用于制备基于无定形热塑性聚合物的微孔结构的方法

文档序号:4425112阅读:192来源:国知局
专利名称:用于制备基于无定形热塑性聚合物的微孔结构的方法
用于制备基于无定形热塑性聚合物的微孔结构的方法本发明涉及基于给定的无定形热塑性聚合物组合物的微孔结构。 还涉及用于生产这些结构的方法。在许多不同工业(汽车、土木工程、海军等)中遇到的要求是最 优化使用的结构的机械性能/重量比。为实现该目的,特别是为了使塑 料结构减轻,已经开发了多种方法。这些方法大多数或者利用机械形 成肉眼可见的泡孔(通过固体或熔融物流的设置以形成称作"蜂窝状" 结构的微孔结构),或通过气体的释放或膨胀物理形成微孔(利用物 理或化学发泡剂膨胀或发泡)。也已预期这两种类型方法的组合。在文献EP-B-1 009 625中已经提出了通过连续挤出制备微孔结构 的方法,其内容引入作为本说明书的参考。该方法是,使用多槽模头,将热塑性材料的平行板连续挤入冷却室内,在 板的纵向边缘和所述室壁之间产生密封,不同的板在它们自身和室壁 之间限定隔室; 在该室内和从位于最接近模头的末端开始,在每隔一个隔室内 产生真空,以变形并吸引成对的挤出板,以在它们整个高度上进行局 部熔接;*从位于最接近模头的末端,每隔一个隔室,与之前的隔室交替, 用冷却剂填充;和 在各个隔室内利用冷却剂交替产生真空和填充,以在冷却室内 得到固化的微孔结构,其中所述泡孔垂直于挤出方向。根据该方法,得到的微孔结构由平行挤出并间断性熔接的板构成, 所述板在离开冷却室时是固态。事实上,在密封的冷却室内使用冷却 剂的结果是该冷却剂留在所述泡孔内,其在极短时间内膨胀、熔接到相邻的泡孔并固化。该迅速固化对于所述方法的可行性是必要的,因 为否则所述微孔结构将粘附到冷却室的壁上。此外,使用模头的几何形状以及还有实施该工艺的方法(尤其是 使用水作为冷却剂)使得仅可使用基于非常流体化的、通常为(半) 晶态树脂的组合物。事实上,基于无定形聚合物(如PVC)的组合物 是、且通常保持为相对粘性的,即使在高温下。结果,不能正确地进 行相邻板的间断性熔接。此外,所述粘性材料在与冷却室内存在的水 接触时迅速固化,所述板在模头出口仅流出一点,从而通常得到的微孔结构的体积密度过高(以kg/dm3结构表示)。本发明的目的在于解决这些问题,尤其在于使得可得到基于轻质 并具有优质熔接的无定形聚合物材料的微孔结构,这在宽范围的粘度和温度下是如此。这基于选择特定的无定形树脂配方(组成),且同 样基于给定的工艺条件。从而,本发明主要涉及一种用于制备基于无定形聚合物的微孔结构的方法,根据该方法 利用多槽模头将基于所述无定形聚合物的组合物的平行板连续 挤入冷却室内,在板的纵向边缘和所述室壁之间产生密封,不同的板 在它们自身和室壁之间限定隔室; 在该室和从位于最接近模头的末端开始,在每隔一个隔室内产 生真空,以变形并吸引成对的挤出板,以在它们整个高度上进行局部熔接;,从位于最接近模头的末端,每隔一个隔室,与之前的隔室交替, 用冷却剂填充;和 在各个隔室内利用冷却剂交替产生真空和填充,以在冷却室内 得到固化的微孔结构,其中所述泡孔垂直于挤出方向。该方法的特征在于*选择所述挤出无定形聚合物的动态熔体粘度小于2000 Pa.s的无 定形聚合物组合物,所述动态熔体粘度在其加工温度和0.1 rad/s的角 速度下测得;和"周节所述冷却剂的温度使得其至少等于Tg-20。C,其中Tg是基 于所述无定形聚合物的组合物的玻璃化转变温度。被引入本发明微孔结构组合物内的热塑性聚合物是无定形聚合 物。在本说明书中,术语"无定形聚合物"理解为是指任何这样的热 塑性聚合物,所述聚合物主要具有具有组成其的大分子的无规排列。 