正极活性物质、其制备方法和包括其的可再充电锂电池的制作方法

文档序号:3472355阅读:91来源:国知局
正极活性物质、其制备方法和包括其的可再充电锂电池的制作方法
【专利摘要】在一方面中,提供了一种用于可再充电锂电池的正极活性物质、一种制备该正极活性物质的方法和一种包括该正极活性物质的可再充电锂电池,该用于可再充电锂电池的正极活性物质包括锂复合氧化物,所述锂复合氧化物包括含Fe化合物相和含Li化合物相。
【专利说明】正极活性物质、其制备方法和包括其的可再充电锂电池
【技术领域】
[0001]本公开涉及一种用于可再充电锂电池的正极活性物质、一种制备该正极活性物质的方法和一种包括该正极活性物质的可再充电锂电池。
【背景技术】
[0002]近来,因为便携式电子设备的尺寸的减小和重量的减轻,已经需要开发既具有高性能又具有大容量的用于便携式电子设备的可再充电锂电池。
[0003]可通过将电解质注入包括正电极和负电极的电池单元中来制造可再充电锂电池,其中,正电极包括能够嵌入/脱嵌锂离子的正极活性物质,负电极包括能够嵌入/脱嵌锂离 子的负极活性物质。
[0004]对于正极活性物质,已经广泛地使用LiCoO2,但是LiCoO2具有因钴(Co)的稀缺导致的制造成本高和供应不稳定、对人体具有毒性以及环境污染的问题。
[0005]因此,为了开发经济的且稳定的具有高容量的正极活性物质,已经研究了具有橄榄石结构的磷酸锂铁化合物。
[0006]然而,具有橄榄石结构的磷酸锂铁具有低的导电率、慢的锂离子扩散速率以及高的充电和放电倍率下劣化的容量,因此,在需要高的电流密度的领域中的使用受到限制。

【发明内容】

[0007]—些实施例提供了一种具有优异的导电率,因此具有高容量与优异的高倍率充电和放电特性的正极活性物质。
[0008]一些实施例提供了一种制备所述正极活性物质的方法。
[0009]一些实施例提供了一种包括集流体和所述正极活性物质的用于可再充电锂电池的正电极。
[0010]一些实施例提供了一种包括所述正极活性物质的可再充电锂电池。
[0011]一些实施例提供了一种用于可再充电锂电池的正极活性物质,该正极活性物质包括由化学式I表示的锂复合氧化物,
[0012]化学式I
[0013]LixFeyPO4
[0014]在化学式I中,0.8<X<1.2,0.9 ^ y ^ 1.1,前提是x和y不都为I。在一些实施例中,所述锂复合氧化物包括含Fe化合物相和含Li化合物相,含Fe化合物相相对于含Li化合物相的摩尔比(基于Fe和Li的摩尔数)在大约0.80至大约1.00的范围内。
[0015]在一些实施例中,含Fe化合物相相对于含Li化合物相的摩尔比可在大约0.90至大约1.00的范围内。
[0016]在一些实施例中,含Fe化合物相相对于含Li化合物相的摩尔比可在大约0.90至大约0.99的范围内。
[0017]在一些实施例中,含Fe化合物相可包括含Fe2+化合物相、含Fe3+化合物相或者它们的组合。
[0018]在一些实施例中,基于含Fe化合物相的总量,可以以大约58mol%至大约100mol%且具体地大约58mol%至大约90mol%的量包括含Fe2+化合物相。[0019]在一些实施例中,基于所述锂复合氧化物的总量,可以以大约30wt%至大约40wt%的量包括含Fe化合物相。[0020]一些实施例提供了一种制备用于可再充电锂电池的正极活性物质的方法,该方法包括:在Fe、锂和磷的摩尔比不是1:1:1也不是1:1.05:1的前提下,以大约0.8至1.2:大约0.9至1.1:大约0.8至1.2的比例(基于Fe、锂和磷的摩尔数)混合含Fe化合物、锂盐和磷酸盐来获得混合物;以及在非氧化性气氛下,在大约650°C至大约850°C的温度下热处理所述混合物。
