电介体陶瓷组合物及叠层陶瓷电容器的制作方法

文档序号:11766177阅读:169来源:国知局
电介体陶瓷组合物及叠层陶瓷电容器的制作方法与工艺

本发明涉及电介体陶瓷组合物及包含由该电介体陶瓷组合物构成的电介体层的叠层陶瓷电容器,特别是涉及ir特性及高温负载寿命良好的电介体陶瓷组合物。



背景技术:

近年来,随着电子电路的高密度化对电子部件小型化的请求提高,并且层叠陶瓷电容器的小型/大容量化快速发展,从而用途也有所扩大且所需求的特性各种各样。

例如,以较高的额定电压(例如100v以上)使用的中高压用电容器可适用于ecm(电子发动机电脑模块)、燃料喷射装置、电子控制节流阀、变频器、转换器、高强度放电前照灯组合件、混合动力引擎的电池控制单元、数字静物摄影机等设备。

在上述那样的以较高的额定电压使用的情况下,虽然在较高的电场强度下使用,但电场强度变高时,相对介电常数或绝缘电阻降低,其结果存在使用环境下的有效容量或可靠性降低的问题。

例如,专利文献1中公开有一种叠层陶瓷电容器,其具备由具有核-壳结构的电介体颗粒构成的电介体层。该电介体颗粒在壳部具有副成分的浓度梯度,在晶界附近及壳部与核部的边界附近具有副成分浓度的最大值。记载了使用该电介体颗粒的叠层陶瓷电容器的容量温度特性、寿命特性良好。

但是,专利文献1所记载的叠层陶瓷电容器中,有时直流电压施加等较高的电场强度下的特性不充分,而要求特性的进一步提高。

现有技术文献

专利文献

专利文献1:日本特开2011-256091号公报



技术实现要素:

发明所要解决的课题

鉴于这种实际情况,本发明的目的在于,提供一种电介体陶瓷组合物,即使在较高的电场强度下,特性也良好,特别是ir特性及高温负载寿命良好。本发明的另一目的在于,提供一种叠层陶瓷电容器,具有由该电介体陶瓷组合物构成的电介体层。

用于解决课题的方案

为了达成所述目的,本发明第一实施方式提供一种电介体陶瓷组合物,其特征在于,包含:由以组成式(ba1-x-ysrxcay)m(ti1-zzrz)o3表示的钙钛矿型化合物(其中,所述m、x、y、z全部表示摩尔比,且分别满足0.94≦m≦1.1,0≦x≦1.0,0≦y≦1.0,0≦(x+y)≦1.0,0.06≦z<0.2)构成的主成分;

由稀土元素r的氧化物(其中,r为选自sc、y、la、ce、pr、nd、pm、sm、eu、gd、tb、dy、ho、er、tm、yb及lu的至少一种)构成的第一副成分;

作为烧结助剂的第二副成分,

所述电介体陶瓷组合物含有电介体颗粒和晶界,所述电介体颗粒包含将稀土元素r固溶于电介体颗粒整体而成的全固溶颗粒,

在将所述全固溶颗粒中的ti原子的浓度设为100原子%的情况下,稀土元素r的平均浓度ra为5~20原子%,

在除距所述全固溶颗粒的晶界20nm以下的区域以外的部分,测定稀土元素浓度(原子%)的情况下,测定值的标准偏差和平均值满足(标准偏差/平均值)≦0.25。

第一实施方式中,优选所述(标准偏差/平均值)满足(标准偏差/平均值)≦0.10。

本发明第二实施方式提供一种电介体陶瓷组合物,其特征在于,包含:由以组成式(ba1-x-ysrxcay)m(ti1-zzrz)o3表示的钙钛矿型化合物(其中,所述m、x、y、z全部表示摩尔比,且分别满足0.94≦m≦1.1,0≦x≦1.0,0≦y≦1.0,0≦(x+y)≦1.0,0.06≦z<0.2)构成的主成分;

由稀土元素r的氧化物(其中,r为选自sc、y、la、ce、pr、nd、pm、sm、eu、gd、tb、dy、ho、er、tm、yb及lu的至少一种)构成的第一副成分;

作为烧结助剂的第二副成分,

所述电介体陶瓷组合物含有电介体颗粒和晶界,所述电介体颗粒含有由所述主成分构成的主成分相、第一副成分在主成分中扩散而成的扩散相,相对于所述主成分相和所述扩散相的合计面积,扩散相所占的面积的比例平均为95%以上且低于100%,

在将所述扩散相中的ti原子的浓度设为100原子%的情况下,稀土元素r的平均浓度ra为5~20原子%,

在除距所述电介体颗粒的晶界20nm以下的区域以外的部分,且除距主成分相和扩散相的边界20nm以下的区域以外的扩散相,测定稀土元素浓度(原子%)的情况下,测定值的标准偏差和平均值满足(标准偏差/平均值)≦0.25。

第二实施方式中,优选所述(标准偏差/平均值)满足(标准偏差/平均值)≦0.10。

另外,第二实施方式中,优选相对于所述主成分相和所述扩散相的合计面积,扩散相所占的面积的比例平均为98%以上且低于100%。

作为本发明的电子部件,只要含有上述电介体陶瓷组合物,就没有特别限定,可示例:叠层陶瓷电容器、压电元件、芯片电感、片式压敏电阻器、片式热敏电阻器、片式电阻、其它表面安装(smd)片式电子部件。叠层陶瓷电容器具有含有本发明的电介体陶瓷组合物的电介体层和内部电极层。

发明效果

根据本发明,通过将各成分的含量设为上述范围内,且将稀土元素的浓度及扩散状态设为上述范围,可以得到ir特性及高温负载寿命特别良好的电介体陶瓷组合物。特别是通过制成稀土元素在主成分中均匀地扩散的全固溶颗粒,或稀土元素在扩散相的主成分中均匀地扩散的核壳颗粒,可以良好地维持相对介电常数等基本特性,而且提高ir特性及高温负载寿命。

附图说明

图1是本发明一实施方式的叠层陶瓷电容器的剖视图;

