非晶体塑料制品的局部结晶方法和装置的制作方法

文档序号:4466342阅读:348来源:国知局
专利名称:非晶体塑料制品的局部结晶方法和装置的制作方法
技术领域
本发明涉及一种注塑成形的塑料制品的成形方法和装置,这种塑料制品具有从塑料树脂的熔融相生成的非晶体部分和结晶部分,以及一种新颖的模制塑料制品。更具体的说,本发明涉及一种新颖的局部结晶方法和装置,这种方法完全或部分地在一种模具内部进行,这种模具专门用于具有结晶的颈部和非晶体的本体部分的新颖的聚乙烯对酞酸盐(PET)的预制件的注塑成形。这种预制件要进一步吹成在要求结晶的区域具有增强的强度性能的双轴向容器。本发明可用于单独一种或多种材料制成的预制件。原先的PET预制件的注塑成形法和吹制成形法中的结晶部分是用局部加热然后冷却的方法,从玻璃相产生的。本发明教导了一种在制品处于熔融阶段时采用的特别优选的冷却温度模式,从而用快速的局部冷却形成了非晶体部分,用较慢的局部冷却形成了结晶部分。
本发明最好使用新颖设计的PET预制件的模制和处理设备。本发明还能制造各种具有不同的物理和光学性能的区域的塑料制品。这方面的一个优选实施例是革新的带有中心孔的信息载体塑料盘,例如,HD,CD,DVD,MOP和CD-ROM用的盘,这些盘有一个没有可检索信息的中央区域。特别是CD和DVD盘要在使用时承受剧烈的操作,因而必须在其中央区域具有很高的强度和刚度。对于由旋转轴驱动的用注塑成形精密成形的,要求很高的扭转强度的塑料齿轮来说,更高的强度和刚度就更加重要了。
如所周知,聚乙烯对酞酸盐(PET)吹制的制品表现出双轴向性能,因而使它适合于制作许多制品。但是,一种空心制品的双轴向性能有内应力急剧增加的缺点,因而在超过70℃的温度下尺寸的稳定性降低了。在许多包装用品中,容器的颈部是极端重要的,这一部分在吹塑成形的工艺过程中不是双轴向性的,因此弱于其他部分。增强非晶体PET型坯或瓶子颈部的一种普通的解决办法是用局部加热到超过140℃来使颈部结晶,此时无取向的非晶体材料将很快进行球状结晶。曾经对在可吹制的PET型坯注塑成形之后,用局部加热预成形坯或瓶子来改善PET吹制的瓶子颈部的强度进行了许多尝试。下列文献可作为这方面的参考文献授予奥塔(Ota)的美国专利4,375,442,授予哈亚西(Hayashi)的美国专利4,589,559,授予柯立特(Collette)的美国专利4,928,835,授予霍维奇(Horwege)的美国专利4,933,135,授予苏基亚玛(Sugiyama)的美国专利5,180,893,以及授予苏久拉(Sugiura)的美国专利5,248,533。在所有这些方法中,都把一个热源朝向模制成的预成形坯的颈部,把它加热到为其结晶和热处理所必需的温度。在授予奥利莫托(Orimoto)等人的欧洲专利EP503086中公开了一种成形带结晶颈部的预成形坯的不同的方法。在该方法中,首先模制一个颈部的成品,然后在模具外部进行结晶,然后再把它放入第二个模具作为插件,用重复模制法制成一个完整的型坯。
模制型坯的颈部成品或者玻璃制成的模制颈部的结晶法并不是一种最佳的方法,因为它是一种需要附加的耗时的步骤来制造抗热的吹制制品的方法。此外,它还需要增加设备和车间面积,并且能耗很高。在大多数情况下,经过重新加热和结晶的颈部不能保持它的名义尺寸。
过去曾经企图在注塑成形的工艺方法中,以受控的方式改变冷却过程中热塑性材料上的压力,来控制热塑性塑料的结晶过程。这种方法公开在授予张(Chang)的美国专利4,150,079中,但当遇到只要在制品的局部结晶时,如象预成形坯的颈部那样的情况,这种方法就无法实施。
局部结晶法还曾经应用于真空热成形的制品,该方法公开在克拉克(Clarke)的PCT申请WO88/09298中。克拉克的’09298专利申请中清楚地描述了把一种模制的PET扁平毛坯成形为一种带有加强区的食物容器的真空模制或压制法。克拉克的模具上有局部加热器,局部冷却器和局部绝热装置,以形成已成为扁平毛坯的结晶区和非晶体区。克拉克的模具不接受熔融的PET,也不使用熔融材料的优先冷却/加热来形成结晶结构。因此,这种方法不能通过熔融物的有选择的冷却应用于局部结晶制品,诸如PET预成形坯的注塑成形法。
在授予奥塔(Ota)的美国专利4,307,137中公开了在正常冷却过程中的模具内部局部结晶法。’137专利的要点是在模制预成形坯时,在熔融的PET在模具内部冷却的过程中,借助于形成一种乳白色的结构,使得在吹制的预成形坯物体内产生明显可见的差别。因此,这种’137专利的目的并不是通过模具内部的结晶来局部增强预成形坯的强度。而且,这种’137专利并没有教给人们任何在模具内局部改变冷却速度的新的装置。奥塔的专利所表明的是他通过使用任何标准的公知模具设备,利用了模具部分本身的几何特点来达到局部结晶的目的(见图5和图6)。奥塔的结晶方法是基于固有的事实,即,具有不同厚度的PET制品处于熔融状态时,在相同的温度下,较厚区域的凝固需要比较薄的区域更多的时间。因此,在PET熔融物的正常冷却过程中,不易冷却的较厚的区域可能会结晶,而冷却得较快的区域则可能成为非晶体。上述’137专利在两阶段重复模制工序中形成了薄的区域和厚的区域。先模制一个包括不同厚度的区域的第一制品,然后,用它作为内“模”表面以形成最后的复合制品,此时,在第二层中具有相应的厚的区域和薄的区域。在正常的冷却过程中,外部第二层厚的区域冷却得慢,因而便结晶,而外部第二层薄的区域冷却得较快,因而成为非晶体。这种结晶区域可用作外观设计的花样。如上所述,’137专利的这种有选择的冷却过程,仅仅是由于第二模制层厚度的变化而在一种常规的模具中达到的。
本发明的结晶方法,装置和制品与公知的方法不同,因为它采用了一种由新颖的模制设备所导致的不同的冷却方式,只在某些选定的区域内减缓基本上处于熔融相的树脂的冷却过程。根据以下对于聚合物在加热时所表现的性能就能够了解这种能增加强度的局部结晶方法。