[0021]在一些实施例中,含Fe 化合物可包括 FeS04、FeC03、FeO、FeC2O4, FePO4, Fe3(PO4)2或它们的组合。
[0022]在一些实施例中,锂盐可包括从由Li2C03、Li3PO4和LiCl组成的组中选择的至少
一种组分。
[0023]在一些实施例中,磷酸盐可包括从由Li3P04、(NH4)2HP04、NH4H2POdPH3POdi成的组中选择的至少一种组分。
[0024]在一些实施例中,在Fe、锂和磷的比不是1:1:1也不是1:1.05:1的前提下,可以以大约0.8至1.05:大约1.0至1.1:大约0.9至1.1的摩尔比(基于Fe、锂和磷的摩尔数)
混合含Fe化合物、锂盐和磷酸盐。
[0025]在一些实施例中,所述非氧化性气氛可包括N2气氛、还原气氛或者它们的组合。
[0026]在一些实施例中,所述还原气氛可包括H2气氛。
[0027]在一些实施例中,可在大约650°C至大约800°C下执行所述热处理。
[0028]一些实施例提供了一种包括所述正极活性物质的用于可再充电锂电池的正电极。
[0029]一些实施例提供了一种可再充电锂电池,该可再充电锂电池包括:正电极,包括所述正极活性物质;负电极;以及电解质。
[0030]在一些实施例中,在化学式I中,0.93≤X≤1.07,0.93≤y≤1.07,前提是x和y不都为I。
[0031]在一些实施例中,基于含Fe化合物相的总量,可以以65mol%至86mol%的量包括含Fe2+化合物相。
[0032]在一些实施例中,含Fe化合物相相对于含Li化合物相的摩尔比(基于Fe和Li的摩尔数)可在0.92至1.00的范围内。
[0033]在下文中,将详细描述本公开的特定实施例。
[0034]所述正极活性物质具有优异的导电率,因此,包括所述正极活性物质的可再充电锂电池可具有高容量与优异的高倍率充电和放电特性。
【专利附图】

【附图说明】
[0035]图1是示出根据当前实施例的一方面的锂可再充电电池的示意图。
[0036]图2至图5分别是顺序地示出根据示例I至示例4的正极活性物质的SEM照片。
[0037]图6是示出根据对比例I的正极活性物质的SEM照片。【具体实施方式】
[0038]在下文中将详细地描述本公开的示例性实施例。然而,这些实施例仅是示例性的,本公开不限于此。
[0039]一些实施例提供了包括锂复合氧化物的正极活性物质,所述锂复合氧化物包括按照下面的化学式I表示的比例的Li (锂)、Fe (铁)、P (磷)和O (氧)。
[0040]化学式I
[0041]LixFeyPO4
[0042]在化学式I中,0.8≤X≤1.2,0.9 ^ y ^ 1.1,前提是x和y不都为I。
[0043]在一些实施例中,由上面的化学式I表示的锂复合氧化物可包括含Fe化合物相和含Li化合物相。
[0044]在一些实施例中,磷酸锂铁氧化物具有高容量和优异的稳定性,并可实现具有良好的循环寿命特性的可再充电锂电池,但是具有低的导电率和慢的锂离子扩散速率,因此具有劣化的容量,且在需要高的电流密度的领域中的使用受到限制。
[0045]一些实施例提供了作为正极活性物质的、通过调整其内部相(具体地,含Li化合物相与含Fe化合物相之间的摩尔比、含Fe2+化合物相与含Fe3+化合物相之间的摩尔比,等等)而制备的磷酸锂铁氧化物。在一些实施例中,该磷酸锂铁氧化物具有改善的导电率,因此,当用作正极活性物质时,可实现具有高的初始充电和放电容量与优异的高倍率充电和放电特性的可再充电锂电池。
[0046]具体地,含Fe化合物相相对于含Li化合物相的摩尔比可以在大约0.80至大约1.00的范围内,更具体地,大约0.90至大约1.00的范围内。在一些实施例中,当以前述范围的摩尔比使用相对于含Li化合物相的含Fe化合物相时,所述锂复合氧化物具有改善的导电率,因此,可实现具有高的初始充电和放电容量与优异的高倍率充电和放电特性的可再充电锂电池。