图2是图1所示的电介体层2的要部放大剖视图;

图3是表示评价全固溶颗粒中的稀土元素的浓度分布的参数(标准偏差/平均值)的测定点的示意图;

图4是表示评价核壳颗粒的扩散相中的稀土元素的浓度分布的参数(标准偏差/平均值)的测定点的示意图。

符号说明

1…叠层陶瓷电容器

2…电介体层

21…核-壳结构颗粒

22…全固溶颗粒

3…内部电极层

4…外部电极

10…电容器元件主体

具体实施方式

以下,基于附图所示的实施方式说明本发明。

叠层陶瓷电容器1

如图1所示,作为陶瓷电子部件的非限制性的一例的叠层陶瓷电容器1具有:电介体层2、内部电极层3、具有交替叠层的结构的电容器元件主体10。内部电极层3以各端面在电容器元件主体10对置的两个端部的表面上交替露出的方式叠层。一对外部电极4形成于电容器元件主体10的两端部,并与交替配置的内部电极层3的露出端面连接,从而构成电容器电路。

电容器元件主体10的形状没有特别限制,如图1所示,通常设为长方体状。另外,其尺寸也没有特别限制,只要根据用途设为适当的尺寸即可。

电介体层2

电介体层2的厚度没有特别限制,优选每一层为0.5~20μm左右。

电介体层2的叠层数没有特别限定,但优选为20以上,更优选为50以上,特别优选为100以上。叠层数的上限没有特别限定,例如2000左右。

电介体层2由本实施方式的电介体陶瓷组合物构成。电介体陶瓷组合物含有作为主成分的钙钛矿型(abo3型)的钛酸钡系复合氧化物和后述第一副成分及第二副成分,根据需要含有其它副成分。

以下,分别说明第一实施方式及第二实施方式。

(第一实施方式)

第一实施方式的电介体陶瓷组合物的主成分由以组成式(ba1-x-ysrxcay)m(ti1-zzrz)o3表示的钙钛矿型化合物。在此,m、x、y、z全部表示摩尔比。

组成式中的m表示a/b比,为0.94≦m≦1.1,优选为0.95≦m<0.99。另外,其它优选的方式中,m也可以为0.94≦m≦0.95,也可以为0.99≦m≦1.1。主成分的m值过小时,由于烧结过多(异常晶粒生长),ir特性变低,m值过大时,有时高温负载寿命降低。

组成式中的x表示a位的sr的比例,为0≦x≦1.0,优选为0≦x≦0.2,进一步优选为0≦x≦0.1,更优选为0≦x≦0.03,也可以为0。

组成式中的y表示a位的ca的比例,为0≦x≦1.0,优选为0≦x≦0.2,进一步优选为0≦x≦0.1,更优选为0≦x≦0.01,也可以为0。

另外,(x+y)为0≦(x+y)≦1.0,优选为0≦(x+y)≦0.4,更优选为0≦(x+y)≦0.2,进一步优选为0≦(x+y)≦0.03,也可以为0。

组成式中的z表示b位的zr的比例,为0.06≦z<0.2,优选为0.1≦z≦0.15。另外,其它优选的方式中,z也可以为0.06≦z≦0.1,也可以为0.15≦z<0.2。通过利用zr置换到b位,能带隙变高,可提高电阻。另一方面,zr过剩时,妨碍作为第一副成分的稀土元素向主成分的固溶,而处于高温负载寿命变低的倾向。

电介体陶瓷组合物含有作为第一副成分的稀土元素r的氧化物。在此,稀土元素为选自sc、y、la、ce、pr、nd、pm、sm、eu、gd、tb、dy、ho、er、tm、yb及lu的至少一种,优选为选自eu、gd及tb的至少一种。此外,稀土元素的氧化物也可以并用两种以上。

稀土元素r的氧化物相对于上述主成分100摩尔,优选以10~30摩尔,进一步优选以12~22摩尔的比率使用。另外,其它优选的方式中,也可以是10~12摩尔,也可以是22~30摩尔。此外,稀土元素的氧化物通常以r2o3表示,但本实施方式中的以氧化物换算的比率表示基于ro3/2的摩尔数。理论上没有任何限制,但考虑稀土元素r的一部分置换到a位,而作为释放电子的施体发挥作用。释放的电子捕获氧缺陷,因此,认为抑制高温负载寿命试验中的氧缺陷的移动,而有助于高温负载寿命的改善。第一副成分的含量过少时,不能抑制氧缺陷的移动,有时高温负载寿命变低。第一副成分的含量过剩时,有时ir特性降低。

电介体陶瓷组合物还含有作为第二副成分的烧结助剂。烧结助剂只要有助于上述主成分及第一副成分的烧结,就没有特别限定,但通常优选使用si、li、al、ge及b的氧化物。烧结助剂的含量相对于主成分100摩尔,以sio2、lio1/2、alo3/2、geo2或bo3/2换算,优选为2.5摩尔以上,进一步优选为2.5~3.9摩尔,特别优选为3~3.3摩尔。通过第二副成分的含量为该范围内,处于绝缘电阻及高温负载寿命提高的倾向。烧结助剂的含量过多时,处于高温负载寿命恶化的倾向。相反,过少时,处于烧结性降低的倾向。

作为第二副成分,从上述各氧化物的特别是特性的改善效果较大的点来看,优选使用si的氧化物。作为含有si的氧化物,没有特别限制,也可以是sio2单独的形式,也可以是si与其它元素例如碱金属元素或碱土金属元素的复合氧化物的形式。本实施方式中,作为含有si的氧化物,优选为sio2。

本发明的电介体陶瓷组合物也可以根据需要含有上述以外的副成分。作为优选的副成分,举出作为mg的氧化物的第三副成分、及选自mn、cr、co及fe的至少一种作为元素m的氧化物的第四副成分。

第三副成分相对于上述主成分100摩尔,以氧化物换算(mgo),优选以0~15摩尔,进一步优选以4~8摩尔,更优选以4.5~6摩尔的比率使用。另外,其它优选的方式中,也可以是4~4.5摩尔,也可以是6~8摩尔。通过将第三副成分的含量设为上述范围,处于可平衡良好地改善ir特性、高温负载寿命的倾向。

