高分子量聚(亚芳基硫醚酮)的制备的制作方法

文档序号:1442阅读:406来源:国知局
专利名称:高分子量聚(亚芳基硫醚酮)的制备的制作方法
本发明涉及聚(亚芳基硫醚酮)的制备方法。本发明还涉及由碱金属氢硫化物与碱金属氢氧化物的反应产物而制得的聚(亚芳基硫醚酮)。本发明还涉及采用碱金属硫化物和碱金属氢硫化物而制得的聚(亚芳基硫醚酮)。本发明也涉及由这些聚(亚芳基硫醚酮)制得的纤维和其它制品。
聚(亚芳基硫醚酮),PASK,是一类重要的热塑性工程塑料。聚(亚芳基硫醚酮)由于其熔点高而引起工业部门的注意,用于制造薄膜、纤维、模制品和复合材料。制造聚(亚芳基硫醚酮)的一种方法是使一种二囟代二苯甲酮(例如二氯二苯甲酮)与一种碱金属硫化物起反应。该碱金属硫化物由精确的等摩尔量(化学计算量)的碱金属氢硫化物与碱金属氢氧化物反应而制得,因为人们一直认为这两种成分中的任何一种使用过量都是不合适的。
但是,聚(亚芳基硫醚酮)的一个主要缺点是其分子量较低。最好能制得分子量较高的聚(亚芳基硫醚酮)。高分子量聚(亚芳基硫醚酮)的冲击强度和韧性都会比低分子量聚(亚芳基硫醚酮)改善。
我的发明的一个目的是提供一种制备高分子量聚(亚芳基硫醚酮)的方法。我的发明的还有一个目的是制备高分子量聚(亚芳基硫醚酮)。
我发现分子量较高的聚(亚芳基硫醚酮)可用这样的方法制备,即在反应混合物中,最好在极性溶剂中,使多囟代二苯甲酮与碱金属氢硫化物接触,碱金属氢硫化物用量要按精确确定的那样略大于缩聚反应所需的碱金属氢硫化物的化学计算量,这点很重量。
在目前所选的第一个具体实施方案中,碱金属硫化物是通过碱金属氢硫化物与碱金属氢氧化物一起反应制得,两者的摩尔比约为1.004∶1至1.038∶1,以使碱金属氢硫化物的用量按所确定的那样略为过量。
在另一具体实施方案中,我发现高分子量聚(亚芳基硫醚酮)可以这样制备,即在反应混合物中,最好在极性溶剂中,使多囟代二苯甲酮、碱金属硫化物和碱金属氢硫化物在能够生成聚(亚芳基硫醚酮)的聚合条件下相互接触,其中碱金属氢硫化物与碱金属硫化物是一起加入的,二者的摩尔比为1.004∶1至1.038∶1,仍使碱金属氢硫化物的用量按所确定的那样略为过量。
在上述任一具体实施方案或两种具体实施方案的结合中,都要求碱金属氢硫化物的用量比多囟代二苯甲酮约多0.004~0.038摩尔,也就是除加入的或原地生成的碱金属氢硫化物之外的要多加的量。
用我的制备聚(亚芳基硫醚酮)的方法能获得比浓对数粘度至少约为0.48的聚(亚芳基硫醚酮)。我从未想到化学计量学对缩聚反应竟是这么重要。
图1所示为聚(亚苯基硫醚酮)的比浓对数粘度,该聚(亚苯基硫醚酮)是用缩聚反应制得的,反应时在含有4,4′-二氯代二苯甲酮、硫化钠(Na2S)和N-甲基-2-吡咯烷酮(NMP)的反应混合物中加了少量氢硫化物(NaSH)。该图中,长虚线之间的那部分表明,当加入反应混合物中的NaSH量比生成Na2S所需的NaSH量多出约1~3.5摩尔百分数时便获得比浓对数粘度至少约为0.55的聚(亚苯基硫醚酮)。图中,短虚线之间的那部分表明,反应混合物中NaSH用量多出约1.5~3.3摩尔百分数时,获得比浓对数粘度至少约为0.65的聚(亚苯基硫醚酮)。
与这些结果形成鲜明对比的是,用碱金属氢硫化物与碱金属氢氧化物约为1∶1的化学计量摩尔比(即没有过量的NaSH)和高一些的约为1.05∶1的化学计量摩尔比制得的聚(亚苯基硫醚酮),其比浓对数粘度约小于0.45左右。可见只有很接近的比例才是有效的。