因此,本发明的主要目的是提供一种经过改进的注塑成形的塑料制品以及用于制备这种制品的工艺方法和装置。
本发明的另一个目的是提供一种以上所述的制品、工艺方法和装置,这种制品包括一个强度性能增强的结晶部分,和一个非晶体部分,特别是具有一个结晶的颈部。
本发明的其余目的和优点将在下文中说明。
按照本发明,很容易就能达到以上所说的目的和优点。
本发明的工艺方法包括通过在高温下把熔融的塑料注入一个注塑模具内,成形一个塑料制品;冷却上述注塑模具内的塑料,使它从熔融状态变成固体状态;其中,上述塑料的第一部分迅速从熔融状态冷却到固体状态,形成非晶体部分,而上述塑料的第二部分缓慢地从熔融状态冷却到固体状态,形成结晶部分。最好,上述制品有一个封闭的底部,一个侧壁部分从该封闭底部延伸上来,而从该侧壁又延伸出来一个颈部区域,并且包括使得至少颈部的一部分结晶。在一个优选实施例中,本发明包括提供注塑模具中的冷却装置的步骤,以冷却上述制品,并且使颈部区域的至少一部分与上述冷却装置绝热。
本发明的装置包括一个里面有模腔的注塑模具;把熔融的塑料注入上述模腔内,以便在其中形成塑料制品的装置;与上述模腔有热交换关系的冷却装置,以便使上述塑料从熔融状态变成固体状态;其中,上述冷却装置工作时能迅速把上述塑料的第一部分从熔融状态冷却到固体状态,形成非晶体部分,并且具有靠近上述塑料的第二部分的装置,它能让上述第二部分缓慢地从熔融状态冷却到固体状态,形成结晶部分。最好,上述制品有一个封闭的底部,一个侧壁部分从该封闭底部延伸上来,而从该侧壁又延伸出来一个颈部区域,其中,上述靠近第二部分的装置靠近该颈部区域的至少一部分。在一个优选实施例中,靠近上述第二部分的装置使上述颈部区域的至少一部分与上述冷却装置绝热。
本发明的注塑成形的制品包括通过把熔融的塑料注入一个注塑模具内而形成的一个注塑成形塑料制品,其中,上述制品包括一个通过把上述熔融塑料迅速冷却到固体状态而形成的非晶体第一部分,以及一个通过把上述熔融塑料缓慢冷却到固体状态而形成的结晶的第二部分。最好,上述制品有一个封闭的底部,一个侧壁部分从该封闭底部延伸上来,而从该侧壁又延伸出来一个颈部区域,其中,上述至少一部分颈部区域是结晶的。在一个优选实施例中,上述制品是预成形坯。
按照本发明,以上所述的技术方案能很容易地达到本发明的目的和优点。在下文中将进一步说明本发明的特征和优点。
下面,参照附图详细描述本发明的实施例,将使本发明更容易了解。
附图中

图1是一个预成形坯模具的断面图;图2是按照本发明的一个实施例的预成形坯模具的详图,而图2A-2E表示各种变化;图3是与图2相似的本发明的另一个实施例的详图,图3A表示各种变化;图4是本发明又一个实施例的详图;图5是本发明另一个实施例的局部视图;图6是通过按照本发明的芯子的断面图;图7是表示一种热塑性PET的差动扫描热量计的曲线图;图8表示用于多层预成形坯的本发明;图9表示本发明的一个预成形坯;以及图10是表示上述预成形坯的本体和颈部区域内温度变化的曲线图。
某些常用的塑料,例如PET,被认为是半晶体聚合物。名词“晶体”与“非晶体”相对,指的是有序的局部链结构,而非晶体的聚合物的链是无序的。根据定义,熔融的聚合物树脂是非晶体。在普通的条件下,聚合物几乎从不超过大约80%的结晶度。
在非晶体状态下,聚合物一般是清澈而且透明的。结晶的聚合物通常是不透明或半透明的。微小的结晶区(晶粒)由于它的不透明或半透明性而散射光线。此外,对于透明度来说,聚合物的许多物理性能,包括溶解度、刚度、硬度和屈服强度,都取决于制品的结晶程度。
当半结晶的聚合物处于非晶体的状态时,它的分子链的结构与伸长的弹簧的倾斜的棱边相似。在某些情况下,聚合物的链倾向于卷成有序的结构,形成结晶区。聚合物链的重复的单元互相整齐地配合,形成封闭密实的阵列,其密度要比非晶体状态高。常常使用密度测量来确定结晶的程度。
晶体结构的能量状态比非晶体结构低,所以它是一种在热动力学上有利的结构。但是,由于聚合物分子是长而且卷缠的,所以可以用快速冷却非晶体聚合物的熔融体把非晶体状态“冻结”起来。结晶能在聚合物链具有足够活动性的任何温度下通过分子的重新排列来进行。结晶可以在玻璃态中(通过加热)产生,或者在熔融态中(通过缓慢冷却)产生。
结晶的温度范围在玻璃化转变温度(Tg)与熔融温度(Tm)之间。低于Tg,树脂呈“玻璃质”,因为聚合物链的活动性大大降低了,并且基本上锁定在原地,而与其是否是非晶体或结晶状态无关。超过Tm,聚合物链的能量就太多了,不能形成稳定的有序结构,所以熔融的树脂是非晶体状。在Tg与Tm之间,聚合物链有足够的能量重新排列成热动力学上最有利的结构,所以树脂就能够结晶。
等温成核和晶体成长的速率可以由Avrami公式或用与结晶有关的一半时间来描述。所谓结晶一半时间t1/2是指一种非晶体试样在给定温度下达到其结晶度的最后水平的50%时所需要的时间。对于一种特定等级的聚合物,在高于晶体的熔化点和低于玻璃化转变温度时,t1/2是无限长,而在这两个温度之间达到某一个最低点。t1/2作为温度的函数的特征曲线决定于聚合物的性质,其中包括聚合物的类别,分子量,共聚单体,和包括成核附加剂和结晶阻滞剂在内的添加剂。
当制品是用半晶体聚合物注塑成形时,通常的目的是为了利用附带的材料性能的改进而促进最大程度的结晶。在某些情况下,例如用于以后吹制成瓶子的PET预成形坯的注塑成形法,采取了专门的措施来防止模制部分的结晶。有时候很难做到这一点,特别是在称作流道门的预成形坯的底部,由于已经冷却的模制材料与热的浇口的仍然是热的阀杆之间的接触而更加困难。
本发明包括了那些选定的部位模制成结晶的,而其他部位模制成非晶体的制品,以及从熔融态制造这些制品的模制装置和工艺方法。这可以由设计零件,模制装置的热性能和模制的工艺方法,控制热的塑料与模制装置之间的热传递来完成。各个要成为非晶体的部位都尽可能快地冷却,而各个要结晶的部位则要很慢地通过热结晶温度范围。同时,还必须选择具有适当结晶动力学的聚合物树脂。