电介体陶瓷组合物也可以含有作为第四副成分的、选自mn、cr、co及fe的至少一种元素m的氧化物。优选含有mno、cro,特别优选含有mno。此外,mn、cr、co及fe的氧化物也可以并用两种以上。第四副成分相对于上述主成分100摩尔,以氧化物换算(mo),优选以0~2.0摩尔,进一步优选以0.6~2.0摩尔,更优选以1.1~1.5摩尔的比率使用。另外,其它优选的方式中,也可以是0.6~1.1摩尔,也可以是1.5~2.0摩尔。第四副成分的含量处于上述范围时,处于改善ir特性的倾向。此外,第四副成分的以氧化物换算的比率表示基于mno、cro、coo、feo的摩尔数。

理论上没有任何限制,但认为第三副成分及第四副成分中所含的金属元素的一部分置换到b位而作为接收电子的受体发挥作用,且有助于ir特性的改善。

通过将主成分的组成及副成分的含量设为上述优选的范围内,容易得到ir特性及高温负载寿命特别良好的电介体陶瓷组合物。特别是通过将主成分的组成及副成分的含量设为特定的范围,良好地维持相对介电常数等的基本特性,而且容易提高ir特性及高温负载寿命。

本实施方式的电介体陶瓷组合物也可以根据期望的特性,还含有其它成分。电介体陶瓷组合物的组成可以通过电感耦合等离子(icp)发光分光分析法进行确认。

(第一实施方式中的电介体颗粒的结构)

第一实施方式中,构成上述电介体层2的电介体陶瓷组合物含有电介体颗粒和晶界,上述电介体颗粒包含稀土元素r固溶于电介体颗粒整体的全固溶颗粒。电介体颗粒的颗粒形状、粒径没有特别限定。

全固溶颗粒是在上述主成分中扩散、固溶有稀土元素r的形式。不含有仅由主成分构成的相(通常称为“核”),稀土元素r仅由扩散于主成分中的相(扩散相)形成。因此,形式与所谓的核壳颗粒不同。此外,稀土元素r以外的副成分元素也可以固溶于主成分中。

如图2中适宜性地表示,在核-壳结构的电介体颗粒的截面上,实际上仅由主成分构成的相(主成分相)在颗粒的中心部可确认为核21a。另外,在主成分中固溶(扩散)有稀土元素r的相(扩散相)在核周边可确认为壳21b。换而言之,在存在主成分相的情况下,在主成分相的周边部形成含有主成分和稀土元素r的扩散相。即,电介体层实际上成为具有利用由主成分构成的核21a、和存在于核21a周围且稀土元素r在主成分中扩散的壳21b构成的核-壳结构的晶粒(核-壳结构颗粒21)。核21a实际上仅由主成分构成,壳21b由将稀土元素r在主成分中扩散的固溶相构成。稀土元素r向主成分中扩散时,仅由主成分构成的核相(主成分相)消失,全部成为仅由扩散相(壳)构成的电介体颗粒(全固溶颗粒)。

第一实施方式中的电介体颗粒是不存在主成分相(核),且仅有扩散相(壳)构成的全固溶颗粒22。此外,电介体层2中,电介体颗粒的全部不需要为全固溶颗粒,也可以含有核壳颗粒。

第一实施方式中,电介体层2中的全固溶颗粒的比例,在将全固溶颗粒的个数和核壳颗粒的个数的合计设为100%时,全固溶颗粒的比例优选为90%以上,进一步优选为95%以上,优选电介体层2实际上仅由全固溶颗粒构成。

全固溶颗粒在batio3系的主成分中固溶有作为第一副成分的稀土元素r。在将全固溶颗粒中的ti原子的浓度设为100原子%的情况下,稀土元素r的平均浓度ra为5~20原子%,进一步优选为6~8原子%,特别优选为6.5~7.5原子%。另外,其它方式中,全固溶颗粒中的稀土元素r的平均浓度ra也可以是5~6.5原子%,也可以是7.5~20原子%。

另外,在全固溶颗粒22中,比较均匀地分散有稀土元素。即,特征在于,在颗粒的整个区域测定稀土元素浓度时,其差异较小,在颗粒的各部位,稀土元素浓度没有较大的差。

例如在除全固溶颗粒的晶界附近以外的区域,在任意选择的10点以上的测定点测定稀土元素浓度(原子%),且根据其平均值和标准偏差的比(标准偏差/平均值)可评价稀土元素浓度的均匀性。是指比(标准偏差/平均值)越小,稀土元素的浓度分布越均匀。

在此,稀土元素浓度(原子%)通过在电介体层2的截面上,使用附带透射电子显微镜(tem)的能量色散型x射线分光装置(eds),对稀土元素进行面分析可测定。该面分析优选在各测定颗粒中任意选择10点以上而进行,且对150个以上的电介体颗粒进行。本实施方式中,测定5个视野以上的电介体颗粒存在30个左右的区域(视野)。然后,解析通过分析得到的特性x射线,得到表示稀土元素r的分布的映射图像。

如图3所示,全固溶颗粒22仅由扩散相形成,其组成(稀土元素组成)大致均匀,但本实施方式中,从除颗粒的晶界附近的20nm以下的区域以外的部分选择测定点。

全固溶颗粒中,(标准偏差/平均值)≦0.25,进一步优选满足(标准偏差/平均值)≦0.10。此外,(标准偏差/平均值)的下限值自然为0(零)。另外,其它方式中,也可以为0.10<(标准偏差/平均值)≦0.25。

通过这样将电介体层2由稀土元素的浓度分布较小的全固溶颗粒构成,即使在较高的电场强度下,可以得到绝缘电阻的寿命特性优异的叠层陶瓷电容器。

(第二实施方式)

第二实施方式的电介体陶瓷组合物的主成分是以组成式(ba1-x-ysrxcay)m(ti1-zzrz)o3表示的钙钛矿型化合物。在此,m、x、y、z全部表示摩尔比。