按照我的发明,制备聚(亚芳基硫醚酮)的方法是在反应混合物中,最好在极性溶剂中使(a)至少一种多囟代二苯甲酮与(b)至少一种碱金属硫化物(可以碱金属硫化物的形式加入,或由碱金属氢硫化物与碱金属氢氧化物就地生成的相应化合物,或兼有上述两种形式)和(c)碱金属氢硫化物相互接触。
在一个具体实施方案中,我发明的方法中所用的碱金属硫化物可由碱金属氢硫化物与碱金属氢氧化物按确定的比例在水溶液中进行反应而制得。在另一具体实施方案中,碱金属硫化物可与碱金属氢硫化物在水溶液中一起使用。在这两个具体实施方案中,氢硫化物的用量对于制造具有高的比浓对数粘度的聚(亚芳基硫醚酮)来说都是很关键的。
在第一个具体实施方案中,使二囟代二苯甲酮如4,4′-二氯代二苯甲同与碱金属硫化物(由碱金属氢硫化物与碱金属氢氧化物如由氢硫化钠与氢氧化钠制得)在极性溶剂(如N-甲基-2-吡咯烷酮(NMP)中起反应以生成具有聚(亚苯基硫醚酮)重复单元的聚(亚苯基硫醚酮),该反应可用下式表示 在第二个具体实施方案中,使二囟代二苯甲酮(如4,4′-二氯代二苯甲酮)与碱金属硫化物(如硫化钠)和碱金属氢硫化物(如氢硫化钠)在极性溶剂(例如NMP)中起聚合反应以生成具有聚(亚苯基硫醚酮)重复单元的聚(亚苯基硫醚酮),该反应可用下式表示
在我的发明中,所用的碱金属氢硫化物的摩尔数略超过二囟二苯甲酮或碱金属硫化物,这是十分重要的。
虽然当碱金属氢硫化物与碱金属氢氧化物一起使用时,碱金属氢硫化物比碱金属氢氧化物多出的摩尔数一般来说可有一些变化,但碱金属氢硫化物的用量应比计算出来的生成碱金属硫化物所需的化学计算量多出约0.4~3.8摩尔百分数,最好多出约1~3.5摩尔百分数。相应的碱金属氢硫化物与碱金属氢氧化物的摩尔比范围为1.004∶1~1.038∶1左右,最好为1.01∶1~1.035∶1左右。
在我的发明的另一具体实施方案中,碱金属氢硫化物与碱金属硫化物一起使用时,如以碱金属硫化物的用量作100,则碱金属氢硫化物用量比碱金属硫化物约多出0.4~3.8摩尔百分数,最好约多出1~3.5摩尔百分数,仍要保证碱金属氢硫化物较之碱金属硫化物略为过量,这种过量是十分必要的。相应的碱金属氢硫化物与碱金属硫化物之摩尔比约为1.004∶1~约1.038∶1,最好为约1.01∶1~约1.035∶1。
按照我的方法制得的聚(亚芳基硫醚酮),其比浓对数粘度至少为0.48左右,最好为0.55~0.77左右。该聚合物由于其熔点高和分子量高而广泛用于制造薄膜、纤维、模制品和复合材料。
图1是以聚(亚芳基硫醚酮)作代表的聚(亚苯基硫醚酮)的比浓对数粘度的图解表示法,该聚(亚苯基硫醚酮)是通过缩聚反应制得的,缩聚反应混合物中含4,4′-二氯代二苯甲酮和NMP,混合物中NaSH比NaOH多出约0~5摩尔百分数。图中的长虚线之间的那部分是,当NaSH过量约1~3.5摩尔百分数时,所得的聚(亚苯基硫醚酮)的比浓对数粘度至少约为0.55。图中的短虚线之间的那部分是,当NaSH比NaOH多用约1.1~3.3摩尔百分数时,所得的聚(亚苯基硫醚酮)的比浓对数粘度至少约为0.65。这与另一种由二囟代二苯甲酮、碱金属氢硫化物和碱金属氢氧化物按约1∶1∶1和再高一些的约1∶1.05∶1的化学计算摩尔比制得的聚(亚芳基硫醚酮)形成鲜明的对比,该聚(亚芳基硫醚酮)的比浓对数粘度约小于0.45。