[0047]在一些实施例中,含Fe化合物相可包括含Fe2+化合物相、含Fe3+化合物相或者它们的组合。在一些实施例中,基于含Fe化合物相的总量,可以以大约58mol%至大约100mol%且具体地大约58mol%至大约90mol%的量包括含Fe2+化合物相。在一些实施例中,当以前述范围的量包括含Fe2+化合物相时,锂复合氧化物被赋有导电率,因此,可实现具有高容量与优异的高倍率充电和放电特性的可再充电锂电池。
[0048]在一些实施例中,基于所述锂复合氧化物的总量,可以以大约30wt%至大约40wt%且具体地大约31wt%至大约39wt%的量包括含Fe化合物相。在一些实施例中,当以前述范围的量包括含Fe化合物相时,锂复合氧化物具有改善的导电率,因此,可实现具有高的初始充电和放电容量与优异的高倍率充电和放电特性的可再充电锂电池。
[0049]在一些实施例中,可以通过混合含Fe化合物、锂盐和磷酸盐,然后热处理该混合物,来制备所述锂复合氧化物。
[0050]含Fe 化合物的示例可包括 FeS04、FeCO3> FeO、FeC2O4, FePO4, Fe3(PO4)2 等,可以单独地使用它们或者以它们中的两种以上的混合物使用它们。
[0051]在一些实施例中,锂盐可包括例如Li2C03、Li3P04、LiCl等,可以单独地使用它们或者以它们中的两种以上的混合物使用它们。[0052]在一些实施例中,磷酸盐可包括例如Li3P04、(NH4)2HPCVNH4H2PO4、H3PO4等,可以单独地使用它们或者以它们中的两种以上的混合物使用它们。
[0053]一些实施例提供了一种锂复合氧化物,该锂复合氧化物通过调整含Fe化合物、锂盐和磷酸盐之间的摩尔比、热处理条件等来获得,因此,具有内部调整的相,具体地,具有含Li化合物相与含Fe化合物相之间的被调整的摩尔比。
[0054]在一些实施例中,可通过在Fe、锂和磷的摩尔比不是1:1:1也不是1:1.05:1的前提下以大约0.8至1.2:大约0.9至1.1:大约0.8至1.2的摩尔比(基于Fe、锂和磷的摩尔数)混合含Fe化合物、锂盐和磷酸盐来获得所述混合物。在一些实施例中,可通过以大约0.8至1.05:大约1.0至1.1:大约0.9至1.1的摩尔比(基于Fe、锂和磷的摩尔数)混合含Fe化合物、锂盐和磷酸盐来获得所述混合物。在一些实施例中,当以前述范围的摩尔比使用含Fe化合物、锂盐和磷酸盐时,锂复合氧化物被赋有导电率,因此,可实现具有高的初始充电和放电容量与优异的高倍率充电和放电特性的可再充电锂电池。
[0055]在一些实施例中,可以在非氧化性气氛下,具体地在N2气氛或还原气氛下,更具体地在N2或H2气氛下执行热处理。在一些实施例中,当在非氧化性气氛(例如,N2或H2气氛)下执行热处理时,锂复合氧化物可具有改善的导电率,因此,可实现具有高的初始充电和放电容量与优异的高倍率充电和放电特性的可再充电锂电池。
[0056]在一些实施例中,可以在大约650°C至大约850°C下执行热处理。在一些实施例中,可以在大约650°C至大约800°C下执行热处理。在一些实施例中,当在前述温度范围的温度下执行热处理时,锂复合氧化物具有改善的导电率,因此,可实现具有高的初始充电和放电容量与优异的高倍率充电和放电特性的可再充电锂电池。
[0057]在下文中,参照图1说明包括所述正极活性物质的可再充电锂电池。
[0058]图1是示出根据当前实施例的一方面的锂可再充电电池的示意图。
[0059]参照图1,根据当前实施例的一方面的可再充电锂电池100包括正电极114、面对正电极114的负电极112、设置在负电极112与正电极114之间的隔板113、浸溃隔板113的电解质(未示出)、电池壳体120和密封电池壳体120的密封构件140。