换言之,该术语理解为是指任何含有小于10wt%、优选小于5wt^晶 相的热塑性聚合物(就是说,该相的特征在于在差热分析(DSC)测量 过程中的熔融吸热)。优选,常规通过DSC测得的本发明使用的基于 一种或多种无定形聚合物的组合物的玻璃化转变温度(Tg)(就是说,低 于所述组合物从软和柔性状态变为硬和脆状态的温度)小于SO。C,或 甚至小于60。C,并优选小于40。C。如之后将看出的,该选择使得在加 工过程中可使用水作为冷却剂。可用于本发明组合物中的无定形聚合物的非限制性例子有: ,热塑性弹性体,还有其共混物; ,热塑性聚酯; 衍生自氯乙烯的均聚物和共聚物,还有其共混物。本发明优选的无定形聚合物属于衍生自氯乙烯(VC)的均聚物和共 聚物族。术语"衍生自氯乙烯的共聚物"在本说明书中理解为是指含 有至少70wt^的衍生自氯乙烯的单体单元的共聚物。优选含有约75 约95wtX氯乙烯的共聚物。作为可与氯乙烯共聚的共聚单体的例子, 可提到不饱和烯烃单体,如乙烯、丙烯和苯乙烯和酯如醋酸乙烯酯和 丙烯酸垸基酯和丙烯酸甲酯。氯乙烯和醋酸乙烯酯的共聚物得到良好 的结果(VC/VAc共聚物)。可用于本发明的基于无定形聚合物的组合物必须具有小于2000 Pa.s的动态熔体粘度(通常通过在流变仪上测量剪切应力和应变而测量),所述动态熔体粘度在其加工温度(就是说在将它们挤出以转变为微孔结构的温度下)和0.1 rad/s的角速度下测得。优选,该动 态粘度小于1000 Pa.s。用动态粘度小于500 Pa.s的组合物得到了最好 的结果。通常,不依靠具有降低粘度效果的添加剂,用商购可得的无定形 聚合物不能得到这样低的粘度。特别是在VC聚合物的情况下,这些通 常是单体或聚合增塑剂。作为这种增塑剂的非限制性例子,可提到邻 苯二甲酸酯(如邻苯二甲酸二丁酯、或邻苯二甲酸二乙基己酯、或邻 苯二甲酸二辛酯)、癸二酸酯、己二酸酯、偏苯三酸酯、均苯四酸酯、 柠檬酸酯、环氧衍生物(如环氧化豆油或者例如ESO)和聚酯如聚(。 己内酯)和其共混物。DOP (邻苯二甲酸二辛酯)和ESO得到良好的结 果。这些组合物通常含有至少10重量份和至多75重量份的增塑剂/100 重量份的聚合物。即使得本发明的方法允许通过基于如下组合物的结 构的挤出形成,所述组合物在现有技术的方法中将"塌陷"(受它们 自身重量的影响)。换言之其允许在意图用于通过挤出得到微孔结 构的组合物中引入至少IO重量份(每IOO重量份的聚合物)的增塑剂, 甚至至少30份、和实际上甚至至多75份的增塑剂,而不会有任何"塌 陷"的问题。也可使用称作"内增塑聚合物"的氯乙烯聚合物,其通过氯乙烯 和增塑剂共聚单体(例如丙烯酸乙基己酯)的共聚得到,或者通过共 聚作用接枝到称为"弹性增进剂"(如聚(e-己内酯))的聚合物上。理解为除了增塑剂之外,本发明的组合物可包括其它用于处理聚 合物的常见聚合物和/或添加剂,例如,润滑剂、热稳定剂、光稳定剂、 无机/有机和/或天然填料、颜料等。7本发明更特别优选的组合物是基于含5-25wt^醋酸乙烯酯的氯乙 烯共聚物的那些,其通过10-30wt^的增塑剂如DOP或ESO增塑。还可含有发泡剂,使得可产生膨胀或发泡的微孔结构。根据本发明该实施方式变型的发泡剂可以是任何已知的类型。其 可以是"物理"发泡剂,就是说气体在压力下溶解在塑料内且其引发 塑料在离开挤出机时膨胀。这类气体的例子有C02、氮气、水蒸汽、 氢氟烃或HFC (如Solvay以SOLKANE XG87出售的87/13 wt% CF3-CH2F/CHF2-CH3混合物)、烃(如丁垸和戊垸)或其混合物。其也 可以是"化学"发泡剂,就是说,溶解或分散于塑料中并在温度影响 下释放将用于所述塑料的膨胀的一种或多种气体的一种物质(或多种 物质的混合物)。