我的方法使用了多囟代二苯甲酮,最好用二囟代二苯甲酮。二囟二苯甲酮可用下式表示 式中X选自氯、溴、氟和碘。可采用的多囟代二苯甲酮有4,4′-二氯代二苯甲酮,4,4′-二氟代二苯甲酮,4,4′-二溴代二苯甲酮,4,4′-二碘代二苯甲酮,2,4′-二氯代二苯甲酮,2,4,4′-三氯代二苯甲酮,2,4,4′-三碘代二苯甲酮,2,4,4′-三氟代二苯甲酮,2,4,4′-三溴代二苯甲酮等及其混合物。目前更为可取的二囟代二苯甲酮为4,4′-二氯代苯甲酮,这是由于它更为有效且易于在市场上买到。
碱金属硫化物包括硫化锂、硫化钠、硫化钾、硫化铷、硫化铯及其混合物。碱金属氢硫化物包括氢硫化锂、氢硫化钠、氢硫化钾、氢硫化铷、氢硫化铯及其混合物。碱金属氢氧化物包括氢氧化锂、氢氧化钠、氢氧化钾、氢化化铷、氢氧化铯及其混合物。
碱金属硫化物中更为可取的是硫化钠(Na2S),因其更为有效。碱金属氢硫化物中更为可取的是氢硫化钠(NaSH),因其更为有效。碱金属氢氧化物中以氢氧化钠(NaOH)更为可取,因其更为有效。
在缩聚反应中,二囟代二苯甲酮与碱金属硫化物的摩尔比应尽可能接近化学计算比1∶1。
适用于我发明的方法的溶剂是那些能同二囟代二苯甲酮和碱金属硫化物一起用于制造聚(亚芳基硫醚酮)的极性有机溶剂。这些极性有机溶剂包括酰胺和砜。这类极性有机溶剂的具体例子有六甲基磷酰胺、四甲基脲、N,N′-亚乙基二吡咯烷酮,N-甲基-2-吡咯烷酮(NMP)、吡咯烷酮、己内酰胺、N-乙基己内酰胺、四氢噻吩砜、N,N′-二甲基乙酰胺、二苯基砜等及其混合物。其中以NMP更为可取,因其更为有效且易在市场上购得。溶剂的用量是可以变化的,这在技术上是已知的。
制备聚(亚芳基硫醚酮)所用的成分的加料顺序可根据需要变动。一般来说,碱金属硫化物(如Na2S),和碱金属氢硫化物(如NaSH),或碱金属氢氧化物(如NaOH)和碱金属氢硫化物(如NaSH),以及二囟代二苯甲酮(如4,4′-二氯二苯甲酮)可按任何顺序加入反应器。极性有机溶剂(如NMP)一般则在上述成分加入反应器之后才加到反应混合物中。
虽然进行缩聚反应的温度可在很大的范围内变动,但一般都在约125℃~450℃的范围内,较好的是在约175℃~350℃的范围内,最好在约225℃~275℃的范围内。反应时间也可在很大的范围内变动,它部分地取决于反应温度,但一般都在约10分钟到约72小时的范围内,最好在1小时~20小时的范围内。压力应足以使反应混合物基本上保持处于液相。压力一般在0~300磅/平方英寸(表压)左右的范围内,最好在约150~250磅/平方英寸(表压)的范围内。
聚合物可根据需要进行回收,最好把聚合物和溶剂从冷却了的反应器中取出,然后用过滤法回收聚合物。接着,聚合物可用水洗涤并在真空烘箱中干燥。
下面提供的实施例是为了有助于进一步了解我的发明。列举所用的具体材料、种类、条件都是为了进一步举例说明我的发明,而不是对发明合理范围的限制。
实施例1本实施例所述为用等摩尔量的NaSH和NaOH制备聚(亚苯基硫醚酮)(PPSK)树脂的方法。在一个装有双螺浆搅拌器、氮气导管和破裂盘的1升不锈钢反应器中加入下列反应物41.63克氢硫化钠片[含NaSH58.17%(重量),NaS0.35%(重量)和水约41.4%(重量)],17.58克氢氧化钠丸(含NaOH98.2%(重量),由Mallinckrodt公司,St.Lonis,Mo提供),108.48克4,4′-二氯二苯甲酮(DCBP,由Aldrich化学公司,Milwankee,Wisconsin提供)以及343克(3.46摩尔)N-甲基-2-吡咯烷酮(NMP)。随后加入等摩尔数的NaSH、NaOH和DCBP,而HO与NaSH的摩尔比为2.2∶1左右。
