非溶出型抗菌醋酸纤维素及其制备方法和用途与流程

文档序号:11258922阅读:1138来源:国知局
非溶出型抗菌醋酸纤维素及其制备方法和用途与流程

本发明属于醋酸纤维素改性及应用领域,特别是涉及一种非溶出型抗菌醋酸纤维素及其制备方法和用途。



背景技术:

随着人口数量的持续增长和工业化进程的不断加快,由淡水资源短缺引发的全球危机日益突出。近年来,以反渗透过滤膜为代表的膜分离技术在海水脱盐、苦咸水淡化以及废水处理与回收等方面表现出独特的优势。反渗透是渗透分离膜领域中研究最早的一项分离技术,几乎可以截留除水以外的所有物质分子,因而具有无可比拟的技术优势。与其它膜分离技术相比,反渗透膜还具有成本低、耗能少和效率高等特点。

目前,可用于制备反渗透膜的原材料主要包括芳香族聚酰胺和醋酸纤维素。其中,醋酸纤维素作为一种来源广泛且可生物降解的环境友好型材料,具有加工性良好、易成膜、亲水性优异、通量大以及耐氯性高等特点。早在20世纪60年代研究人员首次研制出了醋酸纤维素反渗透膜,随后以日本东洋纺为代表的一些企业实现了该类膜产品的工业化生产并成功用于海水淡化等领域。但是,醋酸纤维素反渗透膜常被用于处理富含多种细菌微生物的复杂水体,醋酸纤维素分子主链上的β-脱水葡萄糖单元极易受到微生物的侵蚀而分解,使膜材料失去本征属性,缩短了其使用寿命,最终导致反渗透膜的成本增加和应用受限。因此,研究和开发具有抗菌功能的醋酸纤维素反渗透膜成为势在必行的工作。抗菌是指在一定的时间和空间环境内,使微生物,包括细菌、真菌和病毒等,的生长和繁殖保持在必要水平以下的控制过程。近年来,针对醋酸纤维素膜材料抗菌性差的问题,许多研究人员做了大量的工作以期提高膜产品的抗菌性。cn101053782a公开了一种抗菌醋酸纤维素纳滤膜及其制备方法,该方法是通过在铸膜液中加入一种或一种以上经化学修饰的抗菌纳米粒子,包括:二氧化钛、氧化锌、银粉和铜粉等,然后通过相转化成膜得到抗菌醋酸纤维素纳滤膜。cn105525383a公开了一种耐高温抗菌醋酸纤维素材料的制备方法,该方法是利用光催化性抗菌剂tio2良好的化学稳定性和独特的协同抗菌作用,在增加醋酸纤维素热稳定性的同时可以提高材料的抗菌性能。上述两种方法均是通过掺杂、共混向膜本体内引入抗菌粒子,但是,这种引入抗菌粒子的方法易于导致粒子的团聚或分布不均匀;同时,抗菌粒子与醋酸纤维素基材之间的作用力较弱,在使用过程中易导致抗菌粒子的脱落游离,这样不仅会降低膜的抗菌性能,还会造成二次污染。



技术实现要素:

本发明的第一个目的在于:提供一种非溶出型抗菌醋酸纤维素,醋酸纤维素上接枝有溴代烷基,具有抗菌性。

本发明的第二个目的在于:提供一种非溶出型抗菌醋酸纤维素的制备方法。

本发明的第三个目的在于:利用该非溶出型抗菌醋酸纤维素制备反渗透过滤膜的方法。

本发明的技术方案如下:

一种非溶出型抗菌醋酸纤维素,其结构为:醋酸纤维素上部分羟基上的氢被溴乙酰基基团所取代。

一种非溶出型抗菌醋酸纤维素的制备方法,包括如下步骤:

1)在反应容器中将醋酸纤维素溶解在溶剂中,配制成醋酸纤维素溶液;

其中,所述溶剂的含水量低于0.01wt.%;所述溶剂既能溶解醋酸纤维素,又能与水互溶;

2)在搅拌条件下,向所述反应容器中逐滴滴加溴乙酰溴,滴加时,保证反应容器内液相的温度维持在0~5℃;