[0060]在一些实施例中,正电极114可包括集流体和设置在集流体上的正极活性物质层。在一些实施例中,正极活性物质层可包括正极活性物质、粘结剂和可选的导电材料。
[0061]在一些实施例中,集流体可以是Al (铝),但是不限于此。
[0062]在一些实施例中,正极活性物质可以是如这里所公开并描述的锂复合氧化物。具体地,当使用包括含Fe化合物相和含Li化合物相(其中,含Fe化合物相与含Li化合物相之间的摩尔比被调整)的磷酸锂铁氧化物作为正极活性物质时,磷酸锂铁氧化物可具有改善的导电率,因此,可实现具有高的初始充电和放电容量与优异的高倍率充电和放电特性的可再充电锂电池。
[0063]在一些实施例中,粘结剂可以改善正极活性物质颗粒彼此间的粘结性能以及正极活性物质颗粒对集流体的粘结性能。粘结剂的示例包括从由聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等组成的组中选择的至少一种组分,但不限于此。
[0064]在一些实施例中,为了改善电极的导电率,可以使用导电材料。可以使用任何导电材料作为所述导电材料,除非它引起化学变化。导电材料的示例包括下述材料中的一种或更多种:天然石墨;人造石墨;炭黑;乙炔黑;科琴黑;碳纤维;包括铜、镍、铝、银等的金属粉或金属纤维;以及聚亚苯基衍生物。
[0065]在一些实施例中,负电极112可包括负极集流体和设置在负极集流体上的负极活性物质层。
[0066]在一些实施例中,负极集流体可以是铜箔。
[0067]在一些实施例中,负极活性物质层可包括负极活性物质、粘结剂和可选的导电材料。
[0068]在一些实施例中,负极活性物质可包括可逆地嵌入/脱嵌锂离子的材料、锂金属、锂金属合金、能够掺杂/脱掺杂锂的材料、过渡金属氧化物或它们的组合。
[0069]在一些实施例中,可逆地嵌入/脱嵌锂离子的材料可以是碳材料。在一些实施例中,碳材料可以是在锂离子可再充电电池中通常使用的任何碳基负极活性物质。碳材料的示例包括结晶碳、非晶碳和它们的混合物。在一些实施例中,结晶碳可以是无定形的或板形的、小片形的、球形的或纤维形的天然石墨或人造石墨。在一些实施例中,非晶碳可以是软碳、硬碳、中间相浙青碳化产物、烧制焦炭等。
[0070]锂金属合金的示例包括锂和从Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、S1、Sb、Pb、In、Zn、Ba、Ra、Ge、Al和Sn中选择的金属。
[0071]能够掺杂/脱掺杂锂的材料的示例包括:Si基化合物,例如S1、Si0x(0〈x〈2)、S1-Y合金(其中,Y是碱金属、碱土金属、第13族至第16族元素、过渡元素、稀土元素或它们的组合,并且不是Si)、S1-C复合物或者它们的组合;Sn基化合物,例如Sn、SnO2, Sn-Y合金(其中,Y是碱金属、碱土金属、第13族至第16族元素、过渡元素、稀土元素或它们的组合,并且不是Sn)或它们的组合;或者它们的组合。这些材料中的至少一种可以与SiO2混合。元素Y 可以选自于 Mg、Ca、Sr、Ba、Ra、Sc、Y、T1、Zr、Hf、Rf、V、Nb、Ta、Db、Cr、Mo、W、Sg、Tc、Re、Bh、Fe、Pb、Ru、Os、Hs、Rh、Ir、Pd、Pt、Cu、Ag、Au、Zn、Cd、B、Al、Ga、Sn、In、Tl、Ge、P、As、Sb、B1、S、Se、Te、Po或它们的组合。
[0072]过渡金属氧化物的示例包括氧化钒、氧化锂钒等。
[0073]在一些实施例中,粘结剂可以改善负极活性物质颗粒彼此间的粘结性能以及负极活性物质颗粒与集流体的粘结性能。粘结剂的示例包括聚乙烯醇、羧甲基纤维素、羟丙基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂、尼龙等,但不限于此。
