对于移植点位重新定位系统100,并且该进程重复进行,直到临床医生对所获得的定位满意。作为替换方式,可从患者体内取出被重新收入套管的人造心脏瓣膜114。也可不完全重新收入套管地重新定位人造心脏瓣膜114。图7是示出根据一个实施例的用于在患者的有缺陷心脏瓣膜上执行治疗程序的方法700的流程图。在一个实施例中,传送系统100被构造成用于执行方法700。在702,接收装载有自膨胀人造心脏瓣膜114的传送系统100,该自膨胀人造心脏瓣膜具有附接有瓣膜结构204的支架框架202,其中该传送系统100包括可滑动地定位在传送套管104内的轴组件110,并且其中,轴组件110包括联接结构122或502,其靠近轴组件110的远端布置并且联接至人造心脏瓣膜114的远端,并且其中,传送套管104容纳有处于压缩布置的人造心脏瓣膜114。在方法700中的704,操纵传送系统100,以引导人造心脏瓣膜114通过患者的脉管系统并且进入由缺陷的心脏瓣膜。在706,从人造心脏瓣膜114缩回传送套管104。在708,轴组件110的远端沿第一纵向移动,以使得联接结构122或502提供人造心脏瓣膜114远端的受控膨胀。在710,在于708处提供受控膨胀后,评估人造心脏瓣膜114的位置。在712,轴组件的远端沿第二纵向移动,以使得联接结构122或502提供人造心脏瓣膜114的受控收缩,并且将传送套管104重新置于人造心脏瓣膜114上。在714,操纵传送系统100,以在712处提供受控收缩后重新定位人造心脏瓣膜114。在716,再次从人造心脏瓣膜114缩回将传送套管104。在718,再次沿第一纵向移动轴组件110的远端,以使得联接结构122或502再次提供人造心脏瓣膜114远端的受控膨胀。在720,从传送系统100释放人造心脏瓣膜114。虽然已参考优选实施例描述了本发明,但是本领域技术人员应明白,能够不偏离本公开的精神和范围做出形式和细节的变化。
权利要求
1.一种与具有支架框架的人造心脏瓣膜一起使用的传送系统,所述支架框架附接有瓣膜结构,所述系统包括 轴组件,所述轴组件包括远端和联接结构,所述联接结构靠近所述远端布置并且被构造成联接至所述人造心脏瓣膜的远端; 套管组件,所述套管组件限定有尺寸被设置成可滑动地接收所述轴组件的腔体;以及 其中,所述传送系统被构造成从装载状态转变为展开状态,在所述装载状态中,所述套管组件包围着所述人造心脏瓣膜,而在所述展开状态中,所述套管组件从人造心脏瓣膜缩回,并且其中,所述联接结构被构造成基于所述轴组件的所述远端的纵向运动来提供所述人造心脏瓣膜的所述远端的受控膨胀或收缩。
2.根据权利要求I所述的传送系统,其中所述联接结构被构造成沿第一方向运动以提供所述人造心脏瓣膜的所述远端的受控膨胀,并且其中,所述联接结构被构造成沿与所述第一方向相反的第二方向运动以提供所述人造心脏瓣膜的所述远端的受控收缩。
3.根据权利要求2所述的传送系统,其中所述第一方向为向近端的方向,而所述第二方向为向远端的方向。
4.根据权利要求I所述的传送系统,其中所述轴组件还包括布置在所述轴组件的所述远端的前端锥体,并且其中所述联接结构布置在所述前端锥体的近端。
5.根据权利要求4所述的传送系统,其中所述联接结构被可滑动地附接至所述前端锥体,并且其中所述联接结构和所述前端锥体被构造成互相相对地沿纵向滑动。
6.根据权利要求5所述的传送系统,其中所述联接结构包括狭槽,并且所述前端锥体包括被构造成定位于所述狭槽内的部件,其中所述狭槽和所述部件被构造成当所述联接结构相对于所述前端锥体滑动时引导所述联接结构。
7.根据权利要求5所述的传送系统,其中所述前端锥体被构造成沿第一方向运动,以使得所述联接结构提供所述人造心脏瓣膜的所述远端的受控膨胀,并且其中所述前端锥体被构造成沿与所述第一方向相反的第二方向运动,以使得所述联接结构提供所述人造心脏瓣膜的所述远端的受控收缩。
8.根据权利要求7所述的传送系统,其中所述第一方向为向远端的方向,并且所述第二方向为向近端的方向。
9.根据权利要求I所述的传送系统,其中所述联接结构被构造成当所述人造心脏瓣膜膨胀超过阈值量时自动地从所述人造心脏瓣膜的所述远端释放。
10.根据权利要求I所述的传送系统,其中所述联接结构由形状记忆材料形成。
11.根据权利要求10所述的传送系统,其中所述联接结构由镍钛诺形成。
12.根据权利要求I所述的传送系统,其中所述联接结构由聚合物形成。