将反应器密封,交替地用100磅/平方英寸(表压)N2增压,然后放气以除去空气。然后将反应器中的混合物搅拌,并在1小时内加热至约250℃。保持该温度约3小时,此时压力达到180磅/平方英寸(表压)左右。然后将反应器冷却至约200℃,并将3克DCBP和NMP加入,以便用DCBP使生成的PPSK聚合物封端。再将反应器内所含物质加热到约250℃,并在该温度下保持约1小时。
将此试验(试验1)的聚合物从冷却了的反应器中取出,用过滤法经布氏漏斗回收聚合物,然后用2.5升热的(约70℃)去离子水洗涤7次,再在于80℃的真空烘箱内干燥。所得PPSK聚合物在30℃的比浓对数粘度(Ⅳ)为0.45,粘度是用聚合物在浓硫酸(溶剂)中的0.5%(重量)溶液于30℃在一#200粘度计中测定的。聚合物的产量为73.6克。
在第二个试验(试验2)中,使等摩尔的NaSH、NaOH和DCBP中所组成的混合物在与上述条件基本相同的条件下进行缩聚,所不同的是,在将所有的DCBP加入冷却了的(约105℃)反应器之前,先使NaSH、NaOH、H2O和NMP在0磅/平方英寸(表压)和160~205℃下进行脱水,而且反应时没有用DCBP封端。然后将反应器密封,并在250℃/130psig(磅/平方英寸,表压)下加热3小时,经过洗涤和干燥之后的PPSK聚合物的比浓对数粘度为0.28。
试验3-8,是在提高NaSH与NaOH的摩尔比的情况下制备PPSK的方法,其它条件基本上按照试验1的方法进行(不脱水;在250℃下缩聚3小时;在250℃下用DCBP封端1小时;H2O与NaSH的摩尔比约为2.2∶1)。
结果归纳于表Ⅰ中
表Ⅰ试验 NaSH NaOH NaSH的 NaSH与 对浓对数粘度编号 摩尔数 摩尔数 过量摩尔 NaOH (Ⅳ)百分数 的摩尔比1 0.432 0.432 0 1∶1 0.452 0.500 0.500 0 1∶1 0.283 0.434 0.432 0.5% 1.005∶1 0.494 0.432 0.426 1.4% 1.014∶1 0.645 0.441 0.432 2.0% 1.020∶1 0.736 0.443 0.432 2.5% 1.025∶1 0.687 0.445 0.432 3.0% 1.030∶1 0.778 0.449 0.432 4.0% 1.039∶1 0.459 0.454 0.432 5.1% 1.051∶1 0.33
试验3-8表明,当碱金属氢硫化物的用量按所确定的那样略为过量时,所得聚合物产物的Ⅳ等于或大于用化学计算量的碱金属氢硫化物NaSH(试验1和2)或用过量更多的(试验9)碱金属氢硫化物所制得的聚合物产物的Ⅳ。绘于图1的数据表明,当反应混合物中NaSH用量比NaOH多出约0.4~3.8摩尔百分数时,所得PPSK聚合物的比浓对数粘度至少为0.45左右。
用带有计算机处理数据系统的Perkin-Elmer DAC-2C差示扫描量热计和Perkin-Elmer TADS-1标绘器测定试验5所得的PPSK树脂的热转变。以20℃/分的速率加热聚合物试样。
所得的结果为玻璃化温度Tg=144℃;结晶温度Tc=191℃;熔融温度Tm=340℃;熔体结晶温度(熔化物冷却时)Tmc=291℃。
实施例Ⅱ在实施例中,所述PPSK的制备方法基本上与试验1(实施例Ⅰ)相同,但用Na2S片(而不是NaSH和NaOH)。使56.88克Na2S(含Na2S约59.3%(重量),NaSH约1.3%(重量),H2O约39.4%(重量),相当于0.432摩尔的Na2S)、0.013摩尔NaSH和1.25摩尔的水在3.46摩尔NMP存在的情况下与0.432摩尔的DCBP起反应。