本发明的应用范围包括下列各项—用于重新加热吹制成形颈部具有高屈服强度的瓶子的预成形坯,它的本体部位是非晶体,而颈部是结晶体。这样吹制成的预成形坯所表现的热充灌用具的性能较好,例如,颈部的部位具有耐热的性能。
—具有成为一体的镜片或窗口和框架或把手的制品。
—用于具有非晶体与晶体部位之间的透明度不同的优点的制品。
—利用非晶体与晶体部位的性能不同的优点的制品,例如CD盘和DVD盘,其中的中心孔部位可以用结晶化来加强。
在结晶部位,聚合物链为了重新从非晶体状态排列成晶体状态所需要的热能,已经由注塑成形工艺方法中获得了,可以有利地利用它有选择地在第一次形成模制零件时,在某些局部具有增强了的强度。这种新颖的工艺方法,与在冷的、原先模制成的制品中的玻璃的结晶相反,能从熔融物形成局部结晶。
模制成的制品的非晶体部位和晶体部位的形状和尺寸,可以借助于模具的模制表面进行严密的控制,能达到非常高的精确度和可重复性。
可用于影响热塑料与模制装置之间的热传递的零件设计构思包括厚度和诸如肋片或表面组织等特征。
可用于影响热塑料与模制装置之间的热传递的模具设计构思包括—选择在不同的部位上具有绝热或导热性能的模制表面的材料;—加热和/或冷却装置的设计,这种装置通过热传递液体能够有选择地加热和冷却模具的不同部位,包括选择不同传热性能的材料;—形成温度尖锐变化的热障;以及—象平常一样冷却模具,并在选定的部位加入加热元件,可能是具有按照与注塑成形法的过程相符的预定的方式,并根据聚合物的结晶动力学,使温度循环的能力。
本发明包括了下列构思,即利用并控制在注塑成形的工艺过程中由熔融的材料所积聚和保存的热能,通过利用一种专用的新颖设备来实施的优先的或者不均匀的冷却,以形成具有非晶体部分和晶体部分的塑料制品。在注塑工艺过程中所产生的热能,全部或者至少是部分(作为剩余部分)利用于形成非晶体部分中的晶体部分。按照这种新颖的构思,非晶体部分和晶体部分的同时形成可以利用几种新颖的方法和新的装置来实现。按照本发明的新模制工艺方法包括至少三种新的可供选择的工艺方法,而每一种可供选择的工艺方法又包括若干新的设计构思。这三种可供选择的工艺方法至少有一个共同的方面,即,结晶步骤是在模具内部启动的,而且最初的热能中至少有一部分用于引发结晶。本发明所包括的三种方法为*在打开具有模腔的模具之前,在模具内部开始并完成非晶体和晶体部分的形成。这种方法称为“模内”部分结晶。
*在打开具有模腔的模具之前,在模具内部开始并完成非晶体部分的形成。打开模具,同时至少用一个模具构件保持零件,然后借助于利用至少一部分在注塑过程中所产生的热量(剩余热量),完成在模具内部开始的晶体部分的形成。这种工艺方法称为“后形成”部分结晶。模具构件是模具的任何与上述注塑成形工艺方法有关的部分。
*在打开具有模腔的模具之前,在模具内部开始并完成非晶体部分的形成。在打开模具,并且把模制的制品与任何模具构件完全分离之后,借助于利用至少一部分在注塑过程中所产生的热量(剩余热量),完成在模具内部开始的晶体部分的形成。这种工艺过程称为“模外”部分结晶。
在本说明书中所使用的下列术语具有下述含义1.“模具”是指机械构件,这些构件组成模制表面(芯子、模腔、颈环、浇口、锁定环等等),以及支承和驱动模制表面的底板(芯板、模腔板、脱模板、滑板等等)。
2.“注塑成形装置”是指机械和模具,这两者合在一起使树脂转变成一种注塑成形的物体,具体的说是预成形坯。这种装置可以包括,但不限于,包括固定的罩子在内的注塑成形机,模具以及它的全部构件,产品输送装置,机器人及其外罩。
3.为了应用的目的,“完成注塑成形”是指注塑成形的零件的物理和热动力学状态,其中,零件的收缩已基本上完成,而该零件的整体温度基本上处于室温。
4.与注塑成形零件的特定部位有关的“结晶”可以指均匀的局部结晶度,在物体内,或在物体表面的一层的结晶,或者也可以指完全结晶。
5.“模内”是指在注塑过程中和/或注塑以后,但在机械模具打开之前,在该模具中发生的工艺过程。
6.“后成形”是指模具打开之后在模具所限定的范围内发生的工艺过程;它可能牵涉到零件向另一个工作站的移动,在模具内进行以后的附加加工过程,或者也可能牵涉把外部的调节装置引入模具内;然后,该模具可以重新闭合,对已模制成的零件进行进一步加工。
7.“模外”是指发生在具体模具外部,但还在该注塑成形装置内部的加工过程;这种加工可能在注塑后的冷却工作站上,或在产品处理器上进行,但,要在注塑成形的制品的体积内的温度基本上达到室温之前进行。
8.术语“多次注塑”是指可能包括同时或顺序的联合注塑,注塑—覆盖—注塑,或者插入模制这些工艺过程。
9.“颈部成品”或者“颈部成品部位”是指预成形坯从它的环形开口或其附近开始,并在下列任何部位结束的任何一部分螺纹部位的终端,支承凸耳的顶部,沿支承凸耳的任何位置;或者是指预成形坯上支承凸耳下方10mm以内的任何位置。上述成品可以包括任何在该部位内的有形的几何形状,例如螺纹、符号或拉动标记,防儿童或防损害特征,压紧小珠等等。
模内结晶在本发明的一个优选实施例中,具有非晶体部分和晶体部分的制品完全是在模具打开之前形成的。这称为模内结晶工艺方法。为了在热量通过结晶部位转移的过程中,只在一个特定的部位,例如在预成形坯的颈部部位,对熔融物的热量和温度分布曲线进行控制和调整,为缓慢的冷却,或局部加热,或局部绝热,或这些方式的任何组合,引进了一些革新的有源的和/或无源的装置。