这种物质的例子是偶氮二甲酰胺和碳酸氢钠和柠檬 酸的混合物。后者得到良好的结果。用于根据本发明该实施方式变型的方法中的发泡剂的量必须被最 优化,尤其是根据其性质、存在的聚合物的特性(特别是动态粘度) 和所需的最终密度。通常,该含量大于或等于0.1%,优选0.5%,或甚 至1%。根据优选的实施方式,调节所述冷却剂的温度使得其至少等于Tg 减去15。C,且更特别优选等于Tg减去5。C。所述冷却剂的温度甚至可 (当可能时,考虑到所述流体的性质和Tg)大于Tg(例如,至少3(TC, 或甚至至少4(TC和仍更高)。在本说明书中,术语"冷却剂"理解为是指任何能够充分冷却所 述微孔结构的液体,以在冷却室内使其永久地固化。该冷却剂优选是 水。该流体通常在20 50。C之间的温度下,优选在25 40"之间。所 有的其它条件是相同的,此外冷却水温度的提高导致得到的微孔结构 变轻。在实践中,优选防止所述冷却剂冻结或达到这样的温度,即所述温度使得其达到这样的蒸汽压值,该蒸汽压值阻止了随后产生用于所述挤出板的良好真空(例如对于水高于约80°C ,或还甚至65-70°C )。从而,如已经在上面提到的,冷却剂温度的选择取决于本发明方法使用的基于无定形聚合物的组合物的Tg。事实上,如果该Tg高,则所述 冷却剂的温度必须荒谬地(不管其名字)也是高的。特别地,从而水 特别适用于Tg小于60。C、或甚至4(TC的聚合物。尤其在之前己经提到 的基于增塑的VC/VAc共聚物的组合物的情况下,所述冷却剂优选是 温度为20 50。C之间的水。关于用于制备本发明微孔结构的方法、和使得可生产其的设备的 其它细节可参见文献EP-B-1 009 625。在其形成之后,通过本发明制备方法得到的微孔结构可有利地通 过取出装置取下。所述脱离速率和挤出速率将被最优化,尤其是根据 所述泡孔的尺寸和厚度,还有所需的形状。在离开所述取出单元时,所述微孔结构可经表面处理作用(如电 晕处理),以改进其粘附性质,特别是用无纺布或用顶部和底部饰面 衬垫。在这些任选操作的最后,将所述最终面板在纵向和横向均切割 成所需尺寸的板并贮存。产生的废料可在操作结束前或者之后收集,并循环回到生产中。特别使本发明工艺的挤出条件适应所述无定形聚合物的性质。如 之前提到的,在模头出口处,基于所述聚合物的组合物的温度必须特 别调整,以能够熔接所述泡孔,以适当膨胀所述组合物等,而无重力 产生的变形。还必须调整交替的压力和真空值,还有循环的持续时间, 以最优化所述熔接。在实践中,优选使用大于或等于0.5巴相对压力, 或甚至1.5巴的压力。该压力通常小于或等于6巴,或甚至4巴,或甚 至尤其如此为2巴。关于真空,这通常大于或等于100 mmHg绝对压力,或甚至400 mmHg。最后,循环(压力/真空交替)的持续时间通 常大于或等于0.3s,或甚至0.4s,优选0.5s。该持续时间优选小于或 等于3s,或甚至2s,和甚至尤其如此为ls。在本发明的工艺中,可通过调整聚合物的熔体粘度、挤出速度、 压力/真空循环的持续时间等而调整所述泡孔的形状和尺寸。这种结构的泡孔形状可以是接近环状的、椭圆形的(当挤出和/或 脱离速度更高时)、多边形的(当所施加的压差更突然时)等。通常这些泡孔的长度L (在挤出方向)大于它们的宽度1 (在挤 出平面内,但沿垂直于挤出方向的方向)。通常,从而泡孔的纵横比(L/1) 大于l,或甚至1.5,但通常小于2。所述泡孔的长度(L)通常大于或等于4 mm,或甚至10 mm,但通 常小于或等于30 mm,或甚至20 mm。宽度(l)自身通常大于或等于2 mm,或甚至5mm,但通常小于或等于15 mm,或甚至10 mm。