可降解响铃结构的磁性聚合物纳米微球材料及其制备方法和应用的制作方法

文档序号:1313834阅读:228来源:国知局
可降解响铃结构的磁性聚合物纳米微球材料及其制备方法和应用的制作方法
【专利摘要】本发明属于生物医药【技术领域】,具体为一种具有生物可降解的响铃结构的磁性聚合物纳米微球材料及其制备方法和应用。本发明采用回流沉淀聚合技术,以聚谷氨酸或琼脂糖稳定的Fe3O4磁簇为核,在外面先包覆一层未交联的聚合物壳层然后再包覆一层新的双硫键交联的聚合物壳层,然后用乙醇或水将未交联的聚合物中间层刻蚀掉,得到双硫键交联的可降解的磁性聚合物微囊。本发明方法快速,后处理简单,且不需要经过强酸或者强碱刻蚀,安全高效。制备的材料具有良好的单分散性,可用于超声和磁共振成像造影剂及药物载体方面。
【专利说明】可降解响铃结构的磁性聚合物纳米微球材料及其制备方法和应用

【技术领域】
[0001]本发明属于生物医药【技术领域】,具体涉及一种具有生物可降解的响铃结构的磁性聚合物纳米微球材料及其制备方法和应用。

【背景技术】
[0002]在生物医学成像领域,每一种成像技术都有自己独特的优点,但也同时有一些自身无法克服的缺点。超声成像(US)技术利用超声波在人体组织界面发生的反射和散射信号强弱差异来传递生物内部信息,由于低强度超声对人体组织产生损伤小,具有安全、适用面广、实时、可反复检查、对软组织鉴别能力强、灵活性高及价廉等优点,超声成像的灵敏度和分辨率都很低,当两个软组织界面具有相似的声学阻抗时,两者之间的反射回声十分相近,因此有时仅采用超声诊断技术本身很难辨别健康组织和病变组织。磁共振成像(MRI)通过改变体内局部组织中水质子的弛豫速率,提高正常和病变部位的成像对比度,具有很高的空间分辨率,但灵敏度低。因此,开发一种超声和磁共振成像双模式造影剂,将优势互补的两种成像模式整合在一起,实现对病变部位的高效诊断,提高患者的治疗。
[0003]但目前所报道的超声和磁共振双模式造影剂多为微米级的负载超顺磁性的四氧化三铁(Fe3O4)纳米粒子的微泡,其粒径过大,无法有效进入癌变等疾病部位,不利于疾病的检测。而且,由于Fe3O4纳米粒子具有很高的结晶度,很难在体内降解,容易在体内积累造成毒副作用,因此,制备纳米级可降解的双模式造影剂成为现在的研究热点。造影剂在实现分子显影的同时进行药物和基因装载,从而达到药物、基因治疗的效果。但是,报道的造影剂通常载药量过低,不利于其治疗效果,因此制备高载药量的双模式造影剂也是十分关键的问题。


【发明内容】

[0004]为了克服现有技术所存在的问题,本发明提供一种可降的磁性聚合物纳米微球材料及其制备方法和应用。
[0005]本发明提供的可降的磁性聚合物纳米微球材料,以聚谷氨酸或壳聚糖稳定的Fe3O4磁簇为核,以双硫键交联的聚合物为壳层,其具有高的载药量和良好的超声和磁共振成像效果。其具体制备步骤如下:
(O:热分解法制备可降解的四氧化三铁(Fe3O4)磁簇
将六水合氯化铁、醋酸铵和稳定剂加入到乙二醇中,其中六水合氯化铁与醋酸铵的重量比为1:1-1:10,六水合氯化铁与稳定剂的重量比为1:1-20:1 ;在氮气的保护下加热到100-160 °C,反应1-4 h,然后将混合溶液转移到高压釜中,放入150-200 °C的烘箱中反应
2-24h ;冷却至室温后,离心除去溶剂和未反应单体,用乙醇和水反复洗涤多次(如复洗涤
3-5次),真空烘箱内25-45°C干燥12-24h,即得聚谷氨酸或壳聚糖稳定的Fe3O4磁簇;
(2):将步骤(1)得到的Fe3O4磁簇、聚合物单体和引发剂,在溶剂中进行回流沉淀反应,在Fe3O4磁簇外面包覆一层未交联的聚合物壳层;其中磁簇与聚合单体的重量比为1:
0.1-1:30,聚合单体与引发剂的重量比为100:1-100:10 ;控制反应温度为60-160°C,反应时间为0.5-24h ;反应结束后离心除去溶剂和未反应单体,用乙腈反复洗涤多次(如3-5次),真空烘箱内25-45°C干燥12-24 h,即得到包覆未交联聚合物壳层的磁性纳米微球;
(3):将步骤(2)得到的磁性纳米微球,加入聚合单体、引发剂和双硫键交联剂,在溶剂进行回流沉淀反应,在未交联的聚合物壳层外面包覆新的一层双硫键交联的聚合物壳层;其中磁性纳米微球与聚合单体的重量比为1:0.1-1:40,聚合单体与引发剂的重量比为100:1-100:10,聚合单体与二硫键交联剂的重量比为100:5-100:150,控制反应温度为60-160°C,反应时间为0.5-24h ;离心除去溶剂和未反应原料,用乙腈反复洗涤多次(如3_5次),真空烘箱内25-45°C干燥12-24 h,即得到形成包覆双层结构磁性聚合物纳米微球;
(4):将第步骤(3)得到包覆双层结构磁性聚合物纳米微球加入到一定量的乙醇或水中,刻蚀去除未交联的聚合物中间层,用乙醇和水反复离心洗涤多次(如3-5次),真空冻干,即得到可降解响铃结构的磁性聚合物微球。
[0006]本发明中,步骤(1)所用稳定剂为聚谷氨酸或壳聚糖。
[0007]本发明中,步骤⑵中所述含Fe3O4浓度为0.01 wt %~80 wt%,优选浓度为I wt % ~50 Wt%o
[0008]本发明中,步骤⑵和步骤(3)所用聚合单体为丙烯酸(英文名称:Acrylicacid,简称:AA)、甲基丙烯酸(英文名称:Methacrylic acid ,简称:MAA)、聚乙二醇(英文名称:Poly (ethylene glycol),简称:PEG, Mn=300,475, 526,600,800,900,1000)、N-2-轻丙基一甲基丙烯酰胺(英文名称:Hydroxypropyl methacrylate,简称:HPMA)、轻乙基甲基丙烯酸酯(英文名称:2_Hydroxyethyl methacrylate,简称:HEMA)、乙烯基吡P定(Vinylpyridine)、乙烯基咪(Vinylimidazole)> N-乙烯基吡咯烧酮OV-VinyPyrroIidone)、N-乙烯己内酸胺(英文名称:Vinyl caprolactam,简称:VCL)、N_ 异丙基丙烯酰胺(英文名称:Ar-1sopropyl acrylamide ,简称:NIPAM),中任一种,或为均聚物,或者它们之间以不同组合共聚。
[0009]本发明中,步骤(2)和步骤(3)所用引发剂为偶氮二异丁腈(英文名称:Azodiisobutyronitrile,简称:AIBN)、偶氮二异戍臆(英文名称:2,2’ -Azobis-(2-methylbutyronitrile),简称:AMBN)、偶氮二异庚臆(英文名称:2,2’ -Azobis-(2, 4-dimethylvaleronitrile),简称:ADVN)、过氧化二苯甲酰(英文名称:Benzoyl peroxide,简称:ΒΡ0)等中的任一种。
[0010]本发明中,步骤(3)中所用的二硫键交联剂为含二硫键的二烯类单体,如N,N’-双(丙烯酰)胱胺(英文名称:N, N-Bis (acryloyl) cystamine,简称:BACy)。
[0011]本发明中,步骤(2)和步骤(3)中回流沉淀所用单一溶剂为乙腈、乙醇、水、四氢呋喃、甲基异丁基酮、甲苯等任一种;所用混合溶剂为不同比例的乙腈一乙醇、乙腈一四氢呋喃、乙腈一水、乙醇一甲苯、甲基异丁基酮一乙腈的组合物中任一种。
[0012]本发明中,步骤(4)中所述刻蚀溶剂为乙醇或水中任一种。
[0013]本发明中,所述含二硫键的二烯类单体浓度为0.01 wt %~50 wt%,优选浓度为Iwt % ~30 wt%0
