一种加氢催化剂及其制备方法与应用的制作方法

文档序号:3478796阅读:336来源:国知局
一种加氢催化剂及其制备方法与应用的制作方法
【专利摘要】本发明公开了一种选择加氢催化剂,其包括载体和负载于载体上的主活性组分Pd和助活性组分Ag、Bi,其特征在于:采用XPS分析,催化剂表面Pd与O原子数百分含量之比为4×10-4~30×10-4,Ag与O原子数百分含量之比为15×10-4~60×10-4;助活性组分Bi与主活性组分Pd的重量比为0.01~5。该催化剂用于选择性加氢反应时,同时具有很好的催化活性和很好的选择性。
【专利说明】一种加氢催化剂及其制备方法与应用
【技术领域】
[0001 ] 本发明涉及一种加氢催化剂及其制备方法与应用。
【背景技术】
[0002]在石油化工领域,乙烯、丙烯、丁烯等产品通常通过蒸汽裂解、催化裂化或热裂化过程制备。这些过程获得的产物中除所需的烯烃等产品外,还含有少量的炔烃或二烯烃,这些杂质对于后续的聚合等反应是有害的,并且可能会导致爆炸危险。在工业上,通常使用选择性催化加氢方法,将其中炔烃和二烯烃的浓度脱除到很低的水平(摩尔分数〈I X IO-6),以获得聚合级的产品;同时还可增加单烯烃的产量,提高资源利用率。在C4馏分中,根据原料的差异和对产品的需求,有时要对富丁二烯馏分进行选择性加氢脱除炔烃以获得丁二烯产品。在催化裂化汽油中通常包含较多的二烯烃,一般也使用催化加氢的方法去除。由于原油价格飞涨导致石油化工产品价格的上涨,以及后续工艺对原料纯度要求的不断提高,石油化工行业对负载型加氢催化剂的选择性和活性也提出了越来越高的要求。
[0003]工业应用的选择加氢催化剂多以钯(Pd)为主活性组分,并添加银(Ag)等助活性组分以改善催化剂的烯烃选择性。但由于Ag对Pd的活性有明显的抑制作用,Ag含量过高会使催化剂的活性降低,Ag含量过低又会使催化剂的选择性变差。为了解决这一问题,许多文献采用了添加其他元素的方法。如美国专利US 7247760向催化剂中加入碘(I)元素,提高了催化剂的选择性和稳定性。据美国专利US 20060178262,铱(Ir)的加入可以提高催化剂的选择性,减少绿油的生成。
[0004]有研究表明,选择加氢催化剂的活性中心主要分布在催化剂表面,催化剂表面Pd、Ag的含量对催化剂的性能有直接影响。X射线能谱(XPS)的分析深度约为5nm,可对催化剂表层的表层元素进行定量分析。因此,XPS分析结果可以作为反应催化剂表层性质的一项特征,对不同性能的催化剂样品进行区分。
[0005]对于以氧化物为载体的加氢催化剂,其表面Pd、Ag含量可以表不为XPS结果中Pd、Ag与O的原子含量比例,即Pd/0、Ag/0。Pd/Ο过低,说明催化剂表面缺少足够的反应位点,催化活性会受到影响;Pd/0过高,则说明Pd原子在催化剂表面的分布过于紧密,这通常是由于Pd粒子过大或发生烧结等因素导致的,同样会导致催化剂性能变差。Ag/Ο会对催化剂的活性、选择性和长周期稳定性造成影响:Ag/0过低会使催化剂的选择性和长周期稳定性变差,Ag/Ο过高则会影响到催化剂的活性。因此,只有表面Pd、Ag含量保持在一定范围内的催化剂,才能在催化反应中表现出良好的综合性能。
[0006]制备方法是影响催化剂表面的Pd、Ag含量的最主要因素,活性组分的负载次序、溶液酸碱性的调节方式、催化剂的活化方法等都会对表面Pd、Ag含量造成直接影响。现有的加氢催化剂通常采用浸溃-焙烧法生产:即将含活性组分的溶液(多为盐溶液)与制备好的载体充分接触,使活性组分负载到载体上,干燥后于高温下焙烧,使金属盐分解为相应的氧化物。Pd前体溶液多为强酸性,为了防止酸性溶液对催化剂表面性质造成不利影响,传统方法通常需要对Pd前体溶液的pH值调节为弱酸性或近中性,此时Pd前体更多的停留在载体表面,Pd粒子在随后的焙烧或还原过程中更容易生长为较大粒子。另一方面,焙烧过程中的高温过程也会导致活性组分烧结,使催化剂的性能变差。
