一种CoFe2-xLaxO4铁磁性薄膜及其制备方法与流程

文档序号:15930019发布日期:2018-11-14 01:31阅读:318来源:国知局

本发明属于功能材料领域,涉及在功能化的fto/glass基板表面制备cofe2-xlaxo4(cf2-xlxo)铁磁性薄膜,具体为一种cofe2-xlaxo4铁磁性薄膜及其制备方法。

背景技术

如今世界已经进入了信息时代,随着时代的发展,信息产业的发展离不开储存技术。信息储存技术包括磁记录信息储存技术,光信息储存技术,半导体闪存技术。目前磁记录的储存的技术有很大的优势,并且有很大的发展潜力与应用前景。铁酸钴(cofe2o4),简称cfo,是一种具有磁致伸缩特性的硬磁性材料,具有较高的矫顽场、适中的饱和磁化值、极高的绝缘性、很好的化学稳定性,而且在高频时具有较高的磁导率和较高的介电性能,因此特别适合在高频和超高频下应用。

但由于其存在较小的剩余磁化强度、大的饱和磁化强度与较低的娇顽场,导致其磁滞回线的矩形度较低,限制了铁酸钴在实际中的应用,目前大量的研究都集中在取代cofe2o4中的co3+离子,磁滞回线的矩形度并没有得到改善。



技术实现要素:

本发明的目的在于提供一种cofe2-xlaxo4铁磁性薄膜及其制备方法,该方法设备要求简单,实验条件容易达到,掺杂量容易控制,制得的薄膜为cofe2-xlaxo4铁磁性薄膜,提高了磁滞回线的矩形度,改善了cofe2o4基薄膜的铁磁性能。

本发明是通过以下技术方案来实现:

一种cofe2-xlaxo4铁磁性薄膜,其化学式为cofe2-xlaxo4,x=0.03~0.15,其为立方反尖晶石结构,空间群为fd3m;沿(311)晶面取向生长。

优选的,当x=0.03时,其剩余磁化强度mr=127.5emu/cm3,饱和磁化强度ms=204.8emu/cm3,矩形比r=0.62。

一种所述的cofe2-xlaxo4铁磁性薄膜的制备方法,包括以下步骤:

步骤1,按摩尔比为1:(2-x):x将硝酸钴、硝酸铁和硝酸镧溶于乙二醇甲醚中,搅拌均匀后加入醋酸酐,继续搅拌均匀,得到磁性膜的前驱液;

步骤2,将前驱液旋涂在fto/glass基片上,得到湿膜,湿膜经匀胶后在170~190℃下烘烤得干膜,再于620~640℃下在空气中退火,得到晶态cofe2-xlaxo4薄膜;

步骤3,将晶态cofe2-xlaxo4薄膜冷却至室温,重复步骤2直到达到预设厚度,即得到cofe2-xlaxo4铁磁性薄膜。

优选的,步骤1中,前驱液中金属离子的总浓度为0.2~0.40mol/l。

优选的,步骤1中,前驱液中乙二醇甲醚和醋酸酐的体积比均为(2.5~3.5):1。

优选的,步骤2进行前先将fto/glass基片清洗干净,然后在紫外光下照射,使fto/glass基片表面达到原子清洁度。

优选的,步骤2中匀胶时的匀胶转速为3500~4000r/min,匀胶时间为14~25s。

优选的,步骤2中匀胶后的烘烤时间为12~16min。

优选的,步骤2中的退火时间为35~55min。

与现有技术相比,本发明具有以下有益的技术效果:

本发明的cofe2-xlaxo4铁磁性薄膜,为立方反尖晶石结构、空间群fd3m的cf2-xlxo,la3+离子的掺入,主要是替代了fe,没有替代co离子,使cofe2-xlaxo4铁磁性薄膜的结构相对cofe2o4发生了一定的晶格畸变,提高了铁磁性能。结果表明,没有掺杂la3+离子时,剩余磁化强度mr=119.5emu/cm3,饱和磁化强度ms=265.4emu/cm,矩形比r=0.45;x=0.03时,其剩余磁化强度mr=127.5emu/cm3,饱和磁化强度ms=204.8emu/cm3,矩形比r=0.62。说明la3+离子掺入之后薄膜在不改变剩余磁化强度的基础上,降低了饱和磁化强度,进而影响其矩形比的提高,改善了薄膜的磁性能,得到的cofe2-xlaxo4铁磁性薄膜表现出优异的铁磁性能。