所述醋酸纤维素中羟基的物质的量与溴乙酰溴的物质的量之比为1:2.0~3.5;优选1:2.5~3.0;

3)滴加完成后,将醋酸纤维素与溴乙酰溴的反应体系升至20~35℃,在搅拌条件下继续反应至反应完成,得到初产物溶液;

4)向所述反应容器中加入去离子水,将醋酸纤维素析出,再用去离子水多次洗涤,至用过的去离子水的ph值呈中性,烘干,得到所述非溶出型抗菌醋酸纤维素。

优选,步骤2)、3)中的搅拌速度均为不低于1000rpm。

进一步,步骤4)将醋酸纤维素析出的过程,加入去离子水的体积至少为步骤1)中所用溶剂体积的2倍。

进一步,所述溶剂为n,n-二甲基甲酰胺、n,n-二甲基乙酰胺、丙酮和二甲基亚砜中的任意一种。

进一步,步骤1)中所述醋酸纤维素溶液的质量浓度为50g/l~100g/l。

利用如上所述制备方法得到的非溶出型抗菌醋酸纤维素制备反渗透膜的方法,包括如下步骤:

a)配制如下含量的铸膜液:

抗菌醋酸纤维素11~15wt%;

混合溶剂75~80wt%;

非溶剂6~11wt%;

其中,所述混合溶剂为1,4-二氧六环和丙酮的混合物,且1,4-二氧六环和丙酮的质量比为2.0~3.0:1;

所述非溶剂为甲醇和顺丁烯二酸的混合物,且甲醇与顺丁烯二酸的质量比为3:2~6.2;

配制顺序为:先将混合溶剂搅拌均匀,再将抗菌醋酸纤维素溶解在其中,最后加入非溶剂混合均匀,静置脱泡,即得所述铸膜液;

b)在环境温度为20~30℃、湿度为30~50%的条件下,利用刮刀将所述铸膜液刮制成平板膜,静置30~70s,在0~30℃水浴中固化,得到初生平板膜;

c)将所述初生平板膜在70~90℃水中处理5~15min,取出,利用蒸馏水清洗干净,得到非溶出型抗菌醋酸纤维素反渗透膜。

与现有技术相比,本申请提供的技术方案具有如下优点:

1)本申请通过在醋酸纤维素上接枝引入溴代烷基抗菌基团,得到的非溶出性抗菌醋酸纤维素具有化学稳定性好、抗菌效率高、成膜性能优良等特点;

2)本申请通过一步酯化反应制备非溶出型抗菌醋酸纤维素,制备过程简单,试剂用量少,反应条件温和,工艺操作简便易行,适宜工业化生产;

3)用上述所得产物通过相转化成膜技术制备非溶出型抗菌醋酸纤维素反渗透膜,成膜工艺简单,而且所得膜产品在保持高渗透通量和截留率的同时,表现出高效的抗菌活性。

附图说明

图1为醋酸纤维素和溴乙酰溴反应原理图;

图2a为醋酸纤维素原材料的氢核磁共振波谱(1h-nmr)全图;

图2b为图2a中的局部放大图;

图3a为实施例1制得的非溶出型抗菌醋酸纤维素的氢核磁共振波谱(1h-nmr)全图;

图3b为图3a中的局部放大图;

图4为实施例2制得的非溶出型抗菌醋酸纤维素的x射线光电子能谱仪(xps)谱图。

图5a给出了对比例1得到的二醋酸纤维素反渗透膜对大肠杆菌的抗菌活性照片(18h);

图5b给出了对比例2得到的三醋酸纤维素反渗透膜对大肠杆菌的抗菌活性照片(18h);

图5c给出了实施例2-①的制得的非溶出型抗菌醋酸纤维素反渗透膜对大肠杆菌的抗菌活性照片(18h);

图6a给出了对比例1得到的二醋酸纤维素反渗透膜对金黄色葡萄球菌的抗菌活性照片(18h);

图6b给出了对比例2得到的三醋酸纤维素反渗透膜对金黄色葡萄球菌的抗菌活性照片(18h);