*在一个优选实施例中,利用热管原理进行模具的温度调节(见“热管科学和技术”(Heat Pipe Science and Technology),A.Faghri著,Taylor&Francis编辑,1995)。热管在本技术领域中是公知的,可作为有源的冷却器和/或加热器来使用。在美国专利4,338,068中公开了一个用于模制的例子,该专利文献作为本申请的参考文献。这种热管或者对指定的部位有影响,或者能够交替地向选定的部位输送和吸收热量,例如颈圈模制零件,或者,当需要时,注射的芯子零件。这种交替的热源控制可以由公知的装置,例如由直接恒定源,或者用PLC或其他能编程的控制器,或者借助于反馈。按照本发明,位于模具颈部周围的热管(图中未示出)用于降低该部位的冷却过程,以便形成晶体的颈部。
*按照本发明的另一个实施例,在颈圈或芯子上的无源热绝缘体可以是在或靠近成形表面的一种铸造或镶嵌材料。这种绝缘体可以是单独一种材料,例如陶瓷或云母,或者,也可以是下列几种材料的组合,例如陶瓷、云母、耐热的塑料等等,组合后的厚度在0.1mm-10mm之间。绝缘体的绝缘值可以是不变的,或者,也可以通过改变它的物理或化学性质而变化。
*模具元件结构的表面断裂也可以单独或与其他绝热材料结合在一起,用作绝热体,从而增加辅助的绝热值,或者作为一条控制热量散发的通道(即,如果热断裂由成形表面下方的槽或受控制的空隙组成,为将热量传向/来自成形表面提供受控的传导通道)。
*在要求的部位范围内的温度分布形状也可以通过采用适用于模制用品的薄膜加热器来调节。薄膜加热器可用于在要进行结晶的区域内提供恒定的或受控的热分布。如果是PET预成形坯,这些薄膜加热器位于颈圈或芯子区域附近。借助于调节向注塑零件传输热量,就能够加速结晶过程。
*还可以利用热传导器,它能够形成成形表面,或者放在模具构件的成形表面的下面。以同样的方式,可以用一层0.1-7.5mm厚的,例如,铍—铜热传导器,把需要较小结晶度的区域中的,或者把过剩的热量作为另一种装置的副产品的热量,以受控的方式传导出去。这种传导材料可以应用若干种技术付诸使用,其中包括铸造,压配合,滚压成形,化学粘结或机械固定。薄膜加热器和热传导器既可以用于注塑成形阶段,也可以用于以后的后成形阶段和模外加工阶段。
*对预成形坯的热分布控制可以用控制颈圈成形表面的加热/冷却过程的能力来实现。另一种控制该区域的热分布的装置是提供分别进入颈圈内的加热源和冷却源。通常,颈圈的冷却是由冷却液体来提供的,一般是水,它流过上述驱动滑板或者其他颈圈打开装置。一般不对颈圈加热,因为这样将延长操作过程的时间,并且对非热充灌用品的预成形坯没有益处。通过滑板加热颈圈的另一个问题是在驱动的过程中滑板的热变形和粘附。为了补救这个问题,颈圈的热源必须包括一个替换热源。如上所述,薄膜加热器是一种热源,另一种热源可以用普通的筒式加热器,它能够直接铸在颈圈内部,插入颈圈内部的加工好的腔室内,或者用插入法模制在颈圈内。另一种可供选择的方式是利用加热了的传热液体,例如水或油,它不是直接通过滑板来携带。这种方法的一个实施例是沿着滑板的后柱敷设软管或管道,但与滑板绝热,或者与模板绝热。
*对颈圈的热分布进行有效的调节需要颈圈的加热器,还需要芯子的加热器。以上已经指出了若干芯子的绝热或加热的方法,这些方法主要用于成形表面,或者直接处于其下方的材料中。通常,在芯子构件内部有一个输送液体,一般为水或者油的扩散器管或冷却管,从源头通向芯子的顶端(内部),再在芯子的内径与冷却管的外径之间的区域中向下,或者相反。借助于一根多液体输送冷却管,预成形坯主体就能够利用冷水或其他的液体从内部来冷却,而其颈部则能够借助于把加热后的液体,例如油或水,引入限定的区域,从内部进行热量上的控制。(请参阅R.J.Abramo&Associates的现有技术;油、水、空气)。这种扩散器管上也可以包含或固定一个绝热器,在预成形坯上形成一个热隔离区。扩散器管或它的一部分,例如一个套或一块膜片能沿着纵向移动,以便控制在芯子内部的流动(加热或冷却)。这样,加热就能够增加、减少,或者用一种冷却液体,使它相反,从而在基本上结晶之后在要求的部位增加一个冷却过程。为了防止颈部成品几何形状的变形,这种冷却是需要的,否则将会影响成品瓶子的性能,包括封闭作用。这种多液体冷却管或它的一部分还可以和模外或成形后调节工作站结合在一起使用。此时,预成形坯在主体接受附加的冷却时,还能够同时在内表面和外表面接受加热控制。
成形后模内结晶按照本发明,如果在成形后的零件内局部结晶的程度不符合模具闭合位置下所要求的深度和百分比,则这种在模具闭合状态下开始的结晶过程可以在打开模具后以各种不同的方式继续下去。下列各种方法可在模具一旦打开之后用于使结晶继续。
*第一种方法涉及把预成形坯传送到一个模内调节站,其中颈部区域的模制表面在与预成形坯接触的状态下可以移动,也可以不移动。在这个模制工艺阶段,预成形坯的主体是受到冷却,降低了它的整体温度,但是,它可以接受对着颈部成品/主体界面的局部冷却,起吸热装置的作用,以防止主体部分通过从颈部来的废热而结晶。这种工艺方法的第一种方式包括用颈圈或者它的模制表面部分的易位,把预成形坯转移到模具内的一个平行位置,也可以,是用滑板或者模板的一部分的易位。在这个新位置上,启动加热/循环系统,向颈圈的模具表面供应热量。成形表面的温度将增加到Tcr区内的较高的点(见图10),加速了结晶过程,或者,继续维持结晶的速率。当颈部的结晶完成或局部完成时,颈部成品区可能已经冷却到尺寸稳定的点上,然后,用单独的产品输送装置从模具中取出预成形坯,并且在其中还可能发生进一步结晶和冷却。