[0074]在一些实施例中,可以包括导电材料,以改善电极的导电率。可以使用任何导电材料作为所述导电材料,除非它引起化学变化。导电材料的示例包括:碳基材料,例如天然石墨、人造石墨、炭黑、乙炔黑、科琴黑、碳纤维等;包括铜、镍、铝、银等的金属粉或金属纤维的金属基材料;导电聚合物,例如聚亚苯基衍生物;或它们的混合物。
[0075]在一些实施例中,可以以混合活性物质、导电材料、粘结剂和溶剂以制备活性物质组合物并在集流体上涂覆该组合物的方法来分别制造负电极112和正电极114。
[0076]在一些实施例中,溶剂可包括N-甲基吡咯烷酮等,但是不限于此。
[0077]在一些实施例中,电解质可包括非水有机溶剂和锂盐。[0078]非水有机溶剂用作用于传输参与电池的电化学反应的离子的媒介。在一些实施例中,非水有机溶剂可以选自于碳酸酯类溶剂、酯类溶剂、醚类溶剂、酮类溶剂、醇类溶剂或非质子溶剂。
[0079]在一些实施例中,碳酸酯类溶剂可以包括例如碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)、碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)等。
[0080]当混合链状碳酸酯化合物和环状碳酸酯化合物时,可以提供具有高的介电常数和低的粘度的有机溶剂。在一些实施例中,可以以范围为大约1:1至大约1:9的体积比将环状碳酸酯和链状碳酸酯混合在一起。
[0081]酯类溶剂的示例可以包括乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸1,1- 二甲基乙酯、丙酸甲酯、丙酸乙酯、Y-丁内酯、癸内酯、戊内酯、甲瓦龙酸内酯、己内酯等。醚类溶剂的示例包括二丁醚、四甘醇二甲醚、二甘醇二甲醚、二甲氧基乙烷、2-甲基四氢呋喃、四氢呋喃等,酮类溶剂的示例包括环己酮等。醇类溶剂的示例包括乙醇、异丙醇等。
[0082]在一些实施例中,可以单独地使用非水有机溶剂或以混合物使用非水有机溶剂。当以混合物使用有机溶剂时,可以根据期望的电池性能控制混合比。
[0083]在一些实施例中,非水电解质还可包括诸如碳酸亚乙酯、焦碳酸酯等的过充电抑制添加剂。
[0084]在一些实施例中,锂盐可溶解在有机溶剂中,在电池中提供锂离子,并改善其中的正电极和负电极之间的锂离子传输。
[0085]在一些实施例中,锂盐可包括作为支持电解盐的LiPF6、LiBF4, LiSbF6, LiAsF6,LiN(SO3C2F5) 2、LiC4F9SO3' LiClO4' LiAlO2' LiAlCl4, LiN(CxF2x+1S02) (CyF2y+1S02)(其中,x 和 y分别是I至20的自然数)、LiCl、Li1、LiB(C204) 2 (二 (草酸)硼酸锂)或它们的组合。
[0086]在一些实施例中,可以以范围为大约0.1M至大约2.0M的浓度使用锂盐。当在上述浓度范围内包含锂盐时,由于最佳的电解质导电率和粘度,所以电解质可具有优异的性能和锂离子迁移率。
[0087]在一些实施例中,隔板113可包括在传统的锂电池中通常使用的任何材料,只要将负电极112与正电极114分隔并为锂离子提供传输通道即可。在一些实施例中,隔板113可具有对离子传输的低的阻力和用于电解质的优异的浸溃位。例如,隔板可以选自于玻璃纤维、聚酯、聚乙烯、聚丙烯、聚四氟乙烯(PTFE)或它们的组合。在一些实施例中,隔板可具有无纺织物或纺织物的形式。例如,对于锂离子电池,主要使用聚烯烃类聚合物隔板,例如聚乙烯、聚丙烯等。为了确保耐热性或机械强度,可使用包括陶瓷组分或聚合物材料的包覆的隔板。选择性地,隔板可具有单层或多层结构。