图6c给出了实施例2-①的制得的非溶出型抗菌醋酸纤维素反渗透膜对金黄色葡萄球菌的抗菌活性照片(18h)。

具体实施方式

以下结合附图和实施例对本发明的技术方案进行详细描述。

实施例1

(1)在反应容器中,将20g醋酸纤维素溶解在250ml含水量<0.01wt.%的n,n-二甲基甲酰胺中,配制成质量浓度为80g/l的无色透明的醋酸纤维素溶液;

(2)在冰水浴、搅拌速度为1000rpm的条件下,将16.8g(相当于2.0eq的醋酸纤维素中羟基的物质的量)溴乙酰溴逐滴滴加入反应容器,滴加过程中,保证反应容器内液相的温度维持在0~5℃;

(3)滴加完成后,将醋酸纤维素与溴乙酰溴的反应体系升至25℃,并在搅拌速度为1000rpm的条件下继续反应18h,得到初产物溶液;

(4)向反应容器中加入2.5l去离子水,将醋酸纤维素析出,再用去离子水多次洗涤,至用过的去离子水的ph值呈中性(ph=7.0),然后将固体置于60℃真空烘箱中干燥至恒重,得到非溶出型抗菌醋酸纤维素。

x-射线光电子能谱仪(xps)测试结果表明,本实施例得到的非溶出性抗菌醋酸纤维素中抗菌基团的含量为0.86at.%(由溴元素的原子百分比表示)。

图3a和3b分别给出本实施例反应所得抗菌醋酸纤维素的氢核磁共振波谱(1h-nmr)的全图和局部放大图,谱图中溴代烷基(-ch2br)特征峰的出现表明醋酸纤维素与溴乙酰溴发生了酯化反应,并且醋酸纤维素本体的化学结构在反应过程中没有明显改变和破坏。

用该实施例所得产物制备非溶出型抗菌醋酸纤维素反渗透膜:

a)称取25.89g1,4-二氧六环和10.38g丙酮加入到装有机械搅拌的100ml三口烧瓶中混合均匀,然后将6.00g抗菌醋酸纤维素溶解其中,最后加入1.66g甲醇和2.22g顺丁烯二酸,继续搅拌混合均匀;静置24h脱泡,即得铸膜液;

b)在环境温度为25℃、湿度为40%的刮膜室中,利用250μm刮刀将铸膜液刮制成平板膜,静置挥发40s后,浸没在0℃的水凝固浴中固化成型,得到初生平板膜;

c)将初生平板膜在80℃的水中热处理10min,取出,用蒸馏水清洗干净,得到非溶出型抗菌醋酸纤维素反渗透膜。

实施例2

(1)在反应容器中,将20g醋酸纤维素溶解在250ml含水量<0.01wt.%的n,n-二甲基甲酰胺中,配制成质量浓度为80g/l的无色透明的醋酸纤维素溶液;

(2)在冰水浴、搅拌速度为1100rpm的条件下,将21.0g(相当于2.5eq的醋酸纤维素中羟基的物质的量)溴乙酰溴逐滴滴加入反应容器,滴加过程中,保证反应容器内液相的温度维持在0~5℃;

(3)滴加完成后,将醋酸纤维素与溴乙酰溴的反应体系升至25℃,并在搅拌速度为1100rpm的条件下继续反应18h,得到初产物溶液;

(4)向反应容器中加入2.5l去离子水,将醋酸纤维素析出,再用去离子水多次洗涤,至用过的去离子水的ph值呈中性(ph=7.0)实施例里需要给出具体值),然后将固体置于60℃真空烘箱中干燥至恒重,得到非溶出型抗菌醋酸纤维素。

x-射线光电子能谱仪(xps)测试结果表明,本实施例得到的非溶出性抗菌醋酸纤维素中抗菌基团的含量为1.56at.%(由溴元素的原子百分比表示),如附图4所示。

利用本实施例所得产物,通过改变铸膜液配方,制备三种非溶出型抗菌醋酸纤维素反渗透膜,具体如下:

①:

a)称取25.89g1,4-二氧六环和10.38g丙酮加入到装有机械搅拌的100ml三口烧瓶中混合均匀,然后将6.00g抗菌醋酸纤维素溶解其中,最后加入1.66g甲醇和2.22g顺丁烯二酸,继续搅拌混合均匀。静置24h脱泡,得到铸膜液;

b)在环境温度为25℃、湿度为40%的刮膜室中,利用250μm刮刀将铸膜液刮制成平板膜,静置挥发40s后,浸没在0℃的水凝固浴中固化成型,得到初生平板膜;

c)将初生平板膜在80℃的水中热处理10min,取出,用蒸馏水清洗干净,得到非溶出型抗菌醋酸纤维素反渗透膜。

图5c和图6c分别给出了此种方法得到的非溶出型抗菌醋酸纤维素反渗透膜对大肠杆菌和金黄色葡萄球菌的抗菌活性照片;

②:

a)称取26.58g1,4-二氧六环和10.61g丙酮加入到装有机械搅拌的100ml三口烧瓶中混合均匀,然后将5.08g抗菌醋酸纤维素溶解其中,最后加入1.66g甲醇和2.22g顺丁烯二酸,继续搅拌混合均匀。静置24h脱泡,得到铸膜液;

b)在环境温度为25℃、湿度为40%的刮膜室中,利用250μm刮刀将铸膜液刮制成平板膜,静置挥发40s后,浸没在10℃的水凝固浴中固化成型,得到初生平板膜;

c)将初生平板膜在80℃的水中热处理10min,取出,用蒸馏水清洗干净,得到非溶出型抗菌醋酸纤维素反渗透膜。

③:

a)称取25.53g1,4-二氧六环和10.23g丙酮加入到装有机械搅拌的100ml三口烧瓶中混合均匀,然后将7.00g抗菌醋酸纤维素溶解其中,最后加入1.68g甲醇和2.45g顺丁烯二酸,继续搅拌混合均匀。静置24h脱泡,得到铸膜液;

b)在环境温度为25℃、湿度为40%的刮膜室中,利用250μm刮刀将铸膜液刮制成平板膜,静置挥发40s后,浸没在25℃的水凝固浴中固化成型,得到初生平板膜;

c)将初生平板膜在80℃的水中热处理10min,取出,用蒸馏水清洗干净,得到非溶出型抗菌醋酸纤维素反渗透膜。

实施例3

(1)在反应容器中,将20g醋酸纤维素溶解在250ml含水量<0.01wt.%的n,n-二甲基甲酰胺中,配制成质量浓度为80g/l的无色透明的醋酸纤维素溶液;

(2)在冰水浴、搅拌速度为1200rpm的条件下,将25.1g(相当于3.0eq的醋酸纤维素中羟基的物质的量)溴乙酰溴逐滴滴加入反应容器,滴加过程中,保证反应容器内液相的温度维持在0~5℃;

(3)滴加完成后,将醋酸纤维素与溴乙酰溴的反应体系升至25℃,并在搅拌速度为1200rpm的条件下继续反应18h,得到初产物溶液;

(4)向反应容器中加入2.5l去离子水,将醋酸纤维素析出,再用去离子水多次洗涤,至用过的去离子水的ph值呈中性(ph=7.0),然后将固体置于60℃真空烘箱中干燥至恒重,得到非溶出型抗菌醋酸纤维素。

x-射线光电子能谱仪(xps)测试结果表明,本实施例得到的非溶出性抗菌醋酸纤维素中抗菌基团的含量为1.85at.%(由溴元素的原子百分比表示)。

利用实施例1中非溶出型抗菌醋酸纤维素反渗透膜的制备方法,将其使用的抗菌醋酸纤维素替换成本实施例制得的抗菌醋酸纤维素,制备反渗透膜。

实施例4

(1)在反应容器中,将20g醋酸纤维素溶解在250ml含水量<0.01wt.%的n,n-二甲基甲酰胺中,配制成质量浓度为80g/l的无色透明的醋酸纤维素溶液;

(2)在冰水浴、搅拌速度为1500rpm的条件下,将29.3g(相当于3.5eq的醋酸纤维素中羟基的物质的量)溴乙酰溴逐滴滴加入反应容器,滴加过程中,保证反应容器内液相的温度维持在0~5℃;

