一种含三唑并异吲哚‑5,7(2H,6H)‑二酮单元的三元共聚物及其制备方法与应用与流程

文档序号:11671040阅读:186来源:国知局
一种含三唑并异吲哚‑5,7(2H,6H)‑二酮单元的三元共聚物及其制备方法与应用与流程

本发明涉及光电材料领域,特别涉及一种含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物及其制备方法与应用。



背景技术:

太阳能是一种绿色可再生资源,有机太阳能电池活性层材料的种类繁多且有机分子的化学结构容易修饰,化合物的制备提纯加工简便,可以制成大面积的柔性薄膜器件,拥有未来成本上的优势以及资源的广泛分布性。有机太阳能电池可制备成膜,并且可以制备形成可卷曲折叠的衬底上形成柔性的太阳电池。有机太阳电池具有制造面积大、廉价、简易、柔性等优点。因而具有巨大的商业开发和应用前景。

但是,目前有机太阳电池效率太低,为了实现高效的光电转换,从活性层材料的角度上考虑,需要将每个材料的优势结合在一起,得到更好的活性层材料,从而得到高的转换效率。要实现这些目标,研制更多的新型给体聚合物就显得十分重要。



技术实现要素:

本发明目的在于针对目前新型共轭分子材料开发的不足,提供能量转换效率较高的共聚物,即一种含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物,具体为含1,2,3-三唑并[4,5-f]异吲哚-5,7(2h,6h)-二酮单元的三元共聚物,更具体为2,6-r,r1-[1,2,3]三唑并[4,5-f]异吲哚-5,7(2h,6h)-二酮的三元共聚物。

本发明目的还在于提供制备所述的一种含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物的方法。

本发明另一目的还在于提供所述的一种含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物的应用。

本发明的目的通过如下技术方案实现。

一种含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物,结构通式如下:

式中,r、r1为氢原子或烷基链;ar1、ar2为芳香基团;d1、d2为电子给体单元;聚合度n为1~10000的自然数;0≤x≤1,0≤y≤1,且x+y=1。

进一步地,所述烷基链为碳原子数1~24的直链、支链或环状烷基链,或为一个以上碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代的碳原子数1~24的直链、支链或环状烷基链,或为一个以上氢原子被卤素原子或氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、氨基正离子、酯基、氰基或硝基取代的碳原子数1~24的直链、支链或环状烷基链。

进一步地,ar1、ar2为如下结构式中的一种或一种以上的组合:

其中,r2为氢原子或碳原子数1~30的烷基链,或为一个以上碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、硝基、苯基或恶吩基取代的碳原子数1~30的烷基链,或为一个以上氢原子被卤素原子取代的碳原子数1~30的烷基链。

更进一步地,r2为碳原子数1~30的直链、支链或者环状烷基链。

进一步地,d1、d2为如下结构式中的一种或一种以上的组合:

其中,r3、r4为氢原子或碳原子数1~30的烷基链,或为一个以上碳原子被氧原子、卤素原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、硝基、苯基或恶吩基取代的碳原子数1~30的烷基链,或为一个以上氢原子被卤素原子取代的碳原子数的1~30烷基链。

更进一步地,r3、r4为碳原子数1~30的直链、支链或者环状烷基链。

制备所述的一种含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物的方法,包括如下步骤:

将电子给体单元d1、d2的单体与含三唑并异吲哚-5,7(2h,6h)-二酮单元的单体进行still偶联共聚反应,得到所述含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物。

进一步地,所述电子给体单元d1、d2的单体与含三唑并异吲哚-5,7(2h,6h)-二酮单元的单体的摩尔比为10:10:5~9。

进一步地,所述反应的温度为200℃,时间为45min。

所述的一种含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物应用于制备聚合物发光二极管器件的发光层、聚合物场效应晶体管中的半导体活性层或聚合物太阳能光伏电池的活性层。

与现有技术相比,本发明具有如下优点和有益效果:

(1)本发明的含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物作为光电材料,成功应用于光电领域,并未见诸报导;