本发明提供的cf2-xlxo铁磁性薄膜的制备方法,采用溶胶-凝胶法,硝酸钴、硝酸铁和硝酸镧为原料,以乙二醇甲醚和乙酸酐为溶剂配制前驱液,再用旋涂法和层层退火的工艺制备了cofe2-xlaxo4薄膜,本发明采用溶胶-凝胶工艺,相比于其他制备薄膜的方法,该方法设备要求简单,实验条件易于实现,成本低廉,反应容易进行,工艺过程温度低,制备过程及掺杂量容易控制,化学组分精确可控,适宜在大的表面和形状不规则的表面上制备薄膜,很容易均匀定量地掺入一些微量元素,可以在短时间内获得原子或分子水平的均匀性,本发明制备的cf2-xlxo铁磁性薄膜均匀性较好,表现出优良的铁磁性能。

附图说明

图1是本发明实施例1-6制备的薄膜的xrd图谱:

图2是本发明实施例1-6制备的薄膜的raman图谱;

图3是本发明实施例1、2制备的薄膜的磁滞回线。

具体实施方式

下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。

一种cofe2-xlaxo4铁磁性薄膜,其中,x=0.03~0.15,为立方反尖晶石结构,空间群为fd3m;沿(311)晶面取向生长。

所述的cofe2-xlaxo4铁磁性薄膜,当x=0.00时,剩余磁化强度mr=119.7emu/cm3,饱和磁化强度ms=265.4emu/cm,矩形比r=0.45;当x=0.03时,剩余磁化强度mr=127.5emu/cm3,饱和磁化强度ms=204.8emu/cm,矩形比r=0.62。

所述的cf2-xlxo铁磁性薄膜的制备方法,包括以下步骤:

步骤1:按摩尔比为1:(2-x):x将硝酸钴、硝酸铁和硝酸镧溶于乙二醇甲醚中,搅拌均匀后加入醋酸酐,继续搅拌均匀,得到前驱液;其中x=0.03~0.15;

步骤2:将前驱液旋涂在fto/glass基片上,得到湿膜,湿膜经匀胶后在170~190℃下烘烤得干膜,再于620~640℃下在空气中退火,得到晶态cofe2-xlaxo4薄膜;

步骤3:将晶态cofe2-xlaxo4薄膜冷却至室温,重复步骤2直到达到所需厚度,即得到cofe2-xlaxo4薄膜。

所述步骤1中前驱液中金属离子的总浓度为0.2~0.4mol/l。

所述前驱液中乙二醇甲醚和醋酸酐的体积比均为(2.5~3.5):1。

所述步骤2进行前先将fto/glass基片清洗干净,然后在紫外光下照射,使fto/glass基片表面达到原子清洁度。

所述步骤2中匀胶时的匀胶转速为3500~4000r/min,匀胶时间为14~25s。

所述步骤2中匀胶后的烘烤时间为12~16min。

所述步骤2中的退火时间为35~55min。

具体实施例如下。

实施例1

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:硝酸钴和硝酸铁为原料,按摩尔比为1:2溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.2mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度;

步骤4:然后将前驱液旋涂在fto/glass基片上,其匀胶转速为4000r/min,匀胶时间为14s,得到湿膜,湿膜在190℃下烘烤14min得干膜,再在640℃下在空气中退火45min,即得晶态cofe2o4薄膜;

步骤5:将晶态cofe2o4薄膜冷却至室温,重复步骤4直到达到所需厚度,即得到cofe2o4(cfo)薄膜。

实施例2

cofe2-xlaxo4铁磁性薄膜,其中,x=0.03,其制备方法为:

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:硝酸钴、硝酸铁和硝酸镧为原料,按摩尔比为1:1.97:0.03溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.2mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度;

步骤4:然后将前驱液旋涂在fto/glass基片上,其匀胶转速为4000r/min,匀胶时间为14s,得到湿膜,湿膜在190℃下烘烤14min得干膜,再在640℃下在空气中退火45min,即得晶态cofe1.97la0.03o4薄膜;

步骤5:将晶态cofe1.97la0.03o4薄膜冷却至室温,重复步骤4直到达到所需厚度,即得到cofe1.97la0.03o4cfl0.03o)铁磁性薄膜。

实施例3

cofe2-xlaxo4铁磁性薄膜,其中,x=0.06,其制备方法为:

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:硝酸钴、硝酸铁和硝酸镧为原料,按摩尔比为1:1.94:0.06溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.2mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度;

步骤4:然后将前驱液旋涂在fto/glass基片上,其匀胶转速为4000r/min,匀胶时间为14s,得到湿膜,湿膜在190℃下烘烤14min得干膜,再在640℃下在空气中退火45min,即得晶态cofe1.94la0.06o4薄膜;

步骤5:将晶态cofe1.94la0.06o4薄膜冷却至室温,重复步骤4直到达到所需厚度,即得到cofe1.94la0.06o4(cfl0.06o)铁磁性薄膜。

实施例4

cofe2-xlaxo4铁磁性薄膜,其中,x=0.09,其制备方法为:

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:硝酸钴、硝酸铁和硝酸镧为原料,按摩尔比为1:1.91:0.09溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.2mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度;

步骤4:然后将前驱液旋涂在fto/glass基片上,其匀胶转速为4000r/min,匀胶时间为14s,得到湿膜,湿膜在190℃下烘烤14min得干膜,再在640℃下在空气中退火45min,即得晶态cofe1.91la0.09o4薄膜;

步骤5:将晶态cofe1.91la0.09o4薄膜冷却至室温,重复步骤4直到达到所需厚度,即得到cofe1.91la0.09o4(cfl0.09o)铁磁性薄膜。

实施例5

cofe2-xlaxo4铁磁性薄膜,其中,x=0.12,其制备方法为:

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:硝酸钴、硝酸铁和硝酸镧为原料,按摩尔比为1:1.88:0.12溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.2mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度;

步骤4:然后将前驱液旋涂在fto/glass基片上,其匀胶转速为4000r/min,匀胶时间为14s,得到湿膜,湿膜在190℃下烘烤14min得干膜,再在640℃下在空气中退火45min,即得晶态cofe1.88la0.12o4薄膜;

步骤5:将晶态cofe1.88la0.12o4薄膜冷却至室温,重复步骤4直到达到所需厚度,即得到cofe1.88la0.12o4(cfl0.12o)铁磁性薄膜。

实施例6

cofe2-xlaxo4铁磁性薄膜,其中,x=0.15,其制备方法为:

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:硝酸钴、硝酸铁和硝酸镧为原料,按摩尔比为1:1.85:0.15溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.2mol/l的稳定前驱液;其中乙二醇甲醚和醋酸酐的体积比为3:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度,

步骤4:然后将前驱液旋涂在fto/glass基片上,其匀胶转速为4000r/min,匀胶时间为14s,得到湿膜,湿膜在190℃下烘烤14min得干膜,再在640℃下在空气中退火45min,即得晶态cofe1.85la0.15o4薄膜;

步骤5:将晶态cofe1.82la0.15o4薄膜冷却至室温,重复步骤4直到达到所需厚度,即得到cofe1.85la0.15o4(cfl0.15o)铁磁性薄膜。

实施例7

cofe2-xlaxo4铁磁性薄膜,其中,x=0.03,其制备方法为:

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:硝酸钴、硝酸铁和硝酸镧为原料,按摩尔比为1:1.97:0.03溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.3mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为2.5:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度;