(3)滴加完成后,将醋酸纤维素与溴乙酰溴的反应体系升至25℃,并在搅拌速度为1200rpm的条件下继续反应18h,得到初产物溶液;

(4)向反应容器中加入2.5l去离子水,将醋酸纤维素析出,再用去离子水多次洗涤,至用过的去离子水的ph值呈中性(ph=7.0),然后将固体置于60℃真空烘箱中干燥至恒重,得到非溶出型抗菌醋酸纤维素。

x-射线光电子能谱仪(xps)测试结果表明,本实施例得到的非溶出性抗菌醋酸纤维素中抗菌基团的含量为2.63at.%(由溴元素的原子百分比表示)。

利用实施例1中非溶出型抗菌醋酸纤维素反渗透膜的制备方法,将其使用的抗菌醋酸纤维素替换成本实施例制得的抗菌醋酸纤维素,制备反渗透膜。

实施例5

(1)在反应容器中,将20g醋酸纤维素溶解在400ml含水量<0.01wt.%的丙酮中,配制成质量浓度为50g/l的无色透明的醋酸纤维素溶液;

(2)在冰水浴、搅拌速度为1500rpm的条件下,将21g(相当于2.5eq的醋酸纤维素中羟基的物质的量)溴乙酰溴逐滴滴加入反应容器,滴加过程中,保证反应容器内液相的温度维持在0~5℃;

(3)滴加完成后,将醋酸纤维素与溴乙酰溴的反应体系升至20℃,并在搅拌速度为1500rpm的条件下继续反应12h,得到初产物溶液;

(4)向反应容器中加入2.0l去离子水,将醋酸纤维素析出,再用去离子水多次洗涤,至用过的去离子水的ph值呈中性(ph=7.0),然后将固体置于60℃真空烘箱中干燥至恒重,得到非溶出型抗菌醋酸纤维素。

x-射线光电子能谱仪(xps)测试结果表明,本实施例得到的非溶出性抗菌醋酸纤维素中抗菌基团的含量为0.69at.%(由溴元素的原子百分比表示)。

利用实施例1中非溶出型抗菌醋酸纤维素反渗透膜的制备方法,将其使用的抗菌醋酸纤维素替换成本实施例制得的抗菌醋酸纤维素,制备反渗透膜。

实施例6

(1)在反应容器中,将20g醋酸纤维素溶解在200ml含水量<0.01wt.%的二甲基亚砜中,配制成质量浓度为100g/l的无色透明的醋酸纤维素溶液;

(2)在冰水浴、搅拌速度1500rpm的条件下,将21.0g(相当于2.5eq的醋酸纤维素中羟基的物质的量)溴乙酰溴逐滴滴加入反应容器,滴加过程中,保证反应容器内液相的温度维持在0~5℃;

(3)滴加完成后,将醋酸纤维素与溴乙酰溴的反应体系升至30℃,并在搅拌速度1500rpm的条件下继续反应24h,得到初产物溶液;

(4)向反应容器中加入3.0l去离子水,将醋酸纤维素析出,再用去离子水多次洗涤,至用过的去离子水的ph值呈中性(ph=7.0),然后将固体置于60℃真空烘箱中干燥至恒重,得到非溶出型抗菌醋酸纤维素。

x-射线光电子能谱仪(xps)测试结果表明,本实施例得到的非溶出性抗菌醋酸纤维素中抗菌基团的含量为0.80at.%(由溴元素的原子百分比表示)。

利用实施例1中非溶出型抗菌醋酸纤维素反渗透膜的制备方法,将其使用的抗菌醋酸纤维素替换成本实施例制得的抗菌醋酸纤维素,制备反渗透膜。

对比例1

用二醋酸纤维素制备醋酸纤维素反渗透膜:

a)称取25.89g1,4-二氧六环和10.38g丙酮加入到装有机械搅拌的100ml三口烧瓶中混合均匀,然后将6.00g二醋酸纤维素溶解其中,最后加入1.66g甲醇和2.22g顺丁烯二酸并继续搅拌混合均匀。静置24h脱泡,得到铸膜液;