[0007]因此,如何避免现有制备方法对催化剂活性组分状态的影响,从而进一步提高催化剂的选择性和活性仍然是目前需要解决的技术问题。

【发明内容】

[0008]为了克服现有技术遇到的问题,发明人做了大量实验,意外的发现,只有控制催化剂表面的Pd/Ο原子数比、Ag/Ο原子数比以及催化剂中铋/钯重量比均在一定范围内,催化剂才会同时具有很好的催化活性和很好的选择性。
[0009]本发明的目的之一是提供一种具有优良的催化活性和选择性的加氢催化剂。具体的,本发明的加氢催化剂,其包括载体和负载于载体上的主活性组分Pd和助活性组分Ag、Bi,其特征在于:
[0010]a)采用XPS分析,催化剂表面Pd与O原子数百分含量之比为4X 10_4~30X 10_4,优选6~20 X 10_4,Ag与O原子数百分含量之比为15 X KT4~60 X 10-4,优选16~45Χ10-4 ;
[0011]b)助活性组分Bi与主活性组分Pd的重量比为0.0f 5,优选为0.f 1,更优选为0.2~0.6。
[0012]Pd/Ο与Ag/Ο的 具体数值由X射线能谱(XPS)分析确定。在获得样品的XPS全谱后,每一元素选取对应的一个强峰,扣除背景计算峰面积,再采用灵敏度因子法(XPS仪器软件内自带的处理方法)计算出该元素的原子数百分比。在本发明使用XPS谱图计算Pd/0与Ag/o数值时,Pd选取Pd3d峰,Ag选取Ag3d5峰,O选取Ols峰。现代XPS能谱仪附有数据处理软件,本领域技术人员可以很容易地对谱图进行处理,计算出各元素的原子数百分比,进而获得Pd/Ο与Ag/Ο的具体数值。
[0013]在通常情况下,不同品牌型号的XPS能谱仪在其优化条件下进行测试,所获得的结果应具有良好的一致性。虽然XPS能谱仪所采用的X射线种类以及仪器本身的区别仍然可能会对测试结果造成微小的影响,但这种影响不会对本发明的结论造成影响。尽管如此,为了保证测试结果的一致性,发明人推荐采用单色Al Kd X射线源,并且使用与本发明【具体实施方式】中的对比例与实施例相同的条件进行测试。
[0014]本发明所述的主活性组分钯含量为载体总重的0.001-5wt%,优选0.008^1wt%,更优选0.01~0.5wt% ;银含量为载体总重的0.001~5wt%,优选为0.005~lwt%,更优选为.0.01^0.5wt%。
[0015]本发明的催化剂载体为氧化物,选自氧化铝、膨润土、粘土、硅藻土、沸石、分子筛、氧化钛、氧化镁、氧化硅中的一种或它们中两种以上的混合物,优选自氧化铝、分子筛、氧化钛、氧化硅中的一种或它们中两种以上的混合物。载体的比表面范围为f500m2/g,优选为5~280m2/g。优选使用形状为粒状、球形、齿形、环形、齿球形、片形、条形或三叶草等条形的载体。
[0016]本发明的催化剂还可以包含改性组分,改性组分选自Sb、Pb、In以及不同于钯的第VIII族元素、第IB组元素、稀土元素、碱金属元素、碱土金属元素、卤族元素中的至少一种,其含量为载体总重的(Tl0wt%。添加改性组分的目的包括改善催化剂的选择性、提高催化剂的长周期运行稳定性。本发明催化剂所包含的改性组分可优选自Au、K、Na、La、Ce、Cl中的至少一种。
[0017]本发明的另一个目的在于提供一种制备上述选择加氢催化剂的方法。
[0018]具体的,这种制备方法其特征在于,包括以下步骤:。
[0019]a)主活性组分Pd前体先于助活性组分Ag前体和助活性组分Bi前体负载于载体之上;
[0020]b)使用碱液浸溃的方法调整载体表面的酸碱度,碱液可于负载Pd前体之前、负载Pd前体之后未负载Ag和Bi前体之前、或负载Ag和Bi前体之后施加于载体;
[0021]c)采用电离辐射照射负载有主活性组分和助活性组分的载体。