[0088]下面的示例对当前实施例进行更详细的说明。然而,这些示例不应当在任何意义上被解释成限制当前实施例的范围。
[0089]根据下面的示例和对比例更详细地描述了示例性实施例。下面的示例仅仅是为了说明性的目的,而不意图限制一个或更多个实施例的范围。
[0090]IH极活性物质的制备
[0091]示例 I
[0092]以1.07:1:1的摩尔比(基于Fe、锂和磷的摩尔数)混合FeC204、Li2C03和(ΝΗ4)2ΗΡ04。在包含5%的H2和95%的N2的气氛下在700°C热处理该混合物,获得按照LiFe^PO4表示的比例的锂复合氧化物。
[0093]示例2
[0094]除了以0.93:1:1的摩尔比(基于Fe、锂和磷的摩尔数)混合FeC2O4、Li2CO3和(NH4)2HPO4之外,根据与示例I相同的方法制备按照LiFea93P04表示的比例的锂复合氧化物。
[0095]示例 3
[0096]除了以1:1:1.07的摩尔比(基于Fe、锂和磷的摩尔数)使用FeC204、Li2CO3和(NH4) 2ΗΡ04之外,根据与示例I相同的方法制备按照Lia 93Fe0.93P04表示的比例的锂复合氧化物。
[0097]示例 4
[0098]除了以1:1: 0.93的摩尔比(基于Fe、锂和磷的摩尔数)混合FeC2O4、Li2CO3和(NH4) 2ΗΡ04之外,根据与示例I相同的方法制备按照Li1.07FeL 07P04表示的比例的锂复合氧化物。
[0099]对比例I
[0100]以1: 1.05:1的摩尔比(基于Fe、锂和磷的摩尔数)混合FeC204、Li2C0dP (ΝΗ4)2ΗΡ04。在包含5%的H2和95%的N2的气氛下在600°C热处理该混合物,制得锂复合氧化物(LiFePO4)。
[0101]评价1:1H极活性物质的SEM照片评价
[0102]图2至图6是示出根据示例I至示例4和对比例I的正极活性物质的SEM照片。
[0103]图2至图5分别是顺序地示出根据示例I至示例4的正极活性物质的SEM照片,图6是示出根据对比例I的正极活性物质的SEM照片。
[0104]参照图2至图6,根据示例2的正极活性物质具有最小的初始颗粒尺寸。
[0105]评价2:1H极活性物质的相评价
[0106]关于含Fe化合物相与含Li化合物相的摩尔比和含Fe2+化合物相的量,按照ICP(电感耦合等离子体)和滴定分析法测量根据示例I至示例4和对比例I的正极活性物质。下面的表1中提供了结果。
[0107]复1
含Fe2+化合物相含Fe化合物相/含Li
__的量化合物相的摩尔比
示例 I一65—0.99
[0108]示例 2 —860.92
示例^ — 70 _ 1.00
示例 4__71__LOO_
对比例I丨541.05
[0109]含Fe2+化合物相的量(mol%)表示含Fe2+化合物相基于含Fe化合物相(包括含Fe2+化合物相和含Fe3+化合物相)的总量的mol百分比。
[0110]参照表1,基于含Fe化合物相的总量,根据示例I至示例4的锂复合氧化物包括58mol%至100mol%的量的含Fe2+化合物相。
[0111]另外,根据示例I至示例4的锂复合氧化物包括摩尔比为0.80至1.00的含Fe化合物相与含Li化合物相。
[0112]评价3:lH极活性物质的导电率评价
[0113]关于导电率,测量根据示例I至示例4和对比例I的正极活性物质。下面的表2中提供了结果。
[0114]将正极活性物质粉末制成粒,通过分别施加4kN、8kN、12kN、16kN和20kN的力来进行按压,并在导电率方面进行测量。
[0115]轰I
【权利要求】