13.根据权利要求I所述的传送系统,其中所述联接结构由缝合材料形成。
14.根据权利要求I所述的传送系统,其中所述联接结构包括管状基部和从所述管状基部延伸的多个支腿。
15.根据权利要求14所述的传送系统,其中每个所述支腿包括环状端部,所述环状端部被构造成可释放地联接至所述人造心脏瓣膜的所述远端上的钩状体。
16.根据权利要求I所述的传送系统,其中所述人造心脏瓣膜的所述远端为所述人造心脏瓣膜的入流端。
17.根据权利要求I所述的传送系统,其中所述人造心脏瓣膜的所述远端为所述人造心脏瓣膜的出流端。
18.一种在患者的有缺陷心脏辦I吴上执彳丁治疗程序的系统,所述系统包括 传送系统,所述传送系统包括 轴组件,所述轴组件包括远端和联接结构,所述联接结构靠近所述远端布置并且被构造成联接至所述人造心脏瓣膜的远端; 套管组件,所述套管组件限定尺寸被设置成可滑动地接收所述轴组件的腔体; 人造心脏瓣膜,所述人造心脏瓣膜具有支架框架和附接至所述支架框架并且形成至少两个瓣膜小叶的瓣膜结构,所述人造心脏瓣膜可从压缩构造自膨胀至自然构造;以及 其中,所述传送系统被构造成将所述人造心脏瓣膜可滑动地接收在所述套管组件内,并且被构造成可操作,以从装载状态转变为展开状态,在所述装载状态中,所述套管组件包围着所述人造心脏瓣膜,在所述展开状态中,所述套管组件从所述人造心脏瓣膜缩回,以允许所述人造心脏瓣膜自膨胀至所述自然构造并且从所述传送系统释放,并且其中,所述联接结构被构造成基于所述轴组件的所述远端沿第一方向的纵向运动提供所述人造心脏瓣膜的所述远端的受控膨胀,并且基于所述轴组件的所述远端沿与所述第一方向相反的第二方向的纵向运动提供所述人造心脏瓣膜的所述远端的受控收缩。
19.根据权利要求18所述的系统,其中所述第一方向为向远端的方向,并且所述第二方向为向近端的方向。
20.根据权利要求18所述的系统,其中所述第一方向为向近端的方向,并且所述第二方向为向远端的方向。
21.根据权利要求18所述的系统,其中所述轴组件还包括布置在所述轴组件的所述远端的前端锥体,并且其中所述联接结构可滑动地附接至所述前端锥体。
22.根据权利要求18所述的系统,其中所述联接结构被构造成当所述人造心脏瓣膜的膨胀超过阈值量时自动地从所述人造心脏瓣膜的所述远端释放。
23.一种在患者的有缺陷心脏瓣膜上执行治疗程序的方法,所述方法包括接收装载有自膨胀人造心脏瓣膜的传送系统,所述人造心脏瓣膜具有附接有瓣膜结构的支架框架,所述传送系统包括可滑动地定位在传送套管内的轴组件,所述轴组件包括联接结构,所述联接结构靠近所述轴组件的远端布置并且联接至所述人造心脏瓣膜的远端,所述传送套管容纳有处于压缩构造中的所述人造心脏瓣膜; 操纵所述传送系统,以引导所述人造心脏瓣膜通过所述患者的脉管系统并且进入所述有缺陷的心脏瓣膜; 从所述人造心脏瓣膜缩回所述传送套管; 沿第一纵向移动所述轴组件的所述远端,以使得所述联接结构提供所述人造心脏瓣膜的所述远端的受控膨胀;以及 从所述传送系统释放所述人造心脏瓣膜。
24.根据权利要求23所述的方法,其还包括 在提供所述受控膨胀后,评估所述人造心脏瓣膜的定位; 沿第二纵向移动所述轴组件的所述远端,以使得所述联接结构提供所述人造心脏瓣膜的受控收缩;以及操纵所述传送系 统,以在提供所述受控收缩后重新定位所述人造心脏瓣膜。
全文摘要
一种与具有支架框架的人造心脏瓣膜(114)一起使用的传送系统,该支架框架附接有瓣膜结构,所述系统包括轴组件,其包括远端和联接结构(122),所述联接结构靠近所述远端布置并且被构造成联接至所述人造心脏瓣膜的远端。所述系统包括套管组件,其限定尺寸被设置成可滑动地接收所述轴组件的腔体。所述传送系统被构造成从装载状态转变为展开状态,在所述装载状态中,所述套管组件包围着所述人造心脏瓣膜,而在所述展开状态中,所述套管组件从人造心脏瓣膜缩回。所述联接结构被构造成基于所述轴组件的所述远端的纵向运动来提供所述人造心脏瓣膜的所述远端的受控膨胀或收缩。
文档编号A61F2/24GK102917669SQ201180026992
公开日2013年2月6日 申请日期2011年6月1日 优先权日2010年6月2日
发明者M·拉斯特, S·帕德里克, G·佩里格里尼, F·林纳 申请人:美敦力公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1