[0014]由本发明方法制备得到的响铃结构聚合物纳米微球,其大小为50-1000 nm,聚合反应体系壳层交联度为5%~60%,内核四氧化三铁磁簇大小为50- 200 nm,具有良好的单分散性。
[0015]由本发明方法制备得到的响铃结构磁性聚合物纳米微球,可在超声和磁共振成像造影剂及药物载体方面有广泛应用。
[0016]本发明中,所述药物载体为抗癌药物阿霉素。
[0017]本发明中,所述超声造影剂采用的超声响应物为全氟已烷。
[0018]本发明中,所述磁共振造影剂采用的磁共振响应物为四氧化三铁磁簇。
[0019]降解的测试条件为:在25 mL的单口烧瓶里加入5 mg的响铃结构磁性聚合物纳米微球和10 mL的醋酸一醋酸钠缓冲溶液(pH=5.0),然后加入10 mM的还原剂,然后放入恒温摇床(200 rpm摇速,37.5°C)匀速振荡。所述还原剂为二还原型谷胱甘肽(GSH)或二硫苏糖醇(DTT)。
[0020]载药的条件为:20 mg的响铃结构磁性聚合物纳米微球和10 mg盐酸阿霉素,超声分散在30 mL的磷酸盐缓冲溶液(pH=7.4)中,磁力搅拌24h,然后离心移去上清液,用磷酸盐缓冲溶液(PH=7.4)洗涤3次除去表面吸附的阿霉素,即得物理负载阿霉素的磁性聚合物微囊。
[0021]填充全氟己烷的条件:10 mg响铃结构磁性聚合物纳米微球冻干后,储存于10 ml容量的离心管中,缓慢加入20 PL的全氟己烷,超声震荡,再缓慢加入25 mL的磷酸盐缓冲溶液(ρΗ=7.4),轻微震荡,即可形成填充全氟己烷的磁性聚合物微囊悬浮液。
[0022]本发明所制备的响铃结构磁性聚合物纳米微球具有以下特点:(1)回流沉淀制备过程简单、高效;(2)粒径为100-1000 nm,具有很好的单分散性;(3)内核为超顺磁性的Fe3O4磁簇,具有很高的T2松弛速率,加入的全氟己烷在超声条件下可以产生良好的超声信号。(4)具有高的载药率和载药量;(5)其壳层和核在体内可同时降解,可以很好的代谢排出体外。综上所述,所制备的可降解的磁性聚合物微囊具有良好的生物降解性,是一种理想的药物载体和超声/MRI双模式造影剂。

【专利附图】

【附图说明】
[0023]图1.A、聚谷氨酸稳定的Fe3O4磁簇的透射电子显微镜照片;B、聚谷氨酸稳定的Fe3O4磁簇的扫描电子显微镜照片;C、响铃结构磁性PMAA纳米微球的透射电子显微镜照片;D、响铃结构磁性PMAA纳米微球的扫描电子显微镜照片。
[0024]图2.实施例5中填充全氟己烷的响铃结构磁性PMAA纳米微球在体外的超声成像图片。其中:图(A)为未添加磁性纳米微球的超声对照图象,图⑶为添加了磁性PMAA纳米微球的超声图像。
[0025]图3.实施例5中填充全氟己烷的响铃结构磁性PMAA纳米微球在体外的磁共振成像图片及松弛速率曲线。

【具体实施方式】
[0026]下面将通过实施例对于本发明做进一步的详细说明。
[0027]实施例1:可降解响铃结构的磁性聚甲基丙烯酸(PMAA)纳米微球的制备
(I)聚谷氨酸(PGA)稳定的 Fe3O4 磁簇的合成:将 FeCl3.6H20 (1.35 g)、NH4Ac (3.85g)和PGA(0.50 g)加入到乙二醇(70 mL)中,在氮气的保护下加热到160 °C,反应I h后,将混合溶液转移到高压釜(100 mL)中,放入200 °C的烘箱中反应16 h。冷却至室温后,离心除去溶剂和未反应单体,用乙醇和水反复洗涤3-5次,真空烘箱内45°C干燥24 h,即得聚谷氨酸稳定的Fe3O4磁簇。