通过本发明方法得到的所述微孔结构的尺寸受限于工艺设备的尺 寸。术语"尺寸"理解为事实上仅是指宽度和高度(在挤出平面上垂 直测量),并非长度,因为长度是由切割挤出板的挤出持续时间和频 率确定的。这些结构的高度通常大于或等于mm,或甚至2mm,优选 5mm;其通常小于或等于70mm,或甚至60 mm。这是根据前述本发明使得可得到一片这样的微孔结构,其长度可 变化达至多无穷且这对于宽范围内的无定形聚合物是如此。通过本发明方法得到的微孔结构被有利地用于建筑业(轻质天花 板、隔板、门、混凝土模头板等)、家具、包装(侧面保护、物体包 装等)、机动车(包裹架、内门等)等。这些结构特别适用于建筑业,用于构造永久住所(寓所)或临时住所(例如,坚固的帐篷或人道主 义避难所)。其中它们可原样使用或作为在被称作饰面的两个板之间的夹心面 板。后者实施方式的变型是有利的,并且在该情况下,所述夹心面板 可通过熔接、粘合等、或装配适用于塑料的饰面和芯(用冷的或热的, 紧接着挤出之后)的任何方法生产。生产所述夹心面板的一种有利方 式是将饰面熔接到所述泡孔状芯上。任何熔接方法均可适用于该目的, 在结构/饰面至少部分地可透过电磁辐射的情况下,所述方法使用电磁辐射得到良好的结果。这种方法例如记载于法国专利申请03/08843中,其内容引入本说明书作为参考。根据另一个方面,本发明还涉及基于包括热塑性聚合物的组合物 的微孔结构,根据上述方法可容易地获得并由平行挤出且间断性熔接的板制成,其特征在于所述聚合物是选自衍生自氯乙烯(VC)的均聚 物和共聚物之间的无定形聚合物,且在于所述组合物包括单体或聚合 增塑剂。本发明通过以下实施例以非限制性的方式进行说明。 实施例1在所述条件下并利用以下所述的装置挤出宽度4cm和高度 12.2mm的微孔结构 SCAMEX 45挤出机,设有5个分开的加热区(Z1 Z5)并装配有 如文献EP-B-1 009 625中所述的模头,3个加热区加热至160°C 。所述 模头打开直接进入所述冷却水中并装配有基于水的压力和真空系统以 确保如文献EP-B-1 009 625中所述的熔接。 挤出机中的温度分布Zl: 109。CZ2: 145°CZ3: 156。C Z4: 154°C Z5: 155。C 使用的基于无定形聚合物的组合物含85wt。/。聚合的氯乙烯和 15wt。/。聚合的醋酸乙烯酯的共聚物,用20wt。/。的邻苯二甲酸二辛酯增 塑;'在0.1 rad/s和160°C下所述无定形聚合物的动态粘度859 Pa.s; '所述无定形聚合物的Tg: 35。C; '模头入口处的材料温度160°C 挤出压力9巴 螺杆速度30 rpm; 水压1.5巴; 真空400 mmHg;,所述压力/真空循环的持续时间0.5s/0.5s; 拉伸比65%;和 ,冷却水的温度35°C。得到的几何形状规则的微孔结构具有以下特性 高度12.2 mm;和 '体积密度0.27kg/dm3。实施例2R(比较例,与本发明不同)尝试在如实施例1中所述的条件下并利用所述装置挤出微孔结构,但利用如下的基于氯乙烯的聚合物组合物,其在O.l rad/s和在加 工温度(200。C)下的动态粘度为6624 Pa.s且Tg为85°C。不能将挤出板转变为微孔结构。 实施例3R (与本发明不同)在下列特定条件下,利用实施例1中所述的装置挤出宽度4cm和高度10mm的微孔结构 SCAMEX45挤出机的加热区加热至210°C; ,挤出机中的温度分布Zl: m。c Z2: 158。C Z3: 194°C Z4: 194°C Z5: 204oC,使用的组合物如实施例2R中的;*模头入口处的材料温度211°C 挤出压力43巴 螺杆速度13rpm; 水压1.5巴; 真空權mmHg; 所述压力/真空循环的持续时间0.75 S/0.75 s; 拉伸比:60%;和 .