[0022]所述的Pd前体为硝酸钯或氯化钯,优选硝酸钯;Ag前体和Bi前体分别优选硝酸银和硝酸铋。通常将上述前体配制为对应的水溶液或稀酸溶液,采用等体积浸溃法或不饱和浸溃法负载于载体之上。
[0023]在将Pd前体负载于载体之后,可对载体进行干燥或焙烧,然后再负载Ag和Bi前体;在载体饱和吸水率较高时,也可采用不饱和浸溃法,将Pd前体、Ag和Bi前体连续负载于载体之上。
[0024]负载Ag和Bi前体时,可采用混合浸溃的方式一次负载,也可采用独立浸溃的方式分步负载;在采用分步负载时,两次浸溃之间可对载体进行烘干处理。优选采用混合浸溃的方式将Ag和Bi同时负载于 载体之上。
[0025]本发明的制备方法使用碱液浸溃的方法调整载体表面的酸碱度,因此在负载Pd前体时,无须调节Pd前体溶液的pH值。所述的碱液选自氢氧化钠、氢氧化钾、碳酸氢钠、碳酸氢钾、碳酸钠、碳酸钾中一种或两种及以上的水溶液;优选氢氧化钠、氢氧化钾的水溶液。
[0026]碱液通过等体积浸溃法或不饱和浸溃法施加于载体之上。碱液可于负载Pd前体之前、负载Pd前体之后未负载Ag和Bi前体之前、或负载Ag和Bi前体之后施加于载体,优选在负载Ag和Bi前体之后施加于载体。在施加碱液之前,可对载体进行烘干处理。
[0027]碱液的参考用量的计算方法为:
[0028]碱液参考用量(L)=负载于载体上的所有前体溶液中的氢离子总量(mol) /[碱液的摩尔浓度(mol/L) X单个碱分子可中和的氢离子数]
[0029]碱液的实际用量可以根据载体的性质,在参考用量的基础上适当减少或增加。本领域技术人员可以根据催化剂样品的性能表现确定碱液的合适用量。
[0030]本发明的制备方法采用电离辐射照射负载有主活性组分和助活性组分的载体。发明人发现,当电离辐射作用于氧化物载体时,大部分能量被载体吸收,在晶格内生成激发电子和空穴,使得载体的电子性质发生改变。这种作用一方面增强了 Pd粒子与载体之间的相互作用,使得Pd在载体上的分散更均匀;另一方面还能增强Pd粒子对反应物的吸附能力,进而提高催化剂的反应性能。此外,以电离辐射照射过程代替传统制备方法中的高温焙烧过程,还可避免烧结作用的影响,进一步提高催化剂的性能。
[0031]所述的电离辐射可选自Y射线、X射线或电子束;射线源可选6tlCo ( Y源)、137Cs(Y源)、X射线源或电子加速器(电子束),优选6°(:0、乂射线源或电子加速器,更优选6°&)。所述的电离辐射辐照所用的电离辐射的吸收剂量率为1-1Χ 107Gy/min,优选l(Tl0000Gy/min,更优选20~100Gy/min ;电离福射的吸收剂量为0.01~I X 105kGy,优选5~lOOkGy。所述的电离辐射辐照过程优选在惰性气氛和真空中进行;所述的电离辐射辐照过程可在各种温度下进行,优选在室温下进行。
[0032]在电离辐射辐照过程之前,优选向负载有活性组分前体的载体添加自由基清除剂溶液。所述的自由基清除剂选自醇类和甲酸中的至少一种,优选自甲醇、乙醇、乙二醇、异丙醇中的至少一种,更优选异丙醇和乙二醇。在被辐照体系中,自由基清除剂的体积与体系中全部液体的体积比可选1%?99%,优选5%?50%。
[0033]在本发明优选的制备方法中,通常不需将负载有主活性组分和助活性组分的载体烘干,向其中加入自由基清除剂溶液后可直接使用电离辐射进行辐照。将电离辐射辐照后的载体经适量去离子水洗涤1-5次后烘干,也可不经洗涤直接烘干,烘干后即获得本发明所述的催化剂。烘干可在空气气氛或真空下进行,优选在空气气氛下进行。烘干温度可选5(T200°C,优选5(Tl20°C。烘干时间可选5?48小时,优选5?24小时。
[0034]本发明的催化剂可应用于石油化工生产中的选择性加氢反应中,优选应用于蒸汽裂解、催化裂化或热裂化过程中产生的裂解气、乙烯、丙烯、丁烯和汽油之一的产物中炔烃及二烯烃的选择性脱除,更优选应用于乙烯装置中含乙烯物流中乙炔和/或其他炔烃、二烯烃的选择性脱除。