[0028](2)包覆单层未交联PMAA的磁性纳米微球的合成:聚谷氨酸(PGA)稳定的Fe3O4磁簇(100 mg), MAA (500 mg), AIBN (16mg)和乙腈(40 mL),加入到 100 mL 单口瓶中,加热到100 °C,回流反应2 h。离心除去溶剂和未反应单体,用乙腈洗涤3次,真空烘箱干燥24h0
[0029](3)包覆双层PMAA的磁性纳米微球的合成:取包覆未交联PMAA壳层磁性纳米微球(100 mg),MAA 单体(500 mg),BACy 交联剂(200 mg),AIBN 引发剂(16 mg),乙腈(40mL),加入到100 mL单口瓶中,加热到100 °C,回流反应2 h。离心除去未反应单体,用乙腈洗涤3次,真空烘箱干燥24 h。
[0030](4)将步骤(3)中制备的磁性纳米微球溶于50 mL乙醇溶液中,加热到50 °G,刻蚀3 h去除未交联的PMAA中间层。离心分离,用乙醇和水洗涤3次,冷冻干燥,即可得到可降解响铃结构的磁性聚甲基丙烯酸(PMAA)纳米微球。
[0031]实施例2:可降解响铃结构的磁性聚丙烯酸(PAA)纳米微球的制备
(I)聚谷氨酸(PGA)稳定的 Fe3O4 磁簇的合成:将 FeCl3.6H20 (1.35 g)、NH4Ac (4.15g)和PGA(0.50 g)加入到乙二醇(70 mL)中,在氮气的保护下加热到160 °C,反应I h后,将混合溶液转移到高压釜(100 mL)中,放入200 °C的烘箱中反应16 h。冷却至室温后,离心除去溶剂和未反应单体,用乙醇和水反复洗涤3-5次,真空烘箱内45°C干燥24 h,即得聚谷氨酸稳定的Fe3O4磁簇。
[0032](2)包覆单层未交联PAA的磁性纳米微球的合成:聚谷氨酸(PGA)稳定的Fe3O4磁簇(100 mg), AA (400 mg), AIBN (12mg)和乙腈(40 mL),加入到 100 mL 单口瓶中,加热到100 °C,回流反应2 h。离心除去溶剂和未反应单体,用乙腈洗涤3次,真空烘箱干燥24h0
[0033](3)包覆双层PAA的磁性纳米微球的合成:取包覆未交联MAA壳层磁性纳米微球(100 mg), AA 单体(600 mg), BACy 交联剂(200 mg), AIBN 引发剂(18mg),乙腈(40 mL),加入到100 mL单口瓶中,加热到100 °C,回流反应2 h。离心除去未反应单体,用乙腈洗漆3次,真空烘箱干燥24 h。
[0034](4)将步骤(3)中制备的磁性纳米微球溶于50 mL乙醇溶液中,加热到50 °G,刻蚀3 h去除未交联的PAA中间层。离心分离,用乙醇和水洗涤3次,冷冻干燥,即可得到可降解响铃结构的磁性聚丙烯酸(PAA)纳米微球。
[0035]实施例3:可降解响铃结构的磁性羟聚乙基甲基丙烯酸酯(PHEMA)纳米微球的制备
(1)壳聚糖稳定的Fe3O4磁簇的合成:将FeCl3.6H20 (1.35 g)、NH4Ac (3.85 g)和壳聚糖(0.60 g)加入到乙二醇(70 mL)中,在氮气的保护下加热到160 °C,反应I h后,将混合溶液转移到高压釜(100 mL)中,放入200 °C的烘箱中反应16 h。冷却至室温后,离心除去溶剂和未反应单体,用乙醇和水反复洗涤3-5次,真空烘箱内45°C干燥24 h,即得壳聚糖稳定的Fe3O4磁簇。
[0036](2)包覆单层未交联PHEMA的磁性纳米微球的合成:壳聚糖稳定的Fe3O4磁簇(100mg), HEMA (500 mg), AIBN(16mg)和乙腈(40 mL),加入到 100 mL 单口瓶中,加热到 100°C,回流反应2 h。离心除去溶剂和未反应单体,用乙腈洗涤3次,真空烘箱干燥24 h。