*这种工艺过程的第二种方法包括把预成形坯转移到模具内的另一个位置,而没有继续与原来的成形表面接触。当处于新的模内位置时,一种为颈部和主体界面所需要的增加加热/冷却和绝热的装置将与预成形坯接触。这种装置可以是模具整体的一部分,例如一组具有各种可能的加热/冷却方法的辅助颈圈,或者一种能够送到模具内部的单独的装置,例如机器人装置或它的一部分,具体的说,是取出产品的装置。这种装置将根据要求控制颈部的温度分布,从而控制颈部的结晶。假如这种装置没有组合在模具中,它还能够起预成形坯主体冷源的作用,并且当结晶的预成形坯取出时,也从模具中取出来(以上EFI中的现有技术)。在另一种情况下,颈圈可以转移,也可以不转移,当预成形坯颈部结晶时,模具能重新闭合,从而能进行另一组预成形坯的注塑成形,同时又让先前注塑过程中的预成形坯进行结晶。在上述任何特定的预成形坯可以转移到其中的模具中,可以有若干个替换的位置,从而能让结晶经过若干个工艺循环。
*打开后模内结晶的另一个实施例涉及将预成形坯限定在原来的模腔内,而将芯子和颈部的模制表面取出,从而暴露出颈部成品来。一种或者是与模具成为一体,或者装入模具内的装置将从内部和外部包围着颈部成品,并按照需要进行加热、冷却和绝热,以控制颈部部位的结晶,同时保护主体部位免受有害加热的影响。这种装置(如果一开始在模具的外部)或者其他装置能进入模具,当结晶至少局部完成时,把预成形坯取出来。这种装置也可以留在原地,使预成形坯的颈部结晶若干个注塑工作循环。
*前面曾经指出过,很希望至少在原始的颈部模制表面的包围下获得局部结晶度,从而获得理想的颈部成品的几何形状。利用这种想法的另一种方法是随着预成形坯一起,让颈圈,或者至少是它的模制表面易位到模外的调节站上,例如产品输送装置上。然后,这种方法为主体部位提供冷却,在颈部与主体部位之间进行绝热,以及对颈部进行必要的加热和冷却。当采用多个产品输送装置时,就能增加这种结晶装置的容量。
*利用包含在有些注塑成形机内部的那些固有的加工能力,例如多面可动工作台(见美国专利5,728,409)和连续输送机装置,来进行成形后的结晶。具体的说,当注塑成形机的移动工作台是多个刻面时(三个或更多的面),第一个工作台用于注塑阶段,并可以开始结晶,第二工作台(如果还有,就是更多的工作台)用于带有冷却或不带有冷却的结晶,而最后的工作台用于部分冷却和出模。在一个颈圈的模制表面与每一个后续的工作台的表面转角度对准的实施例中,前面描述过的调节技术(热管、绝热、扩散管等等)可用于引发或继续颈部的结晶。在一个颈部的模制表面不与预成形坯一起输送的实施例中,当需要时,一个与机器成为一体的,或者由外部装置引入的调节工作台可以为第二和以后的工作台提供上面提到的调节操作。在一个涉及输送机式的注塑成形装置中,预成形坯可以沿着原来的模制芯子上的一条通道输送,带或不带颈圈模制表面。在从一个注塑工作台到出模工作台的的输送过程中,上述预成形坯可以由作为机器的一部分的调节工作台对其起作用。在输送机的末端,可以把零件弹出来,弹到产品储藏室里,或者零件输送装置上。
*调节工作台,它可以是注塑成形机的一部分,或者产品输送装置的一部分,或者由外部装置引入注塑成形装置中,能从预成形坯的内部和外部两个方面提供控制颈部的温度分布的装置。石英卤素灯或者其他加热的灯、光束或装置,或者电磁和微波能源都可以装在这种工作台里。当这种热源工作时,将为需要的部位提供附加的热量,以继续或加速结晶。如果有一个冷源位于同样的高度上,或者在热源的后面,那么,一旦热源撤除,它就能为需要的部位提供冷却,并且,这种冷源还可以起冷却加热装置本身,防止它过热和损坏的作用。
*另一个成形后工艺方法的机械实施例涉及利用公知的穿梭模具,它或者借助于模板的运动,或者借助于模具底板本身的运动而运动。这样,模具(热的或冷的一半)就在注塑和打开之后易位,让一体的或者引入模具中的调节工作台在预成形坯上起作用,同时模具还可以重新夹紧,以便进行另一组预成形坯的注塑。
模外结晶按照本发明,在完成注塑阶段时,可能结晶就已经开始了,而当随后完成模内的任何一种成形后的工艺方法时,结晶可以继续在模外进行,但仍在注塑成形装置的内部。具体的说,预成形坯可以不用任何原始模制表面而转移到实体模具外部的另一个工作台上。这种转移可以用产品输送装置,或者其他机械的或气动的装置来完成。预成形坯在模制装置内部的模外工作台上可以用以上所述的装置进行局部加热,从而有利于颈部的结晶。当需要时,这个工作台还可以用于成形后和结晶后主体和螺纹部位的冷却。
多重注塑及插入-模制结晶PET的薄膜(0.1-2.5mm厚)和特殊等级的PET,例如均聚物,通常要比厚膜和共聚物在较低的温度下以较快的速度结晶。为了利用PET的这种性能,可以进行交替的模制,具体的说,是联合注塑,边框浇注,重复注塑和插入覆盖模制。
*按照本发明的一个方面,顺序联合注塑的工艺方法可用于把容易结晶的塑料输送到颈部成品部位,同时用结晶慢的聚合物灌满主体。这种工序可以包括把一种共聚物先充满主体区域,并粘附在模制表面上,然后,充入大量的均聚物作为原来注射的共聚物的一层,并灌满颈部,然后,用大量共聚物迫使上述均聚物浸入要求的颈部区域,并完成预成形坯的充灌和填实。
*按照本发明的另一个方面,利用在成形过程中产生的热量的局部结晶法可以进一步与PET或其他塑料预成形坯的所谓“重复注塑”法联合使用。此时,第一材料,例如纯PET,先注入一个模腔空间内,形成第一层。在模具冷却之后,打开模具,把芯子部分和第一层一起移入较大的第二模腔空间内,注射后续材料,这种材料可以是,例如,回收的PET树脂。按照本发明,颈部的局部结晶可以利用以上所述的任何方法在注射第一材料形成第一层时进行,或者在注射后续材料形成外层时进行,或者在两个步骤中都进行。
当模制装置具有如下列美国专利中所公开的成形后冷却阶段时,例如在5,447,426中所示的零件输送机器人,在4,439,133中所示的转塔模具,或者如5,728,409中所示的分度模(所有这些文献都作为本申请的参考文献),对制品采用主动冷却,则在成形步骤中开始的结晶步骤能有选择地并且按照所希望的那样,在成形后冷却阶段继续或加快进行,这是依靠使预成形坯的结晶部分维持在基本上等于在模具中结晶的温度,或者在成形后的冷却阶段足以获得结晶的温度下进行的。