组成式中的m表示a/b比,为0.94≦m≦1.1,优选为0.95≦m<0.99。另外,其它优选的方式中,m也可以为0.94≦m≦0.95,也可以为0.99≦m≦1.1。主成分的m值过小时,由于烧结过多(异常晶粒生长),ir特性变低,m值过大时,有时高温负载寿命降低。

组成式中的x表示a位的sr的比例,为0≦x≦1.0,优选为0≦x≦0.2,进一步优选为0≦x≦0.1,更优选为0≦x≦0.01,也可以为0。

组成式中的y表示a位的ca的比例,为0≦x≦1.0,优选为0≦x≦0.2,进一步优选为0≦x≦0.1,更优选为0≦x≦0.02,也可以为0。

另外,(x+y)为0≦(x+y)≦1.0,优选为0≦(x+y)≦0.4,更优选为0≦(x+y)≦0.2,进一步优选为0≦(x+y)≦0.03,也可以为0。

组成式中的z表示b位的zr的比例,为0.06≦z<0.2,优选为0.1≦z≦0.15。另外,其它优选的方式中,z也可以为0.06≦z≦0.1,也可以为0.15≦z<0.2。

电介体陶瓷组合物含有作为第一副成分的稀土元素r的氧化物。在此,稀土元素是选自sc、y、la、ce、pr、nd、pm、sm、eu、gd、tb、dy、ho、er、tm、yb及lu的至少一种,优选为选自y、eu、gd、ho及tb的至少一种。此外,稀土元素的氧化物也可以并用两种以上。

稀土元素r的氧化物相对于上述主成分100摩尔,优选以10~30摩尔,进一步优选以14~23摩尔的比率使用。另外,其它优选的方式中,也可以是10~14摩尔,也可以是23~30摩尔。此外,稀土元素的氧化物通常以r2o3表示,但本实施方式中的以氧化物换算的比率表示基于ro3/2的摩尔数。

电介体陶瓷组合物还含有作为第二副成分的烧结助剂。烧结助剂只要有助于上述主成分及第一副成分的烧结,就没有特别限定,但通常优选使用si、li、al、ge及b的氧化物。第二副成分的优选的例子中,其使用量等与上述第一实施方式一样。

本发明的电介体陶瓷组合物也可以根据需要含有上述以外的副成分。作为优选的副成分,举出作为mg的氧化物的第三副成分、及选自mn、cr、co及fe的至少一种作为元素m的氧化物的第四副成分。第三副成分、第四副成分的优选的例子中,其使用量等与上述第一实施方式一样。

本实施方式的电介体陶瓷组合物也可以根据期望的特性还含有其它成分。

(第二实施方式中的电介体颗粒的结构)

第二实施方式中,构成上述电介体层2的电介体陶瓷组合物含有电介体颗粒和晶界,电介体颗粒含有由主成分构成的主成分相和将第一副成分扩散于主成分中的扩散相。

因此,本实施方式中的电介体颗粒包含图2中适宜性地表示的核壳颗粒21。即,实际上利用仅由主成分构成,且不含有副成分的主成分相(核21a)、和将稀土元素r扩散于主成分中的相(扩散相,壳21b)形成。此外,稀土元素r以外的副成分元素也可以在扩散相固溶。

第二实施方式中的电介体颗粒在截面上,扩散相的面积较大,主成分相的面积较小。在电介体颗粒的截面上,相对于上述主成分相和上述扩散相的合计面积,扩散相所占的面积的比例平均为95%以上,优选为97%以上,进一步优选为98%以上,特别优选为99%以上。另外,为核壳颗粒,因此,扩散相的面积比例低于100%,存在主成分相(核)。此外,电介体层2中,电介体颗粒的全部不需要为扩散相的面积比例为95%以上的核壳颗粒,也可以含有全固溶颗粒,另外,也可以含有扩散相的面积比例低于95%的核壳颗粒。

电介体颗粒中的扩散相的面积比例可以通过图像处理软件等对电介体层截面的显微镜照片进行处理而算出。首先,将电容器元件主体10以与电介体层2及内部电极层3的叠层方向垂直的面进行切断。进行电介体层截面的化学蚀刻,任意选择的200个以上的电介体颗粒中,算出电介体颗粒的面积。根据该面积算出颗粒的圆当量直径,求得电介体粒径l1。另外,进行离子研磨,根据电子显微镜的反射电子图像,与不存在稀土元素r的区域(核)也一样,求得核粒径l2。此外,对于未观察到核部的颗粒,核粒径设为零(0)。进一步根据得到的电介体粒径l1和核粒径l2,通过下式算出扩散相(壳)所占电介体颗粒的面积的面积比例(壳率)。

壳率(%)=100×(1-(l22/l12))

另外,将根据构成电介体层的200个以上的电介体颗粒算出的电介体粒径l1的平均值设为平均电介体粒径l1ave,且将核粒径l2的平均值设为平均核粒径l2ave的情况下,电介体层的平均壳率通过下述算出。

平均壳率(%)=100×(1-(l2ave2/l1ave2))

第二实施方式的电介体层中,平均壳率为95%以上,优选为97%以上,进一步优选为98%以上,特别优选为99%以上,且未必存在扩散相,因此,平均壳率低于100%。

第二实施方式中,电介体层2中的扩散相的面积比例为95%以上且低于100%的核壳颗粒的比例,在将总电介体颗粒的个数的合计设为100%时,优选为90%以上,进一步优选为95%以上,电介体层2优选仅由实际上扩散相的面积比例为95%以上且低于100%的核壳颗粒构成。

扩散相在batio3系的主成分中固溶有作为第一副成分的稀土元素r。在将扩散相中的ti原子的浓度设为100原子%的情况下,稀土元素r的平均浓度ra为5~20原子%,进一步优选为5.5~9原子%,特别优选为6.6~8.9原子%。另外,其它方式中,全固溶颗粒中的稀土元素r的平均浓度ra也可以为5~6.6原子%,也可以为8.9~20原子%。