(2)本发明的含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物中的三唑单元具有较弱的供电子作用,因此具有更深的homo能级,从而使得voc较大,表现出宽的光学带隙;同时与具有良好光学性能的电子给体d1、d2单元相结合,取长补短,使共聚物表现出更好的光学性能,具有商业化应用前景;

(3)本发明的含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物,在噻吩3的位置上引入烷基链,提高了共聚物的溶解性,使共聚物具有良好的溶液加工性能和优异的光电性能;

(4)本发明的含三唑并异吲哚-5,7(2h,6h)-二酮单元的三元共聚物具有荧光性,对太阳光可见光部分有较宽的吸收,在制作聚合物发光二极管的发光层、聚合物场效应晶体管以及聚合物太阳能电池的活性层等领域具有良好的应用。

附图说明

图1为实施例3~6制备的共聚物在薄膜状态下的紫外-可见光吸收光谱图;

图2为实施例3~6制备的共聚物在氯苯溶液中的紫外-可见光吸收光谱图。

图3为实施例3~6制备的共聚物的电化学曲线。

具体实施方式

以下结合实例对本发明的具体实施作进一步的说明,但本发明的实施方式不限于此。

实施例1

2,6-二辛基-4,8-双(4-(2-辛基十二烷基)噻吩-2-基)-[1,2,3]三唑并[4,5-f]异吲哚-5,7)-二酮(12)的制备:

(1)500ml的三颈瓶中,氮气保护下,加入化合物1(13.83g,41.66mmol),化合物2(34.2g,91.65mmol,再加入300ml四氢呋喃作溶剂,加热至120℃,反应12h。后处理:将反应混合物放入单口瓶同时拌入硅胶粉进行旋蒸,然后用硅胶柱过柱提纯,得到黄色油状液体。最终得到黄色油状液体11.21g。产率:83.23%。1hnmr(500mhz,cdcl3)δ7.33(d,j=1.4hz,2h),7.15(d,j=1.3hz,2h),2.56(d,j=6.8hz,4h),1.61(d,j=5.9hz,2h),1.31–1.23(m,64h),0.88(t,j=7.0hz,12h).13c(151mhz,cdcl3)143.73,136.68,133.99,132.80,38.90,33.26,31.93,31.92,29.98,29.67,29.66,29.63,29.37,29.34,26.60,22.70,14.13。化学反应方程式如下:

(2)在500ml的三颈瓶中,氮气保护下,加入化合物3(11.71g,34.64mmol),再加入200ml无水乙醇,再用常压滴液漏斗加入溶于盐酸的sncl2溶液(2.2mol/l,160ml),滴加完成后开始升温,加热至120℃反应12小时。后处理:用二氯甲烷(dcm)萃取,旋干,最终得到黄色油状液体化合物4,9.77g。产率:90%。通过核磁共振(nmr)、质谱(ms)、凝胶色谱(gpc)表征为目标产物,直接进行下一步反应。该步化学反应方程式如下:

(3)在500ml的三颈瓶中,氮气保护下,加入化合物4(9.00,32,37mmol),再加入吡啶250ml,分别用注射器加入phnso(9.00g,22.01mmol)和me3sicl(24.00g,32.37mmol),加完后开始升温,加热至80℃反应12小时。后处理:加入盐酸和nacl先萃取一次,然后通过硅胶柱干法上柱进行分离提纯,用石油醚过柱,得到蓝色油状液体化合物5。1hnmr(500mhz,cdcl3)δ7.38(d,j=1.1hz,2h),6.88(s,2h),2.56(d,j=6.8hz,4h),1.76–1.58(m,2h),1.40–1.13(m,64h),0.87(t,j=6.9hz,12h).13c(151mhz,cdcl3)δ156.20,143.43,134.48,126.09,121.14,112.47,38.83,34.99,33.38,31.93,30.03,30.01,29.72,29.68,29.65,29.37,29.31,26.60,22.70,14.13。化学反应方程式如下:

(4)在250ml的三颈瓶中,氮气保护下,加入双(4-(2-辛基十二烷基)-2,5-二噻吩-3,4-并噻(唑化合物5,7.34g,23.99mmol)、丁炔二酸二甲酯(6.81g,47.97mmol),再加入150ml二甲苯作溶剂,加热至110℃反应12小时。后处理:旋蒸,除去二甲苯,再加入二氯甲烷(dcm),拌入硅胶粉,然后通过硅胶柱干法上柱进行分离提纯,石油醚:二氯甲烷为2:1(v/v)。最终得到淡黄色油状液体二甲基4,7-双(4-(2-辛基十二烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑-5,6-二甲酸酯(化合物6,5.6g)。产率:59.01%。1hnmr(500mhz,cdcl3)δ7.21(d,j=1.4hz,2h),7.15(d,j=1.3hz,2h),3.75(s,6h),2.60(d,j=6.7hz,4h),1.74–1.60(m,2h),1.35–1.20(m,64h),0.90–0.85(m,12h).13c(151mhz,cdcl3)δ168.32,153.58,143.22,134.56,131.74,131.66,126.26,124.61,52.93,39.01,34.86,31.92,30.06,29.72,29.68,29.36,26.65,22.69,14.13。化学反应方程式如下:

(5)在250ml的三颈瓶中,氮气保护下,加入化合物6(5.6g,13.46mmol),加入150ml无水乙醇,再逐滴加入naoh水溶液(30ml,1.5m),加热至100℃,反应12h。后处理:在反应混合物中加入盐酸水溶液(8ml,2m),直至反应混合物为强酸性(ph≤3,用ph试纸判断),搅拌,过滤,得到油状液体4,7-双(4-(2-辛基十二烷基)噻吩-2-基)苯并[c][1,2,5]噻二唑-5,6-二羧酸(化合物7,4.46g),nmr、ms、gpc表征为目标产物,产率:85%。化学反应方程式如下:

(6)在250ml的三颈瓶中,氮气保护下,加入化合物7(4.46g,11.49mmol)和33.92g乙酸酐,再加入160ml二甲苯作溶剂,加热至110℃,反应12h。后处理:直接旋蒸。得到黄色油状液体4,8-双(4-(2-辛基十二烷基)噻吩-2-基)-5h,7h-异苯并呋喃[5,6-c][1,2,5]噻二唑-5,7-二酮(化合物8,3.78g)。nmr、ms、gpc表征为目标产物,产率:88%。化学反应方程式如下:

(7)在500ml的三颈瓶中,氮气保护下,加入化合物8(3.78g,10.22mmol)和辛胺(2.64g,20.42mmol),再加入乙酸(180ml),加热至100℃反应8小时,然后用注射器加入乙酸酐(70ml),100℃下反应6小时。后处理:直接旋蒸,加入dcm溶解,干法上柱,石油醚:二氯甲烷为2:1(v/v),得到黄色油状液体6-异辛基-4,8-双(4-(2-辛基十二烷基)噻吩-2-基)-5h-[1,2,5]噻二唑并[3,4-f]异吲哚-5,7(6h)二酮(化合物9,3.97g)。产率:78%。1hnmr(500mhz,cdcl3)δ7.72(d,j=1.4hz,2h),7.26(d,j=2.5hz,2h),3.77–3.60(m,2h),2.68(d,j=6.6hz,4h),1.68(m,j=13.7,7.1hz,4h),1.29(m,j=27.6,12.9hz,80h),0.87(m,j=10.1,6.7,3.3hz,15h).13c(151mhz,cdcl3)δ165.64,156.06,141.34,135.49,130.87,12637,126.07,116.40,38.93,38.56,34.27,33.33,31,94,31.79,30.06,29.72,29.68,29.39,29.19,27.03,26.60,22.70,22.63,14.13,14.08。化学反应方程式如下:

(8)在250ml的三颈瓶中,氮气保护下,加入化合物9(3.97g,8.25mmol)和铁粉(5.54g,98.92mmol),加入160ml乙酸作溶剂,加热至130℃反应4小时。后处理:将反应混合物加入至装有水的大烧杯中,吸出铁屑,然后过滤,待吹干后干法上柱,石油醚:二氯甲烷为2:1(v/v)。最后用甲醇和四氢呋喃进行重结晶。最终得到黄色油状液体5,6-二氨基-2-辛基-4,7-双(4-(2-辛基十二烷基)噻吩-2-基)异二氢吲哚-1,3-二酮(化合物10,3.22g),nmr、ms、gpc表征为目标产物,产率:85%。化学反应方程式如下:

(9)将化合物10(3.22g,7.1mmol)加入敞口锥形瓶中,加入搅拌子,放在搅拌器上,加入瓶装四氢呋喃80ml,搅拌,再加入6mlacoh,称取亚硝酸钠(nano2,0.74g,10.72mmol)放入离心管中,用水溶解,然后加入锥形瓶中,用锡箔纸盖住锥形瓶,并加热至50℃,反应3小时。后处理:用dcm萃取,用旋蒸旋干,最后用甲醇和四氢呋喃进行重结晶。最终得到黄色油状液体(4-(2-辛基十二烷基)噻吩-2-基)-[1,2,3]三唑并[4,5-f]异吲哚-5,7(1h,6h)-二酮(化合物11,3g),nmr、ms、gpc表征为目标产物,产率:83%。化学反应方程式如下:

(10)在150ml的三口瓶中,氮气保护下,加入化合物11(3g,6.5mmol),再加入100ml无水甲醇作溶剂,再加入叔丁醇钾(buok,0.87g,7.8mmol)和1-溴辛烷(c8h17br,1.5g,3.9mmol),开始升温,加热至70℃,反应12h。后处理:将反应混合物直接进行旋蒸,旋干后加入dcm溶解,同时拌入硅胶粉,干法上柱,石油醚:二氯甲烷体积比为2:1(v/v)。最后用甲醇和四氢呋喃进行重结晶。最终得到黄色油状液体2,6-二辛基-4,8-双(4-(2-辛基十二烷基)噻吩-2-基)-[1,2,3]三唑并[4,5-f]异吲哚-5,7)-二酮(化合物12,1.08g)。nmr、ms、gpc表征为目标产物,产率:25%。化学反应方程式如下:

实施例2

4,6-二(5-溴-4-(2-辛基十二烷基)噻吩-2-基)-2,6-二辛基-[1,2,3]三唑并[4,5-f]异吲哚-5,7(2h,6h)-二酮的制备:

将化合物12(1.08g,1.88mmol)加入反应瓶中,加入氯仿80ml进行溶解,再加入3mlacoh,称取nbs(0.77g,4.3mmol)加入反应瓶中,通入氮气,将反应装置用黑色袋子罩住,升温至120℃,反应12h,结束反应。后处理:用dcm萃取,同时拌入硅胶粉,将粗产物用硅胶柱进行提纯,石油醚:二氯甲烷体积比为2:1(v/v),最后用甲醇和四氢呋喃进行重结晶。最终得到黄色油状液体4,6-二(5-溴-4-(2-辛基十二烷基)噻吩-2-基)-2,6-二辛基-[1,2,3]三唑并[4,5-f]异吲哚-5,7(2h,6h)-二酮,1.2g,产率:88%。1hnmr(500mhz,cdcl3)δ7.92(s,2h),4.76(t,j=7.2hz,2h),3.83–3.52(m,2h),2.61(d,j=7.0hz,4h),2.26–2.06(m,2h),1.86–1.60(m,4h),1.44–1.13(m,84h),0.95–0.76(m,18h).13c(151mhz,cdcl3)δ166.52,145.45,141.73,135.26,131.44,124.17,123.44,115.70,57.50,38.55,34.17,33.34,31.96,31.80,31.75,30.06,29.85,29.73,29.69,29.38,29.22,29.20,29.12,28.95,28.41,27.04,26.62,26.53,22.69,22.53,14.12,14.08。

实施例3

共聚物ptzbi-2tod-t-0%bdt的制备:

氩气保护下,在10ml微波管内,加入4,8-双(5-溴恶吩-2-基)-6-辛基-5h-[1,2,5]硒二唑并[3,4-f]的异吲哚-5,7(6h)-二酮(129.56mg,0.10mmol)、2,6-二溴-4,8-双(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩(73.6mg,0.1mmol)、四(三苯基膦)钯(8mg)和二甲苯(2ml),微波200℃反应45min,降至室温后将反应液沉析在甲醇中,先后用甲醇、丙酮、正己烷进行索氏抽提,然后加入二乙基二硫代氨基甲酸钠三水合物的水溶液(225mg,1mmol,100ml水)于60℃搅拌8小时,除去反应中的钯催化剂,用甲醇、丙酮、正己烷进行索氏抽提,干燥,得到深绿色固体(123mg),产率:82%。核磁共振氢谱:(cdcl3)δ(ppm):1hnmr(500mhz,cdcl3)δ1hnmr(500mhz,cdcl3)δ7.63(br,arh),7.51(br,arh),7.40(br,arh),7.28(br,arh),7.10(br,arh),3.45(br,ch),1.70(br,ch2),1.21-1.24(br,ch2),0.99(br,ch3),0.88(br,ch3)。

实施例4

共聚物ptzbi-2tod-t-10%bdt的制备:

氩气保护下,在10ml微波管内,加入2,5-二三丁基锡噻吩(41mg,0.10mmol)、2,6-二溴-4,8-双(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩(7.36mg,0.01mmol)、4,8-双(5-溴恶吩-2-基)-6-辛基-5h-[1,2,5]硒二唑并[3,4-f]的异吲哚-5,7(6h)-二酮(116.60mg,0.09mmol)、四(三苯基膦)钯(8mg)和二甲苯(2ml),微波200℃反应45min,降至室温后将反应液沉析在甲醇中,先后用甲醇、丙酮、正己烷进行索氏抽提,然后加入二乙基二硫代氨基甲酸钠三水合物的水溶液(225mg,1mmol,100ml水)于60℃搅拌8小时,除去反应中的钯催化剂,用甲醇、丙酮、正己烷进行索氏抽提,干燥,得到深绿色固体(98mg),产率:79%。核磁共振氢谱:(cdcl3)δ(ppm):1hnmr(500mhz,cdcl3)δ1hnmr(500mhz,cdcl3)δ7.72(br,arh),7.55(br,arh),7.42(br,arh),7.25(br,arh),7.10(br,arh),6.88(br,arh),3.45(br,ch),1.70(br,ch),1.21-1.24(br,ch2),0.99(br,ch3)0.88(br,ch3)。

实施例5

共聚物ptzbi-2tod-t-20%bdt的制备:

氩气保护下,在10ml微波管内,加入2,5-二三丁基锡噻吩(41mg,0.10mmol)、2,6-二溴-4,8-双(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩(14.72mg,0.02mmol)、4,8-双(5-溴恶吩-2-基)-6-辛基-5h-[1,2,5]硒二唑并[3,4-f]的异吲哚-5,7(6h)-二酮(103.65mg,0.08mmol)、四(三苯基膦)钯(8mg)和二甲苯(2ml),微波200℃反应45min,降至室温后将反应液沉析在甲醇中,先后用甲醇、丙酮、正己烷进行索氏抽提,然后加入二乙基二硫代氨基甲酸钠三水合物的水溶液(225mg,1mmol,100ml水)于60℃搅拌8小时,除去反应中的钯催化剂,用甲醇、丙酮、正己烷进行索氏抽提,干燥,得到深绿色固体(115mg),产率:80%。核磁共振氢谱:(cdcl3)δ(ppm):1hnmr(500mhz,cdcl3)δ1hnmr(500mhz,cdcl3)δ7.63(m,1h),7.51(s,1h),7.40(s,2h),7.28(m,2h),7.10(s,2h),3.45(t,j=7.2hz,2h),1.70(m,2h),1.21-1.24(m,10h),0.88(m,3h)。

实施例6

共聚物ptzbi-2tod-t-50%bdt的制备:

氩气保护下,在10ml微波管内,加入2,5-二三丁基锡噻吩(41mg,0.10mmol)、2,6-二溴-4,8-双(5-(2-乙基己基)噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩(36.8mg,0.05mmol)、4,8-双(5-溴恶吩-2-基)-6-辛基-5h-[1,2,5]硒二唑并[3,4-f]的异吲哚-5,7(6h)-二酮(64.78mg,0.05mmol)、四(三苯基膦)钯(8mg)和二甲苯(2ml),微波200℃反应45min,降至室温后将反应液沉析在甲醇中,先后用甲醇、丙酮、正己烷进行索氏抽提,然后加入二乙基二硫代氨基甲酸钠三水合物的水溶液(225mg,1mmol,100ml水)于60℃搅拌8小时,除去反应中的钯催化剂,用甲醇、丙酮、正己烷进行索氏抽提,干燥,得到深绿色固体(132mg),产率:84%。核磁共振氢谱:(cdcl3)δ(ppm):1hnmr(500mhz,cdcl3)δ1hnmr(500mhz,cdcl3)δ7.68(br,arh),7.51(br,arh),7.42(br,arh),7.25(br,arh),7.10(br,arh),6.88(br,arh),3.45(br,ch),1.70(br,ch),1.21-1.24(br,ch2),0.99(br,ch3)0.88(br,ch3)。

将实施例3~6制备的共聚物分别在薄膜状态下和氯苯溶液中,采用shimadzuuv-3600紫外分析仪上测量紫外-可见光吸收光谱。

实施例3~6制备的共聚物在薄膜状态下的紫外-可见光吸收光谱图如图1所示,由图1可知,制备的共聚物在薄膜状态下在680nm有较强的吸收,其中,共聚物薄膜吸收最大峰为540nm,说明上述聚合物对太阳光有较强的吸收,且吸收峰比较宽。

实施例3~6制备的共聚物在氯苯溶液中的紫外-可见光吸收光谱图如图2所示,由图2可知,相对于在薄膜中的吸收,共聚物在溶液中的吸收蓝移了50nm,这是由于聚合物在固态时的自聚集导致的。

homo能级可由以下公式算出,homo=e[eox+(4.80-efc/fc+)]ev;实施例3~6制备的共聚物的电化学曲线如图3所示,其中,fc/fc+为二茂铁的吸收曲线,efc/fc+=0.36ev,eox为氧化起始边,可由电化学曲线得出,与对照曲线fc/fc+曲线相比,制备的共聚物的聚合物均具有较好的电化学性能。

实施例3~6制备的共聚物的homo能级如表1所示。

表1实施例3~6制备的共聚物的homo能级

从表1计算结果可知,制备的共聚物均具有较深的homo能级,有助于开路电压的提升,从而有助于聚合物太阳电池效率的提升。

实施例7

聚合物太阳能光伏电池器件采用正装结构,以ito玻璃衬底作为电子收集电极,ito玻璃依次用丙酮,洗涤剂,去离子水和异丙醇超声洗涤,然后放入烘箱70℃过夜烘干;将烘干后的ito基板上经plasma等离子表面处理4分钟后,旋涂pedot:pss(质量比pedot:pss=1:1),厚度为40nm,150℃下退火20分钟;聚合物分别与itic(结构式如下),聚合物与itic的质量比为1:1,溶解于二氯苯(dcb),浓度为10mg/ml,旋涂于pedot:pss上作为光活性层,厚度为80nm,活性层进行160℃/10min退火处理;在活性层上旋涂一层5nm的pfndi-br(结构式如下)作为阴极界面。最后,在真空蒸镀仓内(2.0×10-6mbar),通过掩膜板在活性层上蒸镀一层厚度为80nm的铝作为阴极,器件的有效面积为0.058cm2

基于实施例3~6制备的共聚物的太阳能光伏电池器件的性能如表2所示。

表2基于实施例3~6制备的共聚物的太阳能光伏电池器件的性能

由表2可知,实施例3~6制备的共聚物聚合物都表现出良好的器件性能,随着bdt含量的增加,聚合物的器件性能越来越好,当bdt含量达到50%时,器件效率为0.86。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并任何不受上述实施例的限制,其他的未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1