在一个实施例中,注塑成形了一种PET预成形坯,它在主体部分是非晶体,而具有从熔融物结晶的颈部。然后,用这种预成形坯用普通的重新加热吹制法制成具有耐热的颈部成品的瓶子。
制造基本上是非晶体的PET预成形坯用的注塑成形装置中包括许多在高产量(工艺循环的时间短)的条件下,改进PET熔融物在结晶之前的冷却和冻结的特征。这些特征也应用在本发明中,以保证在短的工艺循环时间下预成形坯主体的非晶体状态。
形成一般要进行结晶的预成形坯颈部成品的模具部位是颈圈(或其一部分)和芯子的一段(见图1)。这些部位的热特性可以通过许多途径设计成在零件出模之前达到颈部完全从熔融物结晶出来的目的。在其他情况下,为了减少工艺过程的时间,从模具中取出零件时可以是刚刚开始结晶,而最大的结晶度是在成形后冷却阶段,在零件输送机器人或在转塔式模具或分度式模具中达到的。因此,图1中显示了预成形坯模具10,它包括芯子冷却通道12,芯子冷却管14,颈圈冷却通道16,颈圈18,芯子20,模腔22,和围绕着模具芯子的四周延伸的模具冷却通道24。图1中还显示了PET预成形坯26,模具浇口插件28和注射喷咀30。芯子冷却通道12包括冷却剂进口32和冷却剂出口34。
熔融的塑料用注射喷咀30通过浇口插件28注入模腔22内。注塑模具10的冷却通道16、24和芯子20的冷却通道12使熔融的塑料冷却到固体状态,并在注塑模具内形成预成形坯26。
在图9中显示得更详细的预成形坯26包括一个底部36,一个从底部延伸上来的侧壁部分38,和从侧壁延伸出来的颈部40,并且该颈部最好还包括一个螺纹部分42和一个颈圈44。
按照本发明的一个实施例,在需要结晶的部分可以使热塑料与模制表面和/或冷却循环系统中的冷却剂绝热。图2中,芯子的冷却管14在它的靠近预成形坯颈部40的外表面上有一个新颖的绝热套筒46,这根套筒只延伸到要结晶的那一部分的部位的外表面上,即,只靠近颈部的至少一部分。
这种绝热套筒装置46和48可以是一个套筒,或者是一层绝热材料。上述绝热装置46位于芯子的内部,而且依靠降低热损失而限制了冷却液体所产生的冷却效果。绝热装置46可以是芯子表面的一部分,也可以是冷却通道表面的一部分,或者这两者的一部分。借助于利用绝热装置46和48,造成了调节,降低了颈部的冷却过程,这样,就能在模具的闭合位置进行完全或部分的结晶。如图2所示,绝热装置48可以设置在芯子的表面和/或颈圈上。
图2A表示在冷却管14中的内部绝热套14’,而图2B表示带有金属顶部15和一个绝热体部分17的冷却管14。
图2C表示带有金属顶部15和一个绝热体部分17的冷却管14,该绝热体部分17也可以是包括温度传感器100的薄膜加热器。如图2D所示,芯子20可以包括内槽102,可以是若干条有一个或多个头的螺旋槽。这些内槽可以加工成芯子的内表面,以增大芯子的表面并形成紊流,这样就能在芯子的上部达到更好的冷却。如图2E中所详细表示的薄膜加热器104可以设置在芯子的外面,它可以有一种曲折的结构,并且包括一个热电偶。
芯子20和颈圈18上的模制表面,在要结晶的部位用绝热材料48制成,以便使颈部40与模具芯子的冷却通道12和颈圈的冷却通道16绝热。这种绝热材料是经过选择的,并且上述绝热插件的厚度设计成能控制注塑成形工艺过程中的传热,并且能让聚合物结晶或开始结晶。因此,图2表示了本发明的预成形坯模具10的详图,其中包括了绝热层46、48和芯子冷却管14。在按照图2表示的本发明的一个实施例中,绝热装置46、48是用于颈圈和芯子的,即,在芯子中的绝热装置可以在芯子内部和/或芯子外部。在本发明中,既可以采用图2中所示的所有三种绝热装置,或者采用其中的至少一个或其中的任何两个。这种绝热装置可以是套筒,例如用陶瓷或钛制造的,或者任何适当的绝热层。这种绝热层可以用另外的耐磨层,例如金刚石之类的薄膜来保护。以下是用于本发明的芯子和/或颈圈上的,有代表性的绝热材料用于套筒套筒不需要另外的耐磨保护层,并且如果损坏能够更换。一般套筒的厚度可达1mm。
1.聚酰亚胺;2.钛或钛合金;3.玻璃—陶瓷。
用于绝热层1.一种从下列各种聚合物中选择的聚合树脂聚酰亚胺、聚酰胺、聚砜、聚酰胺亚胺、聚醚砜、聚四氟乙烯聚醚酮。绝热层可以用喷雾法制作,其厚度在10-1,000微米之间。耐磨层是另外敷设在这层绝热层顶上的。这种绝热层可以是美国专利5,112,025中公开的那种“类金刚石薄膜”,该文献作为本申请的参考文献。这种绝热层的厚度为5-20微米。
2.在本发明的另一个实施例中,上述绝热层是从厚度为20-1,000微米的陶瓷、瓷釉或玻璃组成的一组材料中选出来的。这一绝热层可用铬或其他适当的材料的薄金属层来保护。
3.在本发明的又一个实施例中,这种绝热层可从公知的材料中选择,例如金属氧化物、硅的氧化物、硅的复合氧化物,或者等离子—聚合塑料。和上面一样,厚度可达到1,000微米,并且在其顶上可敷设一层耐磨保护层。
4.按照本发明,一种具有高耐磨性能的适当的绝热层是氧化锆陶瓷。通常,它不需要外加耐磨保护。
这些绝热材料应该至少靠近预成形坯的颈部40的至少一部分,以延缓冷却过程。图2还表示了预成形坯模具10的颈圈中的颈圈冷却通道16。于是,由于以上提到的绝热手段,例如,包括套筒和/或绝热层,预成形坯的颈部的成品部分便由于注塑步骤之后的缓慢的冷却过程而从熔融物结晶。
按照本发明,在模具闭合位置上的温度可以根据由任何公知的温度传感器所提供的信息进行局部调节。独立的传感器通常放在熔融物在完成冷却步骤之后,将要变成非晶体和晶体的这一部分的附近。为了获得最高的精度,避免在零件上的记号,本发明公开了如以上所述的在预成形坯模具的芯子和/或颈圈部分构件上,使用本技术领域公知的薄膜传感器(见美国专利4,484,061,5,573,335,这两篇文献都是本发明的参考文献)。
