低温水热法制备二氧化锰纳米片的方法

文档序号:10641119阅读:3123来源:国知局
低温水热法制备二氧化锰纳米片的方法
【专利摘要】本发明公开了一种低温水热法制备二氧化锰纳米片的方法,是以高锰酸钾为原料,以乙二醇为还原剂,SDS为表面活性剂,采用低温水热法一步合成了二氧化锰纳米片,其片层松散,间隙大,比表面积较大,良好的导电性和超电容性能;而且其原料易得,成本低廉,实用性强,环境友好,在超级电容器电极材料方面有很好的应用前景。
【专利说明】
低温水热法制备二氧化锰纳米片的方法
技术领域
[0001]本发明涉及一种二氧化锰纳米片的制备方法,尤其涉及一种低温水热法制备二氧化锰纳米片的方法,主要用于超级电容器的电极材料。【背景技术】
[0002]随着人类文明的飞速发展,世界人口快速增长,对于传统能源(煤、石油以及天然气)的需求越来越大,由于传统能源不可再生的特性,自身过度消耗以至于其陷入了即将消耗殆尽的困境,更加严重的是,煤、石油和天然气的使用造成了严重的环境污染问题。这些环境问题已经给人类生存,社会发展带来了巨大的威胁,人类也不得不承受环境污染所带来的种种恶果。因此,开发可再生新能源,及清洁能源是世界各国一直面临的重要挑战。目前,新能源主要有核能、生物能、氢能、风能以及海洋能等。新兴能源的优势明显,首先,新能源属于清洁能源,合理利用可以减少环境污染,而且产生较少废料;其次,新能源储量丰富, 能够满足未来经济和社会发展的需求。然而,新能源不是一经拿来就可以直接使用,发展有效利用新能源技术尤为重要。
[0003]储能装置是新能源技术中不可或缺的一环。传统的电能存储装置是静电电容器和各种类型的电池。静电电容器储能少,但可在短时间内输入或者输出能量,具有非常高的功率密度。电池可以将化学能转化为电能,具有很高的能量密度,然而其放电功率有限,输出功率低,因此限制了电池的使用。近年来广泛研究的电能存储器件主要包括锂离子电池和超级电容器。
[0004]目前用于超级电容器的电极材料的有碳材料,如碳气凝胶、碳纳米管、石墨烯等; 导电聚合物,如聚噻吩、聚吡咯、聚苯胺等;金属氧化物,如氧化钌,氧化钴,氧化锰等。由于二氧化钌比较昂贵,且有毒,廉价的金属氧化物变成了最好的替代品。经研究,二氧化锰是电化学性能较为接近二氧化钌的贱金属氧化物,且资源丰富,对环境无污染。二氧化锰的制备方法有:液相沉淀法、溶胶凝胶法、低温固相法、电沉积法以及模板法等。然而高温高压的反应条件不利于二氧化锰产量化生产。
【发明内容】

[0005]本发明的目的是提供一种低温水热法制备二氧化锰纳米片的方法。
[0006]—、二氧化猛纳米片的制备以高锰酸钾为锰源,乙二醇为还原剂,以十二烷基磺酸钠为表面活性剂,在常压下低温水热反应而得。其具体制备工艺如下:将高锰酸钾溶解在水中,形成高锰酸钾溶液,再加入表面活性剂搅拌均匀后,缓慢滴加乙二醇并搅拌均匀;然后升温至40?120°C,搅拌反应60? 120min;反应产物经洗涤干燥,即得二氧化锰纳米片。
[0007]表面活性剂十二烷基磺酸钠(SDS)的用量为高锰酸钾质量的1~5%。
[0008]还原剂乙二醇的用量为高锰酸钾质量的5?10%。
[0009]二、二氧化锰纳米片的结构和貌表征l、x射线衍射(XRD)分析图1为本发明制备的二氧化锰纳米片的X射线衍射分析图。由图1可以看出在20值为 28.5°,38.5°以及65.1°出现衍射峰,分别对应(400 ),( 211 ),( 521)晶面。对照标准比对卡 JCPDS44-0141对比可得,其特征峰与a-Mn02峰值吻合,表明该锰氧化物是典型的a-Mn02晶型。图中还显示该二氧化锰材料的衍射峰宽化严重,峰强度较弱,表明这种材料结晶性不好,结晶程度不高,是典型的晶型结构不完整的无定型结构。[〇〇1〇] 2、红外光谱(IR)分析图2为本发明制备的二氧化锰纳米片的IR分析图。其中a为未添加表面活性剂二氧化锰纳米片的红外曲线,b为添加表面活性剂后二氧化锰纳米片的红外曲线。由图2可以看出,在 a曲线上,在波数为517CHT1是典型的Mn-0振动峰。在1420CHT1出现的是以化学吸附水的形式存在的羟基振动峰,说明所制备的锰氧化物均含有结晶水。从b曲线可以看出,两个样品的出峰位置相同,表面活性剂的添加量并未影响样品成分,唯一不同是在517CHT1处峰形较为尖锐,峰强度更强,而M80的峰型宽而圆润,说明添加表面活性剂后,对材料成分并没有改变,但是对结构有一定影响,这和XRD分析结果一致。