硬泡聚醚多元醇的制备方法与流程

文档序号:12581988阅读:772来源:国知局

本发明属于聚氨酯合成技术领域,具体涉及一种硬泡聚醚多元醇的制备方法。



背景技术:

目前硬泡聚醚多元醇的合成工艺往往为KOH催化工艺或二甲胺催化工艺。其中,KOH工艺催化合成的硬泡聚醚品质稳定,活性低,可以进行蔗糖体系、山梨醇体系等多种起始剂体系硬泡聚醚的合成,但KOH催化工艺在得到粗聚醚后需要进行后处理以去除物料中的钾,工艺复杂,收率低、成本高;而二甲胺催化工艺合成硬泡聚醚多元醇的过程中无需对聚醚进行后处理,操作工艺方便,且在合成过程中往往加入部分植物油类起始剂以使得到的聚醚产品在使用过程中易与戊烷类发泡剂有较好的互溶性。

但二甲胺催化硬泡聚醚工艺也有一些缺陷:一是该工艺常以蔗糖体系为主,由于使用液体山梨糖醇作为起始剂需要进行脱水处理,若在起始阶段加入二甲胺则由于其沸点低,易被脱除,因此少见山梨醇体系采用此工艺,而蔗糖、山梨醇复合体系使用此工艺则更为少见。二是由于二甲胺工艺采用的催化剂往往是二甲胺重量浓度30~40%的水溶液,在反应过程中水作为部分起始剂参与反应,将造成最终聚醚的官能度降低,羟值升高。三是由于二甲胺催化活性有限,而现有工艺往往在开始阶段加入全部设定量的二甲胺催化剂,导致反应后期活性下降,大量环氧丙烷无法参与反应,最终以单体形式残留在聚醚产品中并在脱单体阶段被脱除,造成空气污染、收率降低。使用该工艺得到的产品往往羟值不会低于420mgKOH/g。



技术实现要素:

本发明的目的是提供一种硬泡聚醚多元醇的制备方法,得到的蔗糖、山梨糖醇复合体系硬泡聚醚产品羟值在400mgKOH/g以下,且反应后期环氧丙烷反应彻底,环氧丙烷残留量少,收率高。

本发明所述的硬泡聚醚多元醇的制备方法,包括以下步骤:

(1)加料及预处理:将由蔗糖、液体山梨糖醇、甘油和混合植物油组成的复合起始剂加入反应釜内,加入第一部分的复合胺类催化剂,氮气置换3~5次,升温至100~105℃下,进行真空脱水直至釜内物料含水量在0.5wt%以内;

(2)聚合反应:控制反应釜内温度80~85℃,开始连续滴加环氧丙烷,并使得反应釜内温度控制在80~85℃,压力控制在0.1~0.4MPa,环氧丙烷滴加至占环氧丙烷总加入质量的8~15%时,再加入第二部分的复合胺类催化剂,并继续连续滴加环氧丙烷,之后控制反应釜内温度为110~120℃且压力控制在0.1~0.6MPa,环氧丙烷滴加至占环氧丙烷总加入质量的80~90%时,再加入第三部分复合胺类催化剂,并继续连续滴加环氧丙烷,之后控制反应釜内温度为110~120℃且压力控制在0.1~0.6MPa,直至环氧丙烷全部滴加完毕并熟化1.5~3.5小时;

(3)后处理:对熟化完毕的产物抽真空脱单体2~3小时后,得到硬泡聚醚多元醇。

其中:

所述复合胺类催化剂为N,N-二甲基乙醇胺与2,4,6-三(二甲氨基甲基)苯酚的混合物,二者的重量比为1:1~1:3。

所述复合胺类催化剂分为三部分加入,第一部分、第二部分、第三部分的重量比为5:3~4:1~2。

所述复合胺类催化剂加入总量在整个反应体系内所占的质量百分比为0.8~1.2%,整个反应体系指复合起始剂、复合胺类催化剂及环氧丙烷的总加入质量。

所述复合起始剂中,蔗糖、液体山梨糖醇和甘油的质量比为342:130~260:92~552,其中液体山梨糖醇为质量浓度28~35%的山梨糖醇水溶液。

所述混合植物油为棕榈油和环氧大豆油的混合物,二者质量比为1:1~5:1,该混合植物油在整个反应体系内所占的质量百分比为5~15%,整个反应体系指复合起始剂、复合胺类催化剂及环氧丙烷的总加入质量。

所述复合起始剂与环氧丙烷总加入质量的质量比为1:1.4~2.5。

本发明的有益效果如下:

(1)本发明可得到蔗糖、山梨糖醇复合体系胺催化硬泡聚醚产品,工艺过程操作简单,无需后处理。

(2)本发明可保证反应后期体系的催化活性,最终体系内未参与反应的环氧丙烷量少,脱单体阶段进入空气中的环氧丙烷量少,空气污染小,反应收率高。

(3)本发明工艺可以得到羟值低于400mgKOH/g的硬泡聚醚多元醇产品。

具体实施方式

以下结合实施例对本发明做进一步描述。

实施例1

在装配有搅拌器、计量器、加热温控装置、冷却装置(包括外夹套与内蛇管)和压力传感器的6L高压釜内,加入蔗糖342g,浓度为30%的液体山梨醇260g,甘油552g,棕榈油125g,环氧大豆油125g,N,N-二甲基乙醇胺5g,2,4,6-三(二甲氨基甲基)苯酚15g,氮气置换3次,升温并开启真空泵在100~105℃下进行真空脱水3小时后降温至80℃,开始连续滴加环氧丙烷,通过控制环氧丙烷的加料速度和温控装置使釜內反应温度维持在80~85℃,压力在0.1~0.4MPa范围内,直至环氧丙烷加至526g时,加入N,N-二甲基乙醇胺3g,2,4,6-三(二甲氨基甲基)苯酚9g并继续连续加入环氧丙烷,升温至110~120℃且釜內压力控制在0.1~0.6MPa,至环氧丙烷加至3159g时再加入N,N-二甲基乙醇胺2g,2,4,6-三(二甲氨基甲基)苯酚6g并继续连续加入环氧丙烷,控制釜內温度在110~120℃且釜內压力控制在0.1~0.6MPa直至环氧丙烷共计3510g全部滴加完毕并进一步反应后熟化3小时。对反应熟化完毕的产物取样测试PO残留量,后抽真空脱单体2小时后得到所需硬泡聚醚多元醇产品。

所合成的硬泡聚醚指标列入表1。

实施例2

在装配有搅拌器、计量器、加热温控装置、冷却装置(包括外夹套与内蛇管)和压力传感器的2.5L高压釜内,加入蔗糖342g,浓度为30%的液体山梨醇130g,甘油92g,棕榈油250g,环氧大豆油50g,N,N-二甲基乙醇胺6.25g,2,4,6-三(二甲氨基甲基)苯酚6.25g,氮气置换5次,升温并开启真空泵在100~105℃下进行真空脱水3小时后降温至80℃时,开始连续滴加环氧丙烷,通过控制环氧丙烷的加料速度和温控装置使釜內反应温度维持在80~85℃,压力在0.1~0.4MPa范围内,直至环氧丙烷加至97g时,加入N,N-二甲基乙醇胺5g,2,4,6-三(二甲氨基甲基)苯酚5g并继续连续加入环氧丙烷,升温至110~120℃且釜內压力控制在0.1~0.6MPa,至环氧丙烷加至968g时再加入N,N-二甲基乙醇胺1.25g,2,4,6-三(二甲氨基甲基)苯酚1.25g并继续连续加入环氧丙烷,控制釜內温度在110~120℃且釜內压力控制在0.1~0.6MPa直至环氧丙烷共计1210g全部滴加完毕并进一步反应后熟化3小时。对反应熟化完毕的产物取样测试PO残留量,后抽真空脱单体2小时后得到所需硬泡聚醚多元醇产品。

所合成的硬泡聚醚指标列入表1。

对比例1

在装配有搅拌器、计量器、加热温控装置、冷却装置(包括外夹套与内蛇管)和压力传感器的2.5L高压釜内,加入蔗糖342g,浓度为30%的液体山梨醇130g,甘油92g,棕榈油250g,环氧大豆油50g,氮气置换5次,升温并开启真空泵在100~105℃下进行真空脱水3小时后降温至80℃时,抽入40%的二甲胺水溶液25g,并开始连续滴加环氧丙烷,通过控制环氧丙烷的加料速度和温控装置使釜內反应温度维持在80~85℃,压力在0.1~0.4MPa范围内,直至环氧丙烷加至97g时开始升温至110~120℃并持续加PO且釜內压力控制在0.1~0.6MPa,直至环氧丙烷共计1210g全部滴加完毕并进一步反应后熟化3小时。对反应熟化完毕的产物取样测试PO残留量,后抽真空脱单体2小时后得到所需硬泡聚醚多元醇产品。

所合成的硬泡聚醚指标列入表1。

表1实施例对比例所得硬泡聚醚指标表

由表1数据可以看出,本发明可以明显降低反应釜內最终未反应的PO残余量,得到色值较低,反应较完全的羟值低于400mgKOH的蔗糖山梨糖醇复合体系硬泡聚醚多元醇产品,且产品收率明显高于对比例产品,而从对比例产品指标来看,使用二甲胺工艺反应明显不完全,最终PO残余量高,且有大量蔗糖未能参与反应。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1