1.一种用于可再充电锂电池的正极活性物质,包括: 锂复合氧化物,所述锂复合氧化物包括按照下面的化学式I表示的比例的L1、Fe、P和0, 化学式I LixFeyPO4 其中,0.8≤X≤1.2,0.9≤y≤1.1,前提是X和y不都为I。
2.根据权利要求1所述的用于可再充电锂电池的正极活性物质,其中,所述锂复合氧化物包括含Fe化合物相和含Li化合物相,含Fe化合物相与含Li化合物相的摩尔比基于Fe和Li的摩尔数在0.80至1.00的范围内。
3.根据权利要求2所述的用于可再充电锂电池的正极活性物质,其中,含Fe化合物相包括含Fe2+化合物相、含Fe3+化合物相或者它们的组合。
4.根据权利要求3所述的用于可再充电锂电池的正极活性物质,其中,基于含Fe化合物相的总量,以58mol%至100mol%的量包括含Fe2+化合物相。
5.根据权利要求3所述的用于可再充电锂电池的正极活性物质,其中,基于含Fe化合物相的总量,以58mol%至90mol%的量包括含Fe2+化合物相。
6.根据权利要求1所述的用于可再充电锂电池的正极活性物质,其中,基于所述锂复合氧化物的总量,以30wt%至40wt%的量包括含Fe化合物相。
7.根据权利要求2所述的用于可再充电锂电池的正极活性物质,其中,含Fe化合物相与含Li化合物相的摩尔比基于Fe和Li的摩尔数在0.90至1.00的范围内。
8.一种制备用于可再充电锂电池的正极活性物质的方法,包括: 在Fe、锂和磷的摩尔比不是1:1:1也不是1:1.05:1的前提下,基于Fe、锂和磷的摩尔数以0.8至1.2:0.9至1.1:0.8至1.2来混合含Fe化合物、锂盐和磷酸盐,以获得混合物;以及 在非氧化性气氛下,在650°C至850°C下热处理所述混合物。
9.根据权利要求8所述的方法,其中,含Fe化合物包括从由FeS04、FeC03、Fe0、FeC204、FePO4和Fe3(PO4)2组成的组中选择的至少一种组分。
10.根据权利要求8所述的方法,其中,锂盐包括从由Li2C03、Li3PO4和LiCl组成的组中选择的至少一种组分。
11.根据权利要求8所述的方法,其中,磷酸盐包括从由Li3P04、(NH4)2HPO4^nH4H2PO4和H3PO4组成的组中选择的至少一种组分。
12.根据权利要求8所述的方法,其中,基于Fe、锂和磷的摩尔数以0.8至1.05:1.0至1.1:0.9至1.1的摩尔比来混合含Fe化合物、锂盐和磷酸盐。
13.根据权利要求8所述的方法,其中,所述非氧化性气氛包括N2气氛、还原气氛或者它们的组合。
14.根据权利要求13所述的方法,其中,所述还原气氛包括H2气氛。
15.根据权利要求8所述的方法,其中,在650°C至800°C下执行所述热处理。
16.根据权利要求8所述的方法,其中,所述正极活性物质包括锂复合氧化物,所述锂复合氧化物包括按照下面的化学式I表示的比例的L1、Fe、P和0, 化学式ILixFeyPO4 其中,0.8≤X≤1.2,0.9^y^ 1.1,前提是X和y不都为I。
17.根据权利要求16所述的方法,其中,所述锂复合氧化物包括含Fe化合物相和含Li化合物相,其中,含Fe化合物相与含Li化合物相的摩尔比在0.90至1.00的范围内。
18.一种用于可再充电锂电池的正电极,所述正电极包括集流体和根据权利要求1所述的正极活性物质。
19.一种可再充电锂电池,包括: 正电极,包括根据权利要求1所述的正极活性物质; 负电极;以及 电解质。
【文档编号】C01B25/45GK103579620SQ201310224461
【公开日】2014年2月12日 申请日期:2013年6月6日 优先权日:2012年8月3日
【发明者】金志贤, 刘容赞, 朴韩尔 申请人:三星Sdi株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1