[〇〇11]3、扫描电镜(SEM)分析图3为本发明制备的二氧化锰纳米片的扫描电镜图,其中左图为二氧化锰纳米片的低倍率下的SEM照片,右图为高倍率下单层二氧化锰纳米片的SEM照片。由左图可以看出,二氧化锰纳米片呈无序堆积,片层之间相互架构,形成框架结构,片层粗糙,表面具有明显的细小颗粒,有利于电解液的浸润,电极材料和电解质离子充分接触。单片层厚度平均值为 79nm。右图是二氧化锰纳米片单片层在高倍率下的SEM照片,从图中可以看出单片层粗糙, 表面具有褶皱和细小颗粒。通过对整个形貌的观察,主要有两点,第一,精细结构都属于粗糙褶皱结构;第二,片层完整,呈无序堆积状,均没有发生团聚现象,形成多孔洞或多缝隙的结构。以上两点都有助于电解液离子和电极材料的接触,增强材料的电容特性。[〇〇12]通过上述XRD、SEM、IR分析,说明本发明低温水热法制备的二氧化锰纳米片的厚度为70?160nm,片层松散,间隙大,比表面积较大,因而良好的导电性。[〇〇13]三、二氧化锰纳米片的电化学性能测试 1、二氧化锰纳米片电极制备将所制备二氧化锰纳米片,乙炔黑,聚四氟乙烯(质量比:75%: 15%: 10%)均匀混合后涂于IX lcm2的泡沫镍集流体上,60°C真空干燥12h即得。[〇〇14]2、二氧化锰电极电化学性能测试在以二氧化锰电极为工作电极,饱和甘汞电极为参比电极,铂电极为对电极的三电极测试体系中进行测定。饱和Na2S04溶液作为电解液,循环伏安,恒电流充放电均在电化学窗口 -0.1?0.7 V的的条件下测定。[〇〇15]测定结果:二氧化锰纳米片作为超级电容器电极材料,在电流密度为1A ? 时,比电容达到了 184F ? g'电流密度为5A ?时,比电容仍可达到150F ? g'电容保持率为74%(见图4)。[〇〇16]3、二氧化锰电极循环稳定性测试将上述二氧化锰电极置于land电池测试系统以测试循环稳定性。仍然在二氧化锰电极为工作电极,饱和甘汞电极为参比电极,铂电极为对电极的三电极测试体系中进行测定,电解液为饱和Na2S〇4溶液,电化学窗口 -0.1?0.7V,循环圈数1500。
[0017]测定结果:在5A ? 的条件下,充放电1500圈,未见电容衰减,保持率为100%(见图5)〇[〇〇18]综上所述,本发明以高锰酸钾为锰源,以乙二醇做还原剂,将高价锰还原为低价态锰;以长链烷基十二烷基磺酸钠为表面活性剂,增加了片层间距,增大了电解液接触面积, 实现质子的直接嵌入/脱出,从而体现了良好的导电性和超电容性能。另外,本发明原料易得,成本低廉、实用性强,且环境友好,在超级电容器方面有很好的应用前景。【附图说明】
[0019]图1为本发明制备的具有良好导电性二氧化锰纳米片的X射线衍射分析图。
[0020]图2为本发明制备的具有良好导电性二氧化锰纳米片的红外分析图。
[0021]图3为本发明制备的具有良好导电性二氧化锰纳米片的扫描电镜图。
[0022]图4为本发明制备的具有良好导电性二氧化锰纳米片的循环伏安图。
[0023]图5为本发明制备的具有良好导电性二氧化锰纳米片的循环稳定性图。【具体实施方式】
[0024]下面通过具体实施例对本发明二氧化猛纳米片合成及结构表征作进一步的说明。
[0025]实施例一1、二氧化锰纳米片的制备常温下,将32mg高锰酸钾溶解在40ml水中,形成均匀高锰酸钾溶液,再加入2.7mg表面活性剂SDS搅拌均匀;再缓慢滴加2ml乙二醇并搅拌均匀;然后升温至80 °C,搅拌反应 120min;反应产物经洗涤、干燥,即得二氧化锰纳米片。其结构表征见图1、2、3。[〇〇26]2、二氧化锰纳米片电极制备将二氧化锰纳米片、乙炔黑、聚四氟乙烯分别按75%: 15%: 10%的质量比均匀混合后涂于 1 X 1 cm2的泡沫镍集流体上,60 °C真空干燥12h。每个工作电极上二氧化锰纳米片的含量约为2mg,将混合物均匀铺平后,工作电极几何表面积约为lcm2。[〇〇27]3、二氧化锰电化学特性二氧化锰纳米片作为超级电容器电极材料,在电流密度为1A ? g^1时,比电容达到了 184F ? g—I电流密度为5A ? g—1时,比电容仍可达到150F ? g—I电容保持率为74%。