b)在环境温度为25℃、湿度为40%的刮膜室中,利用250μm刮刀将所述铸膜液刮制成平板膜,静置挥发40s后,浸没在0℃的水凝固浴中固化成型,得到初生平板膜;

c)将所述平板膜在80℃的水中热处理10min,取出,用蒸馏水清洗干净,得到二醋酸纤维素反渗透膜。

图2a和2b分别为本对比例中成膜用二醋酸纤维素的氢核磁共振波谱(1h-nmr)全图和局部放大图,属于典型的醋酸纤维素的结构。

图5a和图6a分别给出了本对比例得到的二醋酸纤维素反渗透膜对大肠杆菌和金黄色葡萄球菌的抗菌活性照片。

对比例2

用三醋酸纤维素制备醋酸纤维素反渗透膜:

a)称取25.89g1,4-二氧六环和10.38g丙酮加入到装有机械搅拌的100ml三口烧瓶中混合均匀,然后将6.00g三醋酸纤维素溶解其中,最后加入1.66g甲醇和2.22g顺丁烯二酸并继续搅拌混合均匀;静置24h脱泡,得到铸膜液;

b)在环境温度为25℃、湿度为40%的刮膜室中,利用250μm刮刀将所述铸膜液刮制成平板膜,静置挥发40s后,浸没在0℃的水凝固浴中固化成型,得到初生平板膜;

c)将所述平板膜在80℃的水中热处理10min,取出,用蒸馏水清洗干净,得到三醋酸纤维素反渗透膜。

图5b和图6b分别给出了本对比例所得三醋酸纤维素反渗透膜对大肠杆菌和金黄色葡萄球菌的抗菌活性照片。

以下给出性能测试的方法:

1、膜性质测试:

通过x-射线光电子能谱仪(xps)对对比例和实施例所得所有膜产品的化学元素组成进行测试和表征,并根据br元素特征峰的积分面积计算其原子百分比,以此来衡量抗菌基团的含量以及评价膜产品的抗菌性能。

2、膜性能测试:

(1)选择透过性能评价

水渗透通量和盐截留率是评价反渗透膜选择透过性能的两个重要参数。通过错流渗透过滤测试,对反渗透膜进行分离性能评价。

水渗透通量(j)的定义为:在一定的操作条件下,单位时间内透过单位膜面积的水的体积,其单位为l/(m2·h),公式如下:

j=v/(a×t)

其中,v为水的渗透体积,l;a为膜的有效面积,m2;t为渗透时间,h。

盐截留率(r)的定义为:在一定的操作条件下,进料液与透过液的盐浓度差占进料液浓度的百分数,其单位为%,公式如下:

r=(1-cp/cf)×100%

其中,cp为渗透液的电导率,μs/cm;cf为进料液的电导率,μs/cm。

本发明一种非溶出型抗菌醋酸纤维素反渗透膜性能测试采用的操作条件为:对于对比例和实施例,以2000ppmnacl水溶液为进料液,操作压力为225psi,温度为25℃,ph为7.0,测试反渗透膜的水渗透通量和盐截留率。

(2)膜抗菌性能评价

以革兰氏阴性的大肠杆菌和革兰氏阳性的金黄色葡萄球菌作为细菌模型,依据中华人民共和国国家标准(gb/t20944.3-2008),采用菌液震荡法对对比例1、2制备所得醋酸纤维素反渗透膜和实施例1-6制备所得非溶出型抗菌醋酸纤维素反渗透膜进行抗菌性能测试。通过平板计数法计算每个琼脂板上的菌落数来分析各膜样品的抑菌率(k),公式如下:

k=(1-nm/n0)×100%

其中,k为抑菌率,%;nm为非溶出型抗菌醋酸纤维素反渗透膜样品的菌落数,cfu/ml;n0为醋酸纤维素反渗透膜样品的菌落数,cfu/ml。

表1列出了对比例1、2和实施例1-6制备所得反渗透膜的选择透过性能测试和抗菌性能测试数据。对比分析可发现,非溶出型抗菌醋酸纤维素反渗透膜表现出良好的抗菌性,膜的通量和截留率没有受到影响。

表1反渗透膜的选择透过性能和抗菌性能

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1