[0037](3)包覆双层PHEMA的磁性纳米微球的合成:取包覆未交联PHEMA壳层磁性纳米微球(100 mg), HEMA 单体(500 mg),BACy 交联剂(200 mg),AIBN 引发剂(16 mg),乙腈(40 mL),加入到100 mL单口瓶中,加热到100 °C,回流反应2 h。离心除去未反应单体,用乙腈洗涤3次,真空烘箱干燥24 h。
[0038](4)将步骤(3)中制备的磁性纳米微球溶于50 mL乙醇溶液中,加热到50 °G,刻蚀3 h去除未交联的PHEMA中间层。离心分离,用乙醇和水洗涤3次,冷冻干燥,即可得到可降解响铃结构的磁性PHEMA纳米微球。
[0039]实施例4:可降解响铃结构的磁性聚N-异丙基丙烯酰胺(PNIPAM)纳米微球的制备
(I)壳聚糖稳定的Fe3O4磁簇的合成:将FeCl3.6H20 (1.35 g)、NH4Ac (4.65 g)和壳聚糖(0.60 g)加入到乙二醇(70 mL)中,在氮气的保护下加热到160 °C,反应I h后,将混合溶液转移到高压釜(100 mL)中,放入200 °C的烘箱中反应16 h。冷却至室温后,离心除去溶剂和未反应单体,用乙醇和水反复洗涤3-5次,真空烘箱内45°C干燥24 h,即得壳聚糖稳定的Fe3O4磁簇。
[0040](2)包覆单层未交联PNIPAM的磁性纳米微球的合成:壳聚糖稳定的Fe3O4磁簇(100mg), NIPAM (400 mg), AIBN(12mg)和乙腈(40 mL),加入到 100 mL 单口瓶中,加热到 100°C,回流反应2 h。离心除去溶剂和未反应单体,用乙腈洗涤3次,真空烘箱干燥24 h。
[0041](3)包覆双层PNIPAM的磁性纳米微球的合成:取包覆未交联PNIPAM壳层磁性纳米微球(100 mg),NIPAM 单体(400 mg),BACy 交联剂(200 mg),AIBN 引发剂(12 mg),乙腈(40 mL),加入到100 mL单口瓶中,加热到100 °C,回流反应2 h。离心除去未反应单体,用乙腈洗涤3次,真空烘箱干燥24 h。
[0042](4)将步骤(3)中制备的磁性纳米微球溶于50 mL乙醇溶液中,加热到50 °G,刻蚀3 h去除未交联的PNIPAM中间层。离心分离,用乙醇和水洗涤3次,冷冻干燥,即可得到可降解响铃结构的磁性PNIPAM纳米微球。
[0043]实施例5:取实施例1中制得的响铃结构磁性PMAA纳米微球10 mg储存于10 ml容量的离心管中,缓慢加入20 PL的全氟己烷,超声震荡,再缓慢加入25 mL的磷酸盐缓冲溶液(ρΗ=7.4),轻微震荡,即可形成填充全氟己烷的响铃结构磁性PMAA纳米微球悬浮液,应用于超声成像(见图二)和磁共振成像(见图三)。
[0044]实施例6:取实施例1中制得的响铃结构磁性PMAA纳米微球20 mg储存于50 ml容量的离心管中,加入10 mg的阿霉素,配成30 mL的溶液,磷酸盐缓冲溶液,常温下搅拌24h,产物用离心分离,冷冻干燥,制成负载有抗癌阿霉素的响铃结构的磁性PMAA纳米微球药物载体,载药率的重量比为91%,载药量为15.4%。
【权利要求】
1.一种可降解响铃结构的磁性聚合物纳米微球材料的制备方法,其特征在于具体步骤如下: (O:热分解法制备可降解的四氧化三铁(Fe3O4)磁簇: 将六水合氯化铁、醋酸铵和稳定剂加入到乙二醇中,其中六水合氯化铁与醋酸铵的重量比为1:1-1:10,六水合氯化铁与稳定剂的重量比为1:1-20:1 ;在氮气的保护下加热到100-160 °C,反应1-4 h,然后将混合溶液转移到高压釜中,放入150-200 °C的烘箱中反应2-24 h ;冷却至室温后,离心除去溶剂和未反应单体,用乙醇和水反复洗涤多次,真空烘箱内25-45°C干燥12-24 