[0028]将上述二氧化锰电极置于land电池测试系统以测试循环稳定性。在二氧化锰电极为工作电极,饱和甘汞电极为参比电极,铂电极为对电极的三电极测试体系中进行测定,电解液为饱和Na2S〇4溶液,电化学窗口 -0.1?0.7V,循环圈数1500。测定结果:在5A ? gl勺条件下,充放电1500圈,未见电容衰减,保持率为100%。[〇〇29]实施例二1、二氧化锰纳米片的制备:不加入表面活性剂SDS,其它与实施例一同。
[0030]2、二氧化锰纳米片电极制备:同实施例一。
[0031]3、二氧化锰电化学特性:测试条件和测试方法同实施例一。[〇〇32] 测试结果:在电流密度为1A ?时,比电容达到了 160F ? g<,电流密度为5A ?时,比电容仍可达到91?*84,电容保持率为56.9%。
[0033]实施例三常温下,将32mg高锰酸钾溶解在40ml水中,形成均匀高锰酸钾溶液,再加入2.7mg表面活性剂SDS;再缓慢滴加2ml乙二醇并搅拌均勾;然后转移至40°C水浴中,搅拌反应120min; 反应产物经洗涤、干燥,即得二氧化锰纳米片。
[0034]2、二氧化锰纳米片电极制备:同实施例一。
[0035]3、二氧化锰电化学特性:测试条件和测试方法同实施例一。[〇〇36] 测试结果:在电流密度为1A ? 时,比电容达到了 164F ? g<,电流密度为5A ? 时,比电容仍可达到125?*8'电容保持率为76.2%。[〇〇37]实施例四常温下,将32mg高锰酸钾溶解在40ml水中,形成均匀高锰酸钾溶液,再加入2.7mg表面活性剂SDS;再缓慢滴加2ml乙二醇并搅拌均匀;然后转移至120°C水浴中,搅拌反应120min; 反应产物经洗涤、干燥,即得二氧化锰纳米片。[〇〇38]2、二氧化锰纳米片电极制备:同实施例一。
[0039]3、二氧化锰电化学特性:测试条件和测试方法同实施例一。
[0040]测试结果:在电流密度为1A ? 时,比电容达到了 125F ? g<,电流密度为5A ?时,比电容仍可达到92F ? gi,电容保持率为74%。[〇〇41 ] 实施例五常温下,将32mg高锰酸钾溶解在40ml水中,形成均匀高锰酸钾溶液,再加入2.7mg表面活性剂SDS;再缓慢滴加2ml乙二醇并搅拌均匀;然后转移至80°C水浴中,搅拌反应60min;反应产物经洗涤、干燥,即得二氧化锰纳米片。
[0042]2、二氧化锰纳米片电极制备:同实施例一。
[0043]3、二氧化锰电化学特性:测试条件和测试方法同实施例一。
[0044]测试结果:在电流密度为1A ? 时,比电容达到了 144F ? g<,电流密度为5A ?时,比电容仍可达到47F ? gi,电容保持率为33%。
[0045]实施例六常温下,将32mg高锰酸钾溶解在40ml水中,形成均匀高锰酸钾溶液,再加入4.8mg表面活性剂SDS;再缓慢滴加2ml乙二醇并搅拌均匀;然后转移至80°C水浴中,搅拌反应60min;反应产物经洗涤、干燥,即得二氧化锰纳米片。
[0046]2、二氧化锰纳米片电极制备:同实施例一。
[0047]3、二氧化锰电化学特性:认识条件和测试方法同实施例一。[〇〇48] 测试结果:在电流密度为1A ? 时,比电容达到了 157F ? g<,电流密度为5A ?时,比电容仍可达到75F ? gi,电容保持率为48%。
【主权项】
1.低温水热法制备二氧化锰纳米片的方法,是以高锰酸钾为锰源,乙二醇为还原剂,以 十二烷基磺酸钠为表面活性剂,在常压下低温水热反应而得。2.如权利要求1所述低温水热法制备二氧化锰纳米片的方法,其特征在于:将高锰酸钾 溶解在水中,形成高锰酸钾溶液,再加入表面活性剂搅拌均匀后,缓慢滴加乙二醇并搅拌均 匀;然后升温40?120°C,搅拌反应60?120min;反应产物经洗涤干燥,即得二氧化锰纳米片。3.如权利要求1或2所述低温水热法制备二氧化锰纳米片的方法,其特征在于:表面活 性剂十二烷基磺酸钠的用量为高锰酸钾质量的1~5%。4.如权利要求1或2所述低温水热法制备二氧化锰纳米片的方法,其特征在于:还原剂 乙二醇的用量为高锰酸钾质量的5?10%。
【文档编号】C01G45/02GK106006746SQ201610305538
【公开日】2016年10月12日
【申请日】2016年5月10日
【发明人】杨武, 黄萍, 郭昊, 包慧芳, 安惠惠, 林丹
【申请人】西北师范大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1