另外,在扩散相,比较均匀地分散有稀土元素。即,其特征在于,在扩散相的整个区域测定稀土元素浓度时,其差异较小,在扩散相的各部位,稀土元素浓度没有较大的差。

例如在除电介体颗粒的晶界附近以外,且除扩散相和主成分相的边界附近以外的区域的扩散相任意选择的10点以上的测定点,测定稀土元素浓度(原子%),且根据其平均值和标准偏差的比(标准偏差/平均值)可评价稀土元素浓度的均匀性。

在此,如稀土元素浓度(原子%)上述第一实施方式中说明,根据表示稀土元素的分布的映射图像求得。

如图4所示,在核壳颗粒22,主成分相(核21a)存在于颗粒的大致中心。在电介体颗粒的主成分相的周围形成有扩散相(壳21b)。本实施方式中,对电介体颗粒22的扩散相(壳21b)测定稀土元素浓度。具体而言,从电介体颗粒的晶界附近的除20nm以下的区域以外的部分及除距主成分相和扩散相的边界20nm以下的区域以外的部分中的扩散相选择测定点。

关于第二实施方式的电介体陶瓷组合物中所含的电介体颗粒,为(标准偏差/平均值)≦0.25,进一步优选满足(标准偏差/平均值)≦0.10。此外,(标准偏差/平均值)的下限值自然为0(零)。另外,其它方式中,也可以为0.10<(标准偏差/平均值)≦0.25。

通过利用以大面积具有稀土元素的浓度分布较小的扩散相的电介体颗粒构成电介体层2,即使在较高的电场强度下,也可以得到绝缘电阻的寿命特性优异的叠层陶瓷电容器。

第一及第二实施方式中,电介体颗粒的平均粒径(圆当量直径)优选为0.2~3.0μm,进一步优选处于0.5~1.0μm的范围。

内部电极层3

内部电极层3中含有的导电材料没有特别限定,但构成电介体层2的材料具有耐还原性,因此,可以使用比较廉价的贱金属。作为用作导电材料的贱金属,优选为ni或ni合金。作为ni合金,优选为选自mn、cr、co及al的一种以上的元素和ni的合金,合金中的ni含量优选为95质量%以上。此外,ni或ni合金中,也可以含有0.1质量%左右以下的p等各种微量成分。内部电极层3的厚度只要根据用途等适宜决定即可,但通常优选为0.1~3μm左右。

外部电极4

外部电极4中含有的导电材料没有特别限定,本发明中可以使用廉价的ni、cu或它们的合金。外部电极4的厚度只要根据用途等适宜决定即可,但通常优选为10~50μm左右。

叠层陶瓷电容器1的制造方法

本实施方式的叠层陶瓷电容器1与现有的叠层陶瓷电容器一样,通过如下进行制造,即,通过使用了糊剂的通常的印刷法或片材法制作生坯芯片,将其烧成后,对外部电极进行印刷或转印并烧成。以下,对于制造方法,说明非限制性的具体例。

首先,准备用于形成电介体层的电介体原料,将其涂料化,并制备电介体层用糊剂。

(原料)

作为电介体原料,准备主成分的原料和各副成分的原料。作为这些原料,可以使用上述的成分的氧化物或其混合物、复合氧化物。另外,也可以从通过烧成而成为上述的氧化物或复合氧化物的各种化合物、例如碳酸盐、草酸盐、硝酸盐、氢氧化物、有机金属化合物等适宜选择并混合使用。

主成分的原料也可以使用除了通过所谓的固相法以外,还通过各种液相法(例如,草酸盐法、水热合成法、醇盐法、溶胶-凝胶法等)制造的材料等、通过各种方法制造的材料。

另外,在电介体层中含有上述的主成分及副成分以外的成分的情况下,作为该成分的原料,与上述一样,可以使用这些成分的氧化物或其混合物、复合氧化物。另外,除此以外,可以使用通过烧成而成为上述的氧化物或复合氧化物的各种化合物。电介体原料中的各化合物的含量只要以在烧成后成为上述的电介体陶瓷组合物的组成的方式决定即可。

(第一实施方式的电介体原料的制备)

为了得到第一实施方式的电介体陶瓷组合物,优选将上述各原料一并混合,并将其进行预烧。

为了制备电介体原料,将各成分原料充分混合,得到混合粉末,将该粉末进行热处理(预烧),得到预烧原料。原料的混合没有特别限定,通过湿式法充分混合20小时左右,然后进行干燥。

预烧条件没有特别限定,预烧温度为900~1350℃,优选为1000~1350℃,保持时间优选为1~10小时,直到预烧温度的升温速度为10℃/小时~2000℃/小时左右,保持时间经过后的降温速度为200℃/小时以上,优选为300℃/小时以上,更优选为400℃/小时以上。

在得到全固溶颗粒的基础上,通过将保持时间设为较长,例如设为4小时以上,且将保持温度设为较高,例如设为1100℃以上,进行稀土元素r、zr的扩散,易于得到全固溶颗粒。

另外,通过将到达保持温度之前的100℃~200℃的期间以缓慢的升温速度(例如10℃/小时以下,优选为5℃/小时以下,进一步优选为2℃/小时以下)进行升温,也可以使稀土元素r或zr均匀地扩散。例如,在将保持温度设为1100℃的情况下,将从室温以较快的升温速度(例如200℃/小时)升温到1000℃,将从1000℃到1100℃以10℃/小时以下,优选为5℃/小时以下,进一步优选为2℃/小时以下的升温速度进行升温,由此,易于得到土元素在主成分中均匀地扩散,且扩散相中的稀土元素浓度、zr浓度较高的电介体颗粒。理论上没有任何限制,但通过在到达保持温度前变慢升温速度,稀土元素、zr易于生成且掺入主成分中,因此认为,得到稀土元素在主成分中均匀地扩散,且扩散相中的稀土元素浓度、zr浓度较高的电介体颗粒。

(第二实施方式的电介体原料的制备)