h,即得聚谷氨酸或壳聚糖稳定的Fe3O4磁簇; (2):将步骤(1)得到的Fe3O4磁簇,聚合物单体和引发剂,在溶剂中进行回流沉淀反应,在Fe3O4磁簇外面包覆一层未交联的聚合物壳层;其中磁簇与聚合单体的重量比为1:0.1-1:30,聚合单体与引发剂的重量比为100:1-100:10 ;控制反应温度为60-160°C,反应时间为0.5-24h ;反应结束后离心除去溶剂和未反应单体,用乙腈反复洗涤多次,真空烘箱内25-45°C干燥12-24 h,即得到包覆未交联聚合物壳层的磁性纳米微球; (3):将步骤(2)得到的磁性纳米微球,加入聚合单体,引发剂和双硫键交联剂,在溶剂进行回流沉淀反应,在未交联的聚合物壳层外面包覆新的一层双硫键交联的聚合物壳层;其中磁性纳米微球与聚合单体的重量比为1:0.1-1:40,聚合单体与引发剂的重量比为100:1-100:10,聚合单体与二硫键交联剂的重量比为100:5-100:150,控制反应温度为60-160°C,反应时间为0.5-24h ;离心除去溶剂和未反应原料,用乙腈反复洗涤多次,真空烘箱内25-45°C干燥12- 24 h,即得到形成包覆双层结构磁性聚合物纳米微球; (4):将第步骤(3)得到包覆双层结构磁性聚合物纳米微球加入到乙醇或水中,刻蚀去除未交联的聚合物中间层,用乙醇和水反复离心洗涤多次,真空冻干,即得到可降解响铃结构的磁性聚合物微球; 步骤(1)所用稳定剂为聚谷氨酸或壳聚糖。
2.根据权利要求1所述的可降解响铃结构的磁性聚合物纳米微球材料的制备方法,其特征在于步骤(2)和步骤(3)所用聚合单体为丙烯酸、甲基丙烯酸、聚乙二醇、N-2-羟丙基一甲基丙烯酰胺、羟乙基甲基丙烯酸酯、乙烯基吡唆、乙烯基咪唑、N-乙烯基吡咯烷酮、N-乙烯己内酰胺或N-异丙基丙烯酰胺中任一种,或为均聚物,或者它们之间以不同组合共聚。
3.根据权利要求1所述的可降解响铃结构的磁性聚合物纳米微球材料的制备方法,其特征在于步骤(2)和步骤(3)所用引发剂为偶氮二异丁腈、偶氮二异戊腈、偶氮二异庚腈、过氧化二苯甲酰中的任一种。
4.根据权利要求1所述的可降解响铃结构的磁性聚合物纳米微球的制备方法,其特征在步骤(3)中所用的二硫键交联剂为含二硫键的二烯类单体。
5.根据权利要求1所述的可降解响铃结构的磁性聚合物纳米微球材料的制备方法,其特征在于步骤(2)和步骤(3)中回流沉淀所用单一溶剂为乙腈、乙醇、水、四氢呋喃、甲基异丁基酮、甲苯中任一种;所用混合溶剂为不同比例的乙腈一乙醇、乙腈一四氢呋喃、乙腈一水、乙醇一甲苯、甲基异丁基酮一乙腈的组合物中任一种。
6.根据权利要求1所述的可降解响铃结构的磁性聚合物纳米微球材料的制备方法,其特征在于含Fe3O4浓度为0.01 wt %到80 wt%之间。
7.根据权利要求1所述的可降解响铃结构的磁性聚合物纳米微球材料的制备方法,其特征在于含二硫键的二烯类单体浓度为0.01 Wt %到50 wt%之间。
8.由权利要求1-7之一所述制备方法制备得到的可降解响铃结构的磁性聚合物纳米微球材料,其大小为50-1000 nm,聚合反应体系壳层交联度为5%到60%之间,内核四氧化三铁磁簇大小为50- 200 nm。
9.如权利要求8所述的可降解响铃结构的磁性聚合物纳米微球材料在超声和磁共振成像造影剂及药物载体方面的应用。
10.根据权利要求9所述的应用,其特征在于所述药物载体为抗癌药物阿霉素;所述超声造影剂采用的超声响应物为全氟已烷;所述磁共振造影剂采用的磁共振响应物为四氧化 三铁磁簇。
【文档编号】A61K31/704GK104069517SQ201410337334
【公开日】2014年10月1日 申请日期:2014年7月16日 优先权日:2014年7月16日
【发明者】杨朋, 汪长春 申请人:复旦大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1