按照本发明的另一个实施例,模制表面的一个局部区域,例如形成颈部成品的螺纹部分和其他特征的颈圈部分,如有需要,可以在绝热装置之外再装上加热装置。然后,这个部位的温度就能够进行局部的恒温控制,以便让聚合物结晶或开始结晶。因此,图3表示了本发明预成形坯模具10的另一个实施例的详图,该模具包括位于模具的颈圈18上的预成形坯26的颈部40中的加热装置50。加热装置50可以包括在注塑工作循环中能够开关的电加热元件,例如线圈,带式加热器或筒式加热器之类。同样,这种加热装置50也可以是设置在颈圈上和夹在两块不导电的,即电绝缘的薄膜层之间的薄膜加热器。
按照本发明,加热元件还可以放置在芯子上,让颈部在冷却过程中加热,结果这一部分就维持在较高的温度,形成结晶的颈部。在一个优选实施例中,上述加热元件是一种薄膜加热器,在有些情况下它还包括一个薄膜温度传感器。因此,按照本发明,一个薄膜加热器至少局部敷设在用于模制PET预成形坯的芯子表面上。这一方面可参考美国专利5,573,692,5,569,474,5,155,340,4,396,899,在这些文献中公开了各种有潜力应用于和模具的芯子结合在一起,以成形PET预成形坯的薄膜加热器。
按照本发明,利用公知的薄膜技术制成的温度传感器和加热元件也可以与图2中所示的颈圈18结合起来使用。因此,本发明教导了位于作为形成可吹制的预成形坯,例如形成具有结晶的颈部的PET预成形坯的模具的一部分的颈圈中的加热装置,绝热装置和/或温度传感器装置。如图3A所示,按照一个优选实施例,颈圈部分18包括一个带螺纹的插件19,该插件有一个内螺纹部分21,和一个外表面23。外圆筒形部分23包括一个沉积的薄膜加热器25,该加热器是在两层任何公知电绝缘材料,例如云母之间夹了一层薄的电阻层而制成的。上述插件19是用高导热材料制成的。在有些情况下,在插件19的螺纹部分敷设了一层耐磨层19’。在另外一些情况下,薄膜加热器25直接敷设在螺纹部分21上。此时,在加热器上要敷设一层本技术领域公知的适当的耐磨薄膜。
按照本发明的另一个实施例,一般具有为冷却剂流动用的循环系统的颈圈可以设计成带有一个为传递热量用的循环系统,以代替冷却剂流动系统,或在它上面再增加上一个系统。按照本发明,热量也可以由加热后的流体(水、油等等)来提供,这种流体可以只在整个预成形坯的冷却步骤中通过其他通道输送到颈部去。在模具颈圈的加热部分与冷却部分之间可以加上一个热隔断装置。然后,就能控制加热部位的温度,让聚合物结晶或开始结晶。因此,图4表示了另一个显示了本发明的预成形坯模具的详图的实施例。图4中显示了包括加热流体的循环系统52的颈圈18。图4的模具中的分成两半的颈圈分别是上颈圈部分18A和下颈圈部分18B。在上部18A和下部18B之间是一个热隔断装置,它包括一个第一绝热装置54,还有一个可供选择的,在第一绝热装置上方的第二绝热装置56。举例来说,这两个绝热装置可以是陶瓷套筒或者钛套筒。或者,上述绝热装置或热隔断装置可以是一层绝热层。
颈圈可以设计成让它带有恒温控制的加热器。在模具的加热部分与冷却部分之间可以加入热隔断。然后,就可以控制加热部位的温度,让聚合物结晶或开始结晶。图5是另一个实施例,它是本发明的预成形坯模具10的一个局部视图。图5中,显示了颈圈18的另一个实施例,其中的颈圈18包括了在颈圈的热零件60和冷零件62之间的空气绝热装置58。冷零件62带有冷却循环通道64,而热零件60上带有加热装置,例如加热循环管路66。在模制过程结束时,可以把加热循环管路转换为冷却循环通道。或者,上述冷却和加热通道可以是公知的热管,以提供加热和冷却。
图6是一个通过芯子20的横断面,表示冷却流体68在冷却通道69内从中央的冷却管70中流过。如箭头A所明白表示的,在预成形坯颈部的附近设置了一个芯子冷却限制器72,它可以是一个绝热装置,例如一根套管或者芯子内部或外部的一层。
图7表示一种热塑性PET材料的不均匀的扫描热量计量图(DSC),此图指出了PET在冷却过程中的性状,显示了一个熔融区74,一个再结晶区76,和一个玻璃化转变区78。按照本发明的一个优选实施例,预成形坯的主体部分从熔融物迅速冷却成非晶体,而在颈部则为缓慢的冷却。
本发明可应用于如图8所示的多层预成形坯,图8中表示了一个有要结晶的颈部82的多层预成形坯80,绝热套筒84,第一外部塑料层86,第二中间塑料层88和第三内部塑料层90,并且在芯子94中有冷却通道92。注射喷咀96靠近模具98,在两者之间有浇口区100。
图9表示一个预成形坯26,它包括要结晶的颈部40,侧壁部分38和底部36。紧挨在颈圈44下面的预成形坯上的部分45也可以按照本发明的一个实施例有选择地结晶。如上所述,主体部分38和底部36都处在非晶体状态。
图10表示在灌满了模具之后,预成形坯的主体部分和颈部整体温度的变化。图10中,下列各个缩写的含义为Tm-塑料在充满模具时的温度;Tcr-塑料结晶最快时的温度范围;Teject-零件能出模的温度范围,并且包括零件能被出模的最高温度;T1-太短而基本上不能结晶的时间段;T2-足够长而基本上结晶的时间段。
如图10所示,为了获得颈部的结晶,在Tcr的温度范围内颈部可以遵循若干条路径。
下面的表1是本发明三种变型的顺序和时间过程的图表。在该图表中,各种缩写的含义与上文中的相同,补充的缩写含义如下S2-工作台2;NR-颈圈;S3-工作台3;S4-工作台4;TO-从模具中取出零件而不放开零件。
表1
如表1所示,为了获得本发明的特点和优点,可以很容易地举出本发明的几个变型。