为了得到第二实施方式的电介体陶瓷组合物,优选以预先比较的低温(例如950℃~1050℃)预备预烧,然后添加混合副成分,进一步进行第二预烧,得到电介体原料。

将主成分原料充分混合,得到混合粉末,对该粉末预备热处理(预备预烧),得到预备预烧原料。原料的混合没有特别限定,通过湿式法充分混合20小时左右,然后进行干燥。

预备预烧条件中,预烧温度为900~1100℃,优选为950~1050℃,保持时间优选为1~10小时,直到预烧温度的升温速度为10℃/小时~200℃/小时左右,保持时间经过后的降温速度为200℃/小时以上,优选为300℃/小时以上,更优选为400℃/小时以上。

将预备预烧原料根据需要进行粉碎,添加混合副成分,并进一步进行第二预烧,由此,可以得到第二实施方式的电介体原料。第二预烧温度优选比上述预备预烧温度高,以900~1350℃,优选以1000~1350℃的范围进行。通过这种烧成,在预备预烧的阶段,形成低结晶性的主成分相,然后与副成分一起进行第二预烧,由此,结晶化同时副成分向主成分相扩散,易于得到核-壳结构的电介体原料。

为了得到扩散相的比例较高的电介体颗粒,通过将第二预烧时的保持时间设为比较长,例如设为4小时以上,将保持温度设为较高,例如设为1100℃以上,稀土元素r进行扩散,易于得到扩散相的比例较高的电介体颗粒。

另外,将第二预烧时的到达保持温度之前的100℃~200℃的期间,以缓慢的升温速度(例如10℃/小时以下,优选为5℃/小时以下,进一步优选为2℃/小时以下)进行升温,由此,也可以促进稀土元素r的扩散。例如,在将保持温度设为1100℃的情况下,从室温以上述的较快的升温速度升温到1000℃,并将从1000℃到1100℃以10℃/小时以下,优选以5℃/小时以下,进一步优选以2℃/小时以下的升温速度进行升温,由此,稀土元素在主成分中均匀地扩散,易于得到扩散相中的稀土元素浓度较高的电介体颗粒。理论上没有任何限制,但通过在保持温度之前变慢升温速度,稀土元素结晶化,同时在主成分中扩散,因此认为,得到稀土元素在主成分中均匀地扩散,且扩散相中的稀土元素浓度较高的核壳型电介体颗粒。

这样得到的预烧原料(反应后原料)根据需要进行粉碎。然后,根据需要,将预烧原料和追加的主成分原料、副成分原料进行混合,得到电介体原料。此外,在预烧中,有时一部分成分挥发,且组成变动,因此,成分向预烧原料的添加只要以在烧成后成为期望的组成的方式决定。

(生坯芯片的制备)

接着,将电介体原料涂料化,制备电介体层用糊剂。电介体层用糊剂也可以是将电介体原料和有机载体进行了混炼的有机系涂料,也可以是水系涂料。

有机载体是将粘合剂溶解于有机溶剂中的载体。有机载体中使用的粘合剂没有特别限定,只要从乙基纤维素、聚乙烯醇缩丁醛等通常的各种粘合剂适宜选择即可。使用的有机溶剂也没有特别限定,只要根据印刷法或片材法等、利用的方法,从萜品醇、丁基卡必醇、丙酮、甲苯等各种有机溶剂适宜选择即可。

另外,在将电介体层用糊剂设为水系涂料的情况下,只要混炼将水溶性的粘合剂或分散剂等溶解于水中的水系载体和电介体原料即可。用于水系载体的水溶性粘合剂没有特别限定,例如只要使用聚乙烯醇、纤维素、水溶性丙烯酸树脂等即可。

内部电极层用糊剂通过将由上述的各种导电性金属或合金构成的导电材料、或烧成后成为上述的导电材料的各种氧化物、有机金属化合物、树脂酸盐等、与上述的有机载体进行混炼而制备。另外,也可以在内部电极层用糊剂中含有共材。作为共材,没有特别限制,但优选具有与主成分相同的组成。

外部电极用糊剂只要与上述的内部电极层用糊剂相同地制备即可。

上述的各糊剂中的有机载体的含量没有特别限制,通常的含量,例如粘合剂只要设为1~5质量%左右即可,溶剂只要设为10~50质量%左右即可。另外,各糊剂中,也可以根据需要含有从各种分散剂、增塑剂、电介体、绝缘体等选择的添加物。它们的总含量优选设为10质量%以下。

在使用印刷法的情况下,将电介体层用糊剂及内部电极层用糊剂在pet等基板上印刷、叠层,且切断成规定形状之后,从基板剥离,制成生坯芯片。

另外,在使用片材法的情况下,使用电介体层用糊剂形成生坯片材,在生坯片材上印刷内部电极层用糊剂,之后将它们叠层,切断成规定形状,制成生坯芯片。

(脱粘合剂,烧成,退火)

在烧成前,对生坯芯片实施脱粘合剂处理。作为脱粘合剂条件,优选将升温速度设为5~300℃/小时,优选将保持温度设为180~900℃,优选将温度保持时间设为0.5~24小时。另外,脱粘合剂氛围设为空气或还原性氛围。

在脱粘合剂后,进行生坯芯片的烧成。生坯芯片烧成时的氛围只要根据内部电极层用糊剂中的导电材料的种类适宜决定即可,但在使用ni或ni合金等的贱金属作为导电材料的情况下,烧成氛围中的氧分压优选设为10-14~10-10mpa。氧分压低于上述范围时,内部电极层的导电材料有时引起异常烧结而中断。另外,氧分压超过上述范围时,处于内部电极层氧化的倾向。

另外,烧成时的保持温度优选为1000~1400℃,更优选为1100~1360℃。保持温度低于上述范围时,致密化不充分,超过上述范围时,容易产生内部电极层的异常烧结引起的电极的中断,或内部电极层构成材料的扩散引起的容量温度特性的恶化、电介体陶瓷组合物的还原。

作为除此以外的烧成条件,优选将升温速度设为50~2000℃/小时,更优选设为200~300℃/小时,优选将温度保持时间设为0.5~8小时,更优选设为1~3小时,优选将冷却速度设为50~2000℃/小时,更优选设为200~300℃/小时。另外,烧成氛围优选设为还原性氛围,作为氛围气体,例如可以将n2和h2的混合气体加湿使用。