[0035]本发明的选择加氢催化剂及其制备方法,具有以下显著优点:
[0036](I)加入适量Bi可以降低催化剂中Ag含量,从而降低了 Ag对催化剂活性的不利影响,提闻了催化剂的性能;
[0037](2)催化剂表面具有特殊的Pd、Ag原子数百分含量比例,在使催化剂具有充足的Pd位点的同时避免了 Pd粒子聚并的不利影响,同时保证了催化剂具有良好的选择性和长周期稳定性;
[0038](3)采用先负载Pd及使用碱液浸溃的方法调整载体表面的酸碱度的方法,可避免Pd前体在载体表面过度聚集并生长;
[0039](4)采用电离辐射辐照过程代替传统制备方法的高温焙烧步骤,可增强Pd粒子与载体之间的相互作用,改善Pd在载体表面的分散情况,同时避免烧结作用对催化剂性能的不利影响。
【具体实施方式】
[0040]此处所描述的【具体实施方式】仅用于说明和解释本发明,并不用于限制本发明。
[0041]实施例1
[0042]取50ml 含 Pd 0.6mg/ml Pd (NO3) 2 溶液,浸溃至 100.0g Al2O3 球形载体(BET 比表面积 29.6m2/g)上,120°C烘干 IOh ;再使用 50ml 含 Ag 1.2mg/ml 和 Bi 0.2mg/ml 的硝酸银、硝酸钯混合溶液浸溃载体,120°C烘干2h ;再使用30ml浓度为0.35mol/L的KOH溶液浸溃载体。向浸溃后的载体加入20ml50% v/v的异丙醇水溶液,在真空状态下使用6tlCo Y辐射源内于室温下辐照15h,吸收剂量率为35Gy/min。辐照后样品依次在80°C和120°C下烘干12h,得到所述催化剂A,其外观为灰色,活性组分含量(相对于载体质量,下同)为:Pd0.030wt%, Ag 0.060wt%, Bi 0.0lOwt%。
[0043]实施例2
[0044]制备方法同实施例1,区别是在浸溃Ag、Bi溶液并烘干后,使用NaOH溶液浸溃载体。得到所述催化剂B,其外观为灰色,活性组分含量为=Pd 0.030wt%, Ag 0.060wt%, Bi0.010wt%o
[0045]实施例3
[0046]制备方法同实施例1,区别是浸溃Pd溶液并烘干后,先使用50ml含Agl.2mg/ml的硝酸银溶液浸溃载体,120°C烘干2h ;再使用含Bi 0.2mg/ml的硝酸铋溶液浸溃载体,120°C烘干2h。得到所述催化剂C,其外观为灰色,活性组分含量为:Pd 0.030wt%, Ag 0.060wt%,Bi 0.010wt%o
[0047]实施例4
[0048]制备方法同实施例3,区别是浸溃Pd溶液并烘干后,先负载Bi前体,后负载Ag前体。得到所述催化剂D,其外观为灰色,活性组分含量为=Pd 0.030wt%, Ag 0.060wt%, Bi0.010wt%o
[0049]实施例5
[0050]制备方法同实施例1,区别是以PdCl2为前体,且KOH溶液浓度为0.07mol/L0得到所述催化剂E,其外观为灰色,活性组分含量为:Pd 0.030wt%, Ag 0.060wt%, Bi0.010wt%o
[0051]实施例6
[0052]制备方法同实施例1,区别是Pd(NO3)2溶液中Pd的含量为0.9mg/ml。得到所述催化剂F,其外观为灰色,活性组分含量为=Pd 0.045wt%, Ag 0.060wt%, Bi 0.010wt%o
[0053]实施例7
[0054]制备方法同实施例1,区别是硝酸银、硝酸铋混合溶液中Bi的含量为0.32mg/ml ο得到所述催化剂G,其外观为灰色,活性组分含量为=Pd 0.030wt%, Ag 0.060wt%, Bi0.016wt % ο
[0055]实施例8