为了使非晶体的PET熔融物结晶,必须将注塑成形零件从熔融温度冷却到结晶范围,并以受控的温度分布通过该结晶温度范围。结晶程度决定于通过结晶范围的温度分布和通过的时间长度。在结晶之后(全部或部分),注塑成形零件将冷却到出模温度,这时,零件便从实际的模具中取出。按照本发明,结晶至少是在模具打开之前,在模具内开始的。一般希望颈部成品尽可能在原始的颈部成形表面内结晶,因为这样颈部的几何形状的尺寸最稳定。为了实现本发明的优点和颈部的结晶,必须提供控制颈部冷却的装置,例如以无源的和/或有源的方式进行加热、冷却、绝热或综合这些方式。因此,很容易在注塑成形阶段,或者在随后的模具内工作台或模具外工作台的处理过程中,例如在产品输送过程中,采用无源和有源的绝热和热隔断。采用能形成模制表面或者能放置在模具构件的模制表面下面的薄膜加热器和热导体,都包括在其中。用控制输送到出模零件的热量,能够加速结晶过程。当把薄膜加热器应用于颈圈或芯子上时,它能在预成形坯的颈部形成恒定的或受控的温度分布。同样,为了从所要求的部位有控制地排出热量,也可以利用热导体,例如铍—铜,形成一层厚度为,例如,0.1-7.5mm的导热层。
本发明还可以包括把预成形坯转移到模内调节工作台,其中,用于颈部的模制表面可以在与预成形坯接触的状态下一起转移,或者也可以不转移。因此,例如,可以用把颈圈或它的模制表面易位在模具内的一个平行的位置上,也有可能用滑板或模板一部分的易位,来转移预成形坯。在这个新的位置上,加热/冷却循环系统将开动,向颈圈的模制表面提供热量。模制表面的温度可以提高到结晶范围中的较高点,以加速结晶,或者也可以保持其温度,以延续结晶速率。在要求的颈部完成或部分完成结晶时,可以把颈部成品部位冷却到尺寸稳定点,然后用单独的,仍能在其中进行结晶和冷却的产品输送装置把预成形坯从模具中取出。本发明的第二种方法涉及把预成形坯移送到模具内的另一个位置上,没有与原来的模制表面继续接触的优点了。在新的模内位置上,一种为颈部和颈部—主体的界面所需要的,能进行加热/冷却和/或绝热的装置将与预成形坯接触。这种装置将根据需要控制颈部的温度分布,从而控制颈部的结晶。
另一个开模后的模内结晶实施例涉及让预成形坯留在原来的模腔内,而取出芯子和颈部的模制表面,从而把颈部成品暴露出来。一种与模具成为一体或装入模具内的装置将包围要求的颈部成品(内部或外部,根据需要),并根据需要进行加热、冷却和/或绝热,以控制上述颈部的结晶,并同时防止主体部分受到有害的加热影响。
如上所述,按照本发明,要求获得在原始的颈部模制表面限定的范围内的至少部分的结晶度,从而获得最佳的颈部成品几何形状。它的进一步变型是颈圈或者至少它的模制表面与预成形坯一起的易位,易位到模外调节位置,例如产品输送装置上。然后,这个程序能对主体部位进行冷却,在颈部与主体部位之间形成绝热,以及对颈部进行必要的加热、冷却和/或绝热。
很容易看出,本发明有无数的变型,这些变型将大大增加本发明的通用性。
应该理解,本发明不仅限于以上的说明和实施例,因为这些只能认为是对本发明的最佳实施方式的说明,并且对它的形式、尺寸、零件的布置和工作细节的改进都是容许的。本发明包括了由权利要求书所限定的处在本发明的构思和范围内的全部改进技术方案。
权利要求
1.一种用于模制用单独一种或多种材料制成的,具有非晶体和晶体部分的制品的注塑工艺方法,它包括下列步骤(a)将熔融的材料注入由模腔和模具芯子形成的模腔空间内;(b)使所述熔融的材料从以熔融温度范围为特征的熔融状态冷却到以玻璃温度范围为特征的基本上固体的状态,同时,通过以结晶温度范围为特征的中间结晶状态,其中,—所述熔融材料的至少一个第一部分是由第一温度调节装置使它迅速通过所述结晶温度范围,从熔融状态冷却到固体状态,形成至少一个非晶体的第一部分;—所述熔融材料的至少一个第二部分是由第二温度调节装置使它比较缓慢地通过所述结晶温度范围,从熔融状态冷却到固体状态,形成至少一个第二晶体部分;以及(c)打开所述模腔空间,以便进一步加工和输送所述具有玻璃状态的第一部分和至少部分处在所述结晶状态的第二部分的模制制品。
2.如权利要求1所述的用于模制用单独一种或多种材料制成的,具有非晶体和晶体部分的制品的注塑工艺方法,其特征在于,所述工艺方法还包括施加在所述第二部分上的温度处理步骤,以使它保持在所述结晶温度范围内,以增大在所述步骤(b)中开始的第二部分的结晶度。
3.如权利要求1所述的用于模制用单独一种或多种材料制成的,具有非晶体和晶体部分的制品的注塑工艺方法,其特征在于,所述第一和第二温度调节装置都位于所述模腔和所述模具芯子内。
4.如权利要求3所述的用于模制用单独一种或多种材料制成的,具有非晶体和晶体部分的制品的注塑工艺方法,其特征在于,所述第一和第二温度调节装置分别靠近所述第一部分和所述第二部分。
5.一种用于注塑成形塑料制品的颈圈,它包括靠近所述塑料制品的颈部的颈圈部分,和设置在所述颈圈中的冷却和加热装置。
6.如权利要求5所述的颈圈,其特征在于,它还包括靠近所述塑料制品颈部的至少一部分的绝热体。
7.如权利要求5所述的颈圈,其特征在于,所述加热装置用于加热所述颈圈的至少一部分,和所述塑料制品的附近的颈部。
8.如权利要求5所述的颈圈,其特征在于,它还包括靠近所述塑料制品的颈部的薄膜加热器。
全文摘要
一种塑料制品,它有一个结晶部分和一个非晶体部分。这种塑料制品用把熔融的塑料注入一个预成形坯模具(10)的模腔(22)内而制成。模腔内在要成为非晶体的区域内的热塑料迅速冷却,而要成为晶体的区域内的热塑料则冷却得很慢,或者加热。注塑成形模具还包括用于冷却熔融塑料的冷却通道(12、16、24),和使得要结晶的区域与冷却剂绝热的绝热套筒(46、48)。在另一个实施例中,把加热元件放置在靠近制品要结晶的区域的预成形坯模具(10)上。
文档编号B29C45/17GK1520989SQ0110888
公开日2004年8月18日 申请日期1998年4月9日 优先权日1997年4月16日
发明者迈克尔·科克, 迈克尔 科克, 谢德, 罗伯特·谢德, 劳拉·马丁, 马丁, 赛科斯, 詹姆斯·赛科斯, 丹·斯特科夫斯基, 特科夫斯基, 卡托茵, 布鲁斯·卡托茵 申请人:哈斯基注模系统有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1