优选在还原性氛围中烧成后,对电容器元件主体施加退火。退火是用于将电介体层进行再氧化的处理,由此,可以显著延长寿命,因此,可靠性提高。

退火氛围中的氧分压优选设为10-9~10-5mpa。氧分压低于上述范围时,电介体层的再氧化困难,超过上述范围时,处于内部电极层进行氧化的倾向。

退火时的保持温度优选设为1100℃以下,特别优选设为500~1100℃。保持温度低于上述范围时,电介体层的氧化不充分,因此,绝缘电阻较低,且高温负载寿命易于变短。另一方面,保持温度超过上述范围时,内部电极层氧化且容量降低,而且内部电极层与电介体基体反应,而易于产生容量温度特性的恶化、绝缘电阻的降低、高温负载寿命的降低。此外,退火也可以仅由升温过程及降温过程构成。即,也可以将温度保持时间设为零。在该情况下,保持温度与最高温度同义。

作为除此以外的退火条件,优选将温度保持时间设为0~20小时,更优选设为2~10小时,优选将冷却速度设为50~500℃/小时,更优选设为100~300℃/小时。另外,作为退火的氛围气体,例如,优选使用n2或n2+h2o气体等。

脱粘合剂处理、烧成及退火也可以连续进行,也可以独立地进行。

在上述那样得到的电容器元件主体上,通过例如滚筒研磨或喷砂等实施端面研磨,涂布外部电极用糊剂进行烧成,形成外部电极4。然后,根据需要,对外部电极4表面,通过镀敷等形成包覆层。

这样制造的本实施方式的叠层陶瓷电容器通过焊接等安装于印刷基板上等,并用于各种电子设备等。

以上,对本发明的实施方式进行了说明,但本发明不被上述的实施方式作任何限定,可以在不脱离本发明宗旨的范围内进行各种改变。

例如,上述的实施方式中,作为本发明的电子部件,示例了叠层陶瓷电容器,但作为本发明的电子部件,不限定于叠层陶瓷电容器,只要具有上述结构的电介体层即可。

如上述,本发明的电子部件的ir特性及高温负载寿命优异,因此,特别适用作额定电压较高的(例如100v以上的)中高压用途的叠层陶瓷电容器。

实施例

以下,基于更详细的实施例说明本发明,但本发明不限定于这些实施例。

(第一实施方式中的电介体原料的制备)试样编号1~28

作为主成分原料,分别准备碳酸钡(baco3)、碳酸钙(caco3)、碳酸锶(srco3)、氧化钛(tio2)及氧化锆(zro2)。另外,准备作为第一副成分原料的稀土氧化物,作为第二副成分的原料的si及al的氧化物,作为第三副成分原料的氧化镁(mgo),作为第四副成分的原料的mn及cr的氧化物。

以烧成后的组成成为表1所示的组成的方式,称重上述主成分及副成分原料。称重后将各原料进行混合。混合通过利用球磨机进行20小时的湿式混合搅拌而实施。将湿式混合搅拌后的配合物进行脱水干燥。在脱水干燥后,从室温以升温速度200℃/小时升温到1000℃,进一步从1000℃以10℃/小时升温到1100℃,并以1100℃预烧成4小时,根据需要进行粉碎,得到预烧原料(电介体原料)的粉末。

试样23~28中,相同的原料组成中,改变预烧时的升温速度。从室温以升温速度200℃/小时升温到1000℃,且将从1000℃到1100℃的升温速度设为2℃/小时(试样23),5℃/小时(试样24),10℃/小时(试样25),50℃/小时(试样26),100℃/小时(试样27),500℃/小时(试样28),得到预烧原料(电介体原料)的粉末。

(第二实施方式中的电介体原料的制备)试样编号101~131

作为主成分原料,分别准备碳酸钡(baco3)、碳酸钙(caco3)、碳酸锶(srco3)、氧化钛(tio2)及氧化锆(zro2)。以烧成后的主成分组成成为表1所示的组成的方式,称重上述主成分。在称重后,将各原料进行混合。混合通过利用球磨机进行20小时的湿式混合搅拌而实施。将湿式混合搅拌后的配合物进行脱水干燥。脱水干燥后,以1000℃预烧成1小时,根据需要进行粉碎,得到主成分的预烧粉末。

另外,分别准备作为第一副成分原料的稀土氧化物、作为第二副成分的原料的si及al的氧化物、作为第三副成分原料的氧化镁(mgo)、作为第四副成分的原料的mn及cr的氧化物。以烧成后的组成成为表2所示的组成的方式,称重主成分的预烧粉末及副成分原料。在称重后,将各原料进行混合。混合通过利用球磨机进行20小时的湿式混合搅拌而实施。将湿式混合搅拌后的配合物进行脱水干燥。在脱水干燥后,从室温以升温速度200℃/小时升温到1000℃,进一步从1000℃以10℃/小时升温到1100℃,并以1100℃预烧成4小时,根据需要进行粉碎,得到预烧原料(电介体原料)的粉末。

(电介体层糊剂的制备)

接着,将得到的电介体原料:100质量份、聚乙烯醇缩丁醛树脂:10质量份、作为增塑剂的邻苯二甲酸二辛酯(dop):5质量份、作为溶剂的醇:100质量份利用球磨机进行混合而糊剂化,得到电介体层用糊剂。

(内部电极层用糊剂的制备)

另外,与上述不同,将ni颗粒:44.6质量份、萜品醇:52质量份、乙基纤维素:3质量份、苯并三唑:0.4质量份利用三辊进行混炼,进行糊剂化,制作内部电极层用糊剂。

(生坯芯片的制备)

然后,使用上述中制作的电介体层用糊剂,在pet膜上,以干燥后的厚度成为15μm的方式形成生坯片材。接着,在生坯片材上使用内部电极层用糊剂,以规定图案印刷电极层后,从pet膜剥离片材,制作具有电极层的生坯片材。接着,将具有电极层的生坯片材叠层多片,并进行加压粘接,由此,制成生坯叠层体,通过将该生坯叠层体切断成规定尺寸,得到生坯芯片。