NaSH的用量相当于过量约3%摩尔。生成的PPSK(约89克)的Ⅳ为0.58。因此,碱金属硫化物(如Na2S)和按所确定的那样略为过量的碱金属氢硫化物(如NaSH)一起使用显然是有效的,这也属本发明的范围。
实施例Ⅲ本例说明PPSK进行固化以进一步增加其分子量。将试验6制得的暗色树脂置于加热到316℃的热空气干燥烘箱内。30分钟后聚合物的比浓对数粘度由原来的0.68提高至0.84,60分钟后又提高到0.97。加热约120分钟后聚合物不再溶于H2SO4。固化时,特别是在第一个小时内,可以看到聚合物的脱气现象。
权利要求
1.一种制备聚(亚芳基硫醚酮)的方法,该方法包括使(a)至少一种多囟代二苯甲酮,碱金属氢硫化物(碱金属氢硫化物与多囟代二苯甲酮的摩尔比约为1.004∶1~1.038∶1)与至少(b)或(c)之一的反应混合物在能生成聚(亚芳基硫酸酮)的缩聚条件下接触,其中(b)为至少一种碱金属硫化物和至少一种碱金属氢硫化物,(c)为至少一种碱金属氢氧化物和至少一种碱金属氢硫化物。
2.权利要求
1所述的方法,其中多代二苯甲酮包括二囟代二苯甲酮,反应混合物包括极性反应介质。
3.权利要求
2所述的方法,使用了碱金属氢硫化物(它与所述多囟代二苯甲酮的摩尔比约为1.01∶1到1.035∶1),碱金属氢氧化物和碱金属硫化物。
4.权利要求
2所述的方法,其中碱金属氢硫化物包括氢硫化钠,碱金属氢氧化物包括氢氧化物,二囟代二苯甲酮包括4,4′-二氯代二苯甲酮,极性反应介质包括N-甲基-2-吡咯烷酮。
5.权利要求
4所述的方法,其中聚(亚芳基硫醚酮)可用如下结构式的重复单元表示
6.权利要求
1所述的方法,其中聚(亚芳基硫醚酮)包括聚(亚苯基硫醚酮)。
7.权利要求
6所述的方法,使用了所述的(c),其中所述的碱金属氢硫化物为氢硫化钠,所述的碱金属氢氧化物为氢氧化钠。
8.权利要求
6所述的方法,其中聚(亚苯基硫醚酮)的比浓对数粘度至少约为0.48,它是用在0.5%(重量)的浓H2SO4溶液、在#200粘度计中于30℃测定的。
9.权利要求
8所述的方法,其中聚(亚苯基硫醚酮)的比浓对数粘度约为0.55~0.77。
10.权利要求
1所述的方法,其中聚合条件包括温度约为175℃~350℃,压力约为0磅/平方英寸(表压)~200磅/平方英寸(表压),反应时间约为1~72小时。
11.权利要求
1所述的方法,使用了所述的(b),其中碱金属氢硫化物的用量超过了化学计算量,其与碱金属硫化物之用量比为1.004∶1~1.038∶1。
专利摘要
一种由碱金属氢硫化物与碱金属氢氧化物(所用碱金属氢硫化物的摩尔数大于碱金属氢氧化物的摩尔数)的反应产物制备高分子量聚(亚芳基硫醚酮)的方法以及由该方法制得的产物。一种使用碱金属硫化物和碱金属氢硫化物(其中所用碱金属氢硫化物的摩尔数大于碱金属硫化物的摩尔数)制备高分子量聚(亚芳基硫醚酮)的方法以及由该方法制得的产物。
文档编号C08G75/02GK87105872SQ87105872
公开日1988年3月16日 申请日期1987年8月28日
发明者罗格·格朗特·格芬 申请人:菲利浦石油公司导出引文BiBTeX, EndNote, RefMan
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1