[0056]制备方法同实施例1,区别是硝酸银、硝酸铋混合溶液中Ag的含量为2.0mg/mL.得到所述催化剂H,其外观为灰色,活性组分含量为:Pd 0.030wt%, Ag 0.1OOwt %, Bi
0.010wt%o
[0057]实施例9
[0058]制备方法同实施例1,区别是所用载体的比面为82.3m2/g。得到所述催化剂1,其外观为灰色,活性组分含量为:Pd 0.030wt%, Ag 0.100wt%, Bi 0.010wt%o
[0059]对比例I
[0060]取30ml 含 Pd 1.0mg/ml Pd(NO3)2 溶液,滴加 lmol/L NaOH溶液约 3.2ml,调节溶液pH至2.3,再稀释至50ml,浸溃至100.0g Al2O3球形载体(BET比表面积29.6m2/g)上,120°C烘干IOh ;再使用50ml含Ag 0.12mg/ml和Bi 0.02mg/ml的硝酸银、硝酸IE混合溶液浸溃载体。向浸溃后的载体加入20ml 50% v/v的异丙醇水溶液,在真空状态下使用6ciCo Y辐射源内于室温下辐照15h,吸收剂量率为35Gy/min。辐照后样品依次在80°C和120°C下烘干12h,得到所述催化剂J,其外观为灰色,活性组分含量(相对于载体质量)为:Pd 0.030wt%,Ag 0.060wt%, Bi 0.0lOwt%。
[0061]对比例2
[0062]制备方法同实施例1,区别是使用KOH溶液浸溃载体后,120°C烘干10h,然后将载体于450°C下焙烧4h。得到所述催化剂K,其外观为土黄色,活性组分含量为:Pd 0.030wt%,Ag 0.060wt%,Bi 0.010wt%。
[0063]对比例3
[0064]制备方法同实施例1,区别是首先浸溃硝酸银、硝酸铋混合溶液并烘干,之后再浸溃硝酸钯溶液。得到所述催化剂L,其外观为灰色,活性组分含量为:Pd 0.030wt%, Ag
0.060wt%, Bi 0.0lOwt%。
[0065]对比例4
[0066]制备方法同实施例1,区别是浸溃Pd溶液并烘干后,只使用50ml含Agl.2mg/ml的硝酸银溶液浸溃载体。得到所述催化剂M,其外观为灰色,活性组分含量为:Pd 0.030wt%,Ag 0.060wt% ο
[0067]对比例5
[0068]制备方法同对比例1,区别是浸溃Pd溶液并烘干后,只使用50ml含Agl.2mg/ml的硝酸银溶液浸溃载体,120°C烘干IOh ;然后将载体于450°C下焙烧4h。得到所述催化剂N,其外观为土黄色,活性组分含量为:Pd 0.030wt%, Ag 0.060wt%。
[0069]对比例6
[0070]制备方法同对实施例1,区别是Ag、Bi混合溶液中Bi的浓度为4mg/ml,得到所述催化剂0,其外观为浅灰色,活性组分含量为=Pd 0.030wt%,Ag0.060wt%,Bi 0.20wt%o
[0071]对比例7
[0072]制备方法同对实施例1,区别是Ag、Bi混合溶液中Ag的浓度为0.14mg/ml, Bi的浓度为4mg/ml,得到所述催化剂P,其外观为浅灰色,活性组分含量为:Pd 0.030wt%, Ag
0.070wt%, Bi 0.20wt%。
[0073]使用X 射线能谱仪(Thermofisher ESCALAB250 ;X 射线源为 Al Ka, 15kV,150W)测试催化剂A-L的表层XPS全谱,使用Thermo Avantage软件进行背景扣除,计算各元素峰面积,再采用软件内置的灵敏度因子法计算出该元素的原子数百分比。其中Pd选取Pd3d峰,Ag选取Ag3d5峰,O选取Ols峰。测试结果列于表I中。
[0074]由表I结果可以看出,采用本发明方法制备的催化剂样品A-1,其催化剂表面的Pd/0、Ag/0值均在本发明权利要求的范围内(Pd/Ο: 4?30;Ag/0: 15?60)。采用调节Pd溶液pH值的方法(催化剂J),Pd在催化剂表面严重富集;采用焙烧分解法(催化剂K)或采用先负载Ag、Bi的方法(催化剂L),催化剂表面的Ag含量过低。