步骤4:然后将前驱液旋涂在fto/glass基片上,其匀胶转速为3500r/min,匀胶时间为20s,得到湿膜,湿膜在180℃下烘烤12min得干膜,再在630℃下在空气中退火35min,即得晶态cofe1.97la0.03o4薄膜;

步骤5:将晶态cofe1.94la0.06o4薄膜冷却至室温,重复步骤4直到达到所需厚度,即得到cofe1.97la0.03o4(cfl0.03o)铁磁性薄膜。

实施例8

cofe2-xlaxo4铁磁性薄膜,其中,x=0.03,其制备方法为:

步骤1:将fto/glass基片分别用洗洁精、丙酮、无水乙醇清洗干净封存在无水乙醇中备用;

步骤2:硝酸钴、硝酸铁和硝酸镧为原料,按摩尔比为1:1.97:0.03溶于乙二醇甲醚中,搅拌30min,再加入醋酸酐,搅拌90min,得到金属离子总浓度为0.4mol/l的稳定的前驱液;其中乙二醇甲醚和醋酸酐的体积比为3.5:1;

步骤3:将fto/glass基片用去离子水洗净后用n2吹干,再用紫外光照射仪照射洁净的fto/glass基片40min,使fto/glass基片表面达到原子清洁度;

步骤4:然后将前驱液旋涂在fto/glass基片上,其匀胶转速为3800r/min,匀胶时间为25s,得到湿膜,湿膜在170℃下烘烤16min得干膜,再在620℃下在空气中退火55min,即得晶态cofe1.97la0.03o4薄膜;

步骤5:将晶态cofe1.94la0.06o4薄膜冷却至室温,重复步骤4直到达到所需厚度,即得到cofe1.97la0.03o4(cfl0.03o)铁磁性薄膜。

采用ranman测定cf2-xlxo铁磁性薄膜的键震动。用sem测定cf2-xlxo复合多铁薄膜的微观形貌,用美国quantumdesign生产的mpms-xl-7型超导量子干涉磁强计,来获取室温下所制薄膜的磁性能。

对实施例1-6制得的薄膜进行以上测试,结果如图1、图2、图3所示。

图1为本发明实施例1-6制得cf2-xlxo复合多铁薄膜的xrd图,从图中可知,溶胶凝胶方法制备的cofe2-xlaxo4铁磁性薄膜,其中cofe2-xlaxo4薄膜为立方相,尖晶石结构,空间点群为fd3m,铁磁性薄膜中没有其他杂质的出现,但随着la3+掺杂量的增加,cofe2-xlaxo4铁磁性薄膜的(400)晶面的衍射峰则逐渐减弱至消失,并且其(311)晶面的峰也在宽化,说明了la3+离子的掺入会抑制(400)晶面的生长,使其沿(311)晶面取向生长。

图2为本发明实施例1-6制得cf2-xlxo复合多铁薄膜的raman图,从图中可知,溶胶凝胶方法制备的cofe2-xlaxo4铁磁性薄膜的raman光谱470cm-1峰归因于四面体晶格振动,而690cm-1峰则源于八面体晶格的振动,raman光谱对晶格结构是很敏感的,a1g模式对应fe-o伸缩振动,t2g模式对应co-o键伸缩振动,其伴随着la3+离子的掺杂a1g模式的振动出现了明显的减弱,t2g模式的振动出现了微弱的减弱,说明了la3+离子的掺入,主要是替代了fe,没有替代co离子,使cofe2-xlaxo4铁磁性薄膜的结构相对cofe2o4发生了一定的晶格畸变。

图3表明cf2-xlxo铁磁性薄膜,x=0.00时剩余磁化强度mr=119.5emu/cm3,饱和磁化强度ms=265.4emu/cm,矩形比r=0.45;x=0.03时其剩余磁化强度mr=127.5emu/cm3,饱和磁化强度ms=204.8emu/cm3,矩形比r=0.62。说明la3+离子替代fe后,使cofe2-xlaxo4铁磁性薄膜的磁滞回线矩形度提高,铁磁性得到了改善。

以上所述内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不是全部或唯一的实施方式,本领域普通技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明的权利要求所涵盖。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1