(叠层陶瓷电容器的制备)

接着,对于得到的生坯芯片,在下述条件下进行脱粘合剂处理、烧成及退火,得到成为元件主体的烧结体。

脱粘合剂处理条件设为,升温速度:25℃/小时,保持温度:260℃,温度保持时间:8小时,氛围:空气中。

烧成条件设为,升温速度:200℃/小时,保持温度:1200~1300℃,将保持时间设为2小时。降温速度设为200℃/小时。此外,氛围气体设为加湿的n2+h2混合气体,使氧分压成为10-13mpa。

退火条件设为升温速度:200℃/小时,保持温度:1050℃,温度保持时间:2小时,降温速度:200℃/小时,氛围气体:加湿的n2气(氧分压:10-6mpa)。

此外,在烧成及退火时的氛围气体的加湿中使用了润湿剂。

接着,通过喷砂研磨得到的烧结体的端面之后,作为外部电极,涂布in-ga合金,得到图1所示的叠层陶瓷电容器的试样。得到的电容器试样的尺寸为3.2mm×1.6mm×0.6mm,电介体层的厚度设为10μm,内部电极层的厚度设为1.0μm,夹持于内部电极层的电介体层的数设为5。

对于得到的电容器试样,分别通过下述所示的方法进行扩散相的面积比例、扩散相中的稀土元素r、zr的浓度测定、叠层陶瓷电容器的绝缘电阻(ir)及高温负载寿命(mttf)的测定。

扩散相的面积比例

电介体颗粒中的扩散相的面积比例通过图像处理软件等对电介体层截面的显微镜照片进行处理而算出。首先,将电容器试样以与叠层方向垂直的面进行切断,并对该切断面进行化学蚀刻。以倍率20000倍观察截面,对任意选择的200个以上的电介体颗粒算出电介体颗粒的面积。根据该面积算出颗粒的圆当量直径,并求得平均电介体粒径l1ave。另外,进行离子研磨,根据电子显微镜的反射电子图像,也与不存在稀土元素r的区域(核)一样,求得平均核粒径l2ave。此外,在未观察到核部的情况下,核粒径设为零(0)。进一步根据得到的平均电介体粒径l1ave和平均核粒径l2ave,通过下式算出所占电介体层的面积的扩散相(壳)的面积比例(平均壳率)。

平均壳率(%)=100×(1-(l2ave2/l1ave2))

扩散相中的稀土元素r的平均浓度测定

使用附带透射电子显微镜(tem)的能量色散型x射线分光装置(eds),对扩散相中的ti及稀土元素r进行面分析。对150个以上的电介体颗粒进行该面分析。测定5个视野以上的电介体颗粒存在30个左右的区域(视野)。然后,解析通过分析得到的特性x射线,得到表示ti及稀土元素r的分布的映射图像。在各分析点,算出将ti原子的浓度设为100原子%时的稀土元素r的浓度,求得稀土元素r的平均浓度ra。

对于第一实施方式,从全固溶颗粒的晶界附近的除20nm以下的区域以外部分选择测定点。根据各测定点的稀土元素浓度的平均值和测定值的标准偏差,算出(标准偏差/平均值),并评价稀土元素的浓度分布。

另外,对于第二实施方式,从电介体颗粒的晶界附近的除20nm以下的区域以外的部分及、除距主成分相和扩散相的边界20nm以下的区域以外的部分中的扩散相选择测定点。根据各测定点的稀土元素浓度的平均值和测定值的标准偏差,算出(标准偏差/平均值),评价稀土元素的浓度分布。

绝缘电阻(ir)

对于电容器试样,使用绝缘电阻计(advantest株式会社制造r8340a),在20℃下对电容器试样施加10秒钟的500v的直流电压,并测定施加后放置50秒之后的绝缘电阻ir。本实施例中,将1.0×1012ω以上设为良好(a),将2.0×1012ω以上设为优良(s),将低于1.0×1012ω设为不良(f)。

高温负载寿命(mttf)

对于电容器试样,以200℃在60v/μm的电场下保持直流电压的施加状态,并测定电容器试样的绝缘劣化时间,由此,评价高温负载寿命。本实施例中,将从电压施加开始到绝缘电阻下降1位的时间定义为寿命。另外,本实施例中,对10个电容器试样进行上述评价,并将该试样通过威布尔解析而算出的平均故障时间(meantimetofailure)定义为该试样的高温负载寿命。本实施例中,将20小时以上设为良好(a),将40时间以上设为优良(s),将低于20小时设为不良(f)。

将以上结果在下表中汇总。表中,带※记号的试样是权利要求1的范围外的试样,以斜体表示的数值是脱离权利要求1的限定的数值。表2中,带※记号的试样是权利要求3的范围外的试样,以斜体表示的数值是脱离权利要求3的限定的数值。副成分的含量是指以规定的氧化物换算的含量。另外,在使用了多个成分的情况下下一并记载,其含量也一并记载。例如(si,al)(1.5,1.7)是指并用si氧化物1.5摩尔和al氧化物1.7摩尔。

试样1~4及101~104中可知,主成分的m值较小时,由于烧结过多(异常晶粒生长),ir特性变低,m值较大时,副成分不易固溶,因此,高温负载寿命较低。

从试样5~8及105~108可知,通过利用zr置换ti位(batio3→bati1-zzrzo3),能带隙变高,可提高电阻。另一方面,zr过剩时,防止稀土元素向主成分的固溶,因此,高温负载寿命变低。

从试样9及111可知,扩散相中的稀土元素浓度过低时,得不到充分的高温负载寿命。另一方面,从试样12及114可知,扩散相中的稀土元素浓度过高时,得不到充分的ir特性。

从试样18、19、26~28、120、121可知,扩散相中的稀土元素的浓度分布不均匀时,得不到充分的高温负载寿命,从试样12~17、115~119可知,随着稀土元素的浓度分布变得均匀,高温负载寿命提高。

根据这些结果可知,在扩散相,使一定范围的稀土元素均匀地分散,由此,可以兼得较高的ir特性和优异的高温负载寿命。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1