[0075]表I催化剂A-L的XPS测试结果
[0076]
【权利要求】
1.一种加氢催化剂,其包括载体和负载于载体上的主活性组分Pd和助活性组分Ag、Bi,其特征在于: a)采用XPS分析,催化剂表面Pd与O原子数百分含量之比为4X10_4~30X 10_4,Ag与O原子数百分含量之比为15 X 10_4~60 X10—4; b)助活性组分Bi与主活性组分Pd的重量比为0.0f 5。
2.根据权利要求1所述的催化剂,其中,采用XPS分析,催化剂表面Pd与O原子数百分含量之比为6~20X 10Λ Ag与O原子数百分含量之比为16~45Χ 10_4。
3.根据权利要求1所述的催化剂,其中,所述的助活性组分Bi与主活性组分Pd的重量比为0.f 1,优选为0.2^0.6。
4.根据权利要求1所述的催化剂,其中,所述的载体选自氧化铝、膨润土、粘土、硅藻土、沸石、分子筛、氧化钛、氧化镁、氧化硅中的一种或它们中两种以上的混合物,比表面为I~500m2/g。
5.根据权利要求5所述的催化剂,其中,所述的载体选自氧化铝、分子筛、氧化钛、氧化硅中的一种或它们中两种以上的混合物,其形状为粒状、球形、齿形、环形、齿球形、片形、条形或三叶草形状,其比表面为5~280m2/g。
6.根据权利要求1所述的催化剂,其中,还包含改性组分,所述的改性组分选自Sb、Pb、In以及不同于钯的第VIII族元素、第IB组元素、稀土元素、碱金属元素、碱土金属元素、卤族元素中的至少一种,其含量为载体总重的(Tl0wt%。
7.如权利要求1~6之一所述的催化剂的制备方法,其特征在于,包括以下步骤: a)主活性组分Pd前体先于助 活性组分Ag前体和Bi前体负载于载体之上; b)使用碱液浸溃的方法调整载体表面的酸碱度,碱液可于负载Pd前体之前、负载Pd前体之后未负载Ag和Bi前体之前、或负载Ag和Bi前体之后施加于载体; c)采用电离辐射照射负载有主活性组分和助活性组分的载体。
8.根据权利要求7所述的方法,其中,所述的Pd前体为硝酸钯或氯化钯,优选硝酸钯。
9.根据权利要求7所述的方法,其中,所述的Ag前体为硝酸银,Bi前体为硝酸铋。
10.根据权利要求7所述的方法,其中,将所述的助活性组分Ag前体与Bi前体配制成混合溶液负载于已经负载有Pd前体的载体上。
11.根据权利要求7所述的方法,其中,所述的碱液选自氢氧化钠、氢氧化钾、碳酸氢钠、碳酸氢钾、碳酸钠、碳酸钾中一种或两种及以上的水溶液,碱液通过等体积浸溃法或不饱和浸溃法调整载体表面的酸碱度。
12.根据权利要求7所述的方法,其中,所述的电离辐射为Y射线、X射线或电子束。
13.根据权利要求7所述的方法,其中,所用的电离辐射的吸收剂量率为TlXlO7Gy/min,优选 0.01 ~I X 105kGy。
14.根据权利要求7所述的方法,其中,在采用电离辐射照射之前,向负载有活性组分前体的载体添加自由基清除剂溶液,所述的自由基清除剂选自醇类和甲酸中的一种或几种,优选甲醇、乙醇、乙二醇、异丙醇和甲酸中的一种或几种。
15.权利要求1~6之一所述的催化剂应用于石油化工生产中的选择性加氢反应中,优选应用于蒸汽裂解、催化裂化或热裂化过程中产生的裂解气、乙烯、丙烯、丁烯和汽油之一的产物中炔烃及二烯烃的选择性脱除,更优选应用于乙烯装置中含乙烯物流中乙炔和/或其他 炔烃、二烯烃的选择性脱除。
【文档编号】C07C7/167GK103801293SQ201210436538
【公开日】2014年5月21日 申请日期:2012年11月5日 优先权日:2012年11月5日
【发明者】于海波, 毛祖旺, 乐毅, 穆玮, 刘海江, 彭晖, 戴伟 申请人:中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1