冷却水的温度60°C。得到的几何形状不规则的微孔结构(具有不同壁厚的泡孔)具有 以下特性 高度10 mm;和 体积密度0.590 kg/dm3。这些实施例的结果表明,当使用基于其Tg和动态粘度过高的无定 形聚合物的组合物、且当Tg和冷却水的温度之差过大时(实施例2R), 不可能得到微孔结构。如果提高冷却水的温度(实施例3R),可得到 这样的结构但后者具有不规则的几何形状和极高的体积密度。
权利要求
1.一种用于制备基于无定形聚合物的微孔结构的方法,根据该方法·利用多槽模头连续将基于所述无定形聚合物的组合物的平行板挤入冷却室内,在板的纵向边缘和所述室壁之间形成密封,不同的板在它们自身之间和与室壁形成隔室;·在该室内和从位于最接近模头的末端开始,在每隔一个的隔室内产生真空,以成对的方式使挤出板变形并吸引,以在它们整个高度上实现局部熔接;·从位于最接近模头的末端,用冷却剂填充与之前的隔室交替的每隔一个的隔室;和·在各个隔室内利用冷却剂交替产生真空和填充,以在冷却室内得到固化的微孔结构,其中泡孔垂直于挤出方向。该方法的特征在于·选择动态熔体粘度小于2000Pa.s的无定形聚合物组合物,所述动态熔体粘度在其加工温度和0.1rad/s的角速度下测得;和·调节所述冷却剂的温度使得其至少等于Tg-20℃,其中Tg是基于所述无定形聚合物的组合物的玻璃化转变温度。
2. 根据前述权利要求所述的方法,其特征在于基于所述无定形聚 合物的组合物的玻璃化转变温度(Tg)小于60。C。
3. 根据前述权利要求任一项所述的方法,其特征在于所述无定形 聚合物选自衍生自氯乙烯(VC)的均聚物和共聚物。
4. 根据前述权利要求所述的方法,其特征在于所述无定形聚合物 是氯乙烯和醋酸乙烯酯的共聚物(VC/VAc共聚物)。
5. 根据权利要求3或4所述的方法,其特征在于所述聚合物组合物包括单体或聚合增塑剂。
6. 根据前述权利要求所述的方法,其特征在于所述增塑剂是环氧 化豆油(ESO)或DOP (邻苯二甲酸二辛酯)。
7. 根据前述权利要求所述的方法,其特征在于所述组合物基于如 下的氯乙烯共聚物,所述氯乙烯共聚物含有5-25wt^的醋酸乙烯酯, 该组合物并用10-30wt^的DOP或ESO增塑。
8. 根据前述权利要求任一项所述的方法,其特征在于所述冷却剂 是水。
9. 根据前述权利要求所述的方法,其特征在于所述水的温度在 20 5(TC之间。
10. —种基于包括热塑性聚合物的组合物的微孔结构,根据前述 权利要求任一项所述的方法可容易地获得并由平行挤出且间断性熔接 的板制成,其特征在于所述聚合物是选自衍生自氯乙烯(VC)的均聚 物和共聚物之间的无定形聚合物,且其特征在于所述组合物包括单体 或聚合增塑剂。
全文摘要
一种用于制备基于如下组合物的微孔结构的方法,所述组合物包括无定形热塑性聚合物并由平行挤出且间断性熔接的板制成,根据该方法-选择动态熔体粘度小于2000Pa.s的无定形聚合物组合物,所述动态熔体粘度在其加工温度和0.1rad/s的角速度下测得;和-调节所述冷却剂的温度使得其至少等于T<sub>g</sub>-20℃,其中T<sub>g</sub>是基于所述无定形聚合物的组合物的玻璃化转变温度。
文档编号B29C65/00GK101331016SQ200680047267
公开日2008年12月24日 申请日期2006年12月12日 优先权日2005年12月14日
发明者克洛德·德埃诺, 多米尼克·格朗让 申请人:索维公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1