亲水性高分子微粒、和离子交换液相色谱用填充剂及其制造方法

文档序号:5021569阅读:260来源:国知局

专利名称::亲水性高分子微粒、和离子交换液相色谱用填充剂及其制造方法
技术领域
:本发明涉及一种抑制在水系介质中的溶胀且对于水系介质的分散性优异的亲水性高分子微粒、可以有效抑制蛋白质等的非特异吸附的离子交换液相色谱用填充剂、使用了该离子交换液相色谱用填充剂的糖化血红蛋白的分析方法、可以长时间维持对溶胀、非特异吸附等的抑制效果的离子交换液相色谱用填充剂的制造方法、使用该离子交换液相色谱用填充剂的制造方法进行制造的离子交换液相色谱用填充剂、以及糖化血红蛋白分析用的离子交换液相色谱用填充剂。
背景技术
:从亚微米至微米尺寸的高分子微粒,广泛应用于有机颜料、调色剂粒子、液晶用间隔基、乳胶微粒、离子交换液相色谱用填充剂等,其中,近年来向离子交换液相色谱用填充剂的应用备受瞩目。离子交换液相色谱法,作为对各种生物相关物质的分离分析极其有效的方法被人们所熟知。其中,近年来作为糖化血红蛋白类(以下也称为血红蛋白Alc)的分析方法受到瞩目。血红蛋白Alc是血液中的糖与血红蛋白的P链N末端进行化学键合而成的,血红蛋白中血红蛋白Alc所占的比例,即相对于血红蛋白Alc与非糖化血红蛋白的合计的血红蛋白Alc的比例,可以说反映了12个月期间血糖值的平均值。因此,表示血红蛋白Alc所占比例的血红蛋白Alc值(%),代替短时间可能变动很大的血糖值,作为糖尿病诊断的指标正在被广泛使用。当为水系介质中使用的高分子微粒时,为了抑制由于水系介质的环境变化引起的形状变化,要求在水系介质中的溶胀小,并且为了提高分散性等要求粒子表面的亲水性高,特别是作为离子交换液相色谱法中的离子交换液相色谱用填充剂使用时,为了使色谱柱内的压力变动减小、尽快平衡,要求对于水系介质的溶胀极小。为了使水系介质中的溶胀变小,作为目前公知的方法,可以通过大量使用疏水性交联性单体提高交联度而进行应对。但是,在使用疏水性交联性单体而成的微粒中,由于表面的疏水性高,因此存在水系介质中的分散性差的问题。另外,将这样的微粒用作液相色谱用填充剂时,也存在由于接触蛋白质等生物样品而引起非特异吸附的问题。可以认为该非特异吸附是由于疏水性相互作用而引起的,因此必须尽量提高离子交换液相色谱用填充剂表面的亲水性。作为提高离子交换液相色谱用填充剂的亲水性的方法,可以列举例如使离子交换液相色谱用填充剂的基材微粒部分大量含有亲水性单体的方法等。但是,使亲水性单体的含量增加时,离子交换液相色谱用填充剂内部的亲水性也提高,作为结果离子交换液相色谱用填充剂的机械强度变弱,因此产生以下问题变得不能高速分离,或者离子交换液相色谱用填充剂本身引起溶胀,从而导致测定精度下降。作为解决这些问题的方法,己知有下述方法例如在由硅类化合物构成的基剂中引入离子交换基团的方法、或在由有机合成高分子构成的交联性粒子中使含有离子交换基团的化合物反应而得到的方法(专利文献1等)。另外,已知使交联性单体与含有离子交换基团的化合物反应得到的方法(专利文献2等)等。另外,在专利文献3中,公开了在疏水性交联聚合物微粒的表面上形成有亲水性聚合物层的被覆聚合物粒子。疏水性交联聚合物微粒,通过构成的疏水性交联性单体,高强度地进行交联,因此机械强度增高,可以抑制溶胀。另外,通过使形成的亲水性聚合物层的厚度为130nm,可以实现以下效果防止分析对象物质等的非特异吸附,及维持亲水性的状态,抑制由亲水性聚合物层引起的溶胀。但是,现实情况中,在这样的亲水性聚合物层的厚度范围内,很难防止疏水性交联聚合物微粒的露出,结果不能充分防止由疏水性相互作用引起的非特异吸附。特别是测定糖化血红蛋白这样的在临床检查等中使用的物质时,要求在更高的水平下的测定精度,因此必须尽可能防止由疏水性相互作用引起的非特异吸附。对此在专利文献4中公开了一种对具有离子交换基团的填充剂粒子表面进行亲水化处理而得到的离子交换液相色谱用填充剂,具体而言,是在具有离子交换基团的填充剂粒子表面吸附蛋白质等具有亲水性基团的化合物进行亲水化而得到的离子交换液相色谱用填充剂。在这样的离子交换液相色谱用填充剂中,基材既不溶胀也不收縮,另一方面,通过亲水性表面可以有效防止蛋白质等的非特异吸附。但是,这样通过物理吸附固定亲水性化合物的情况,在使用初期阶段可以发挥高性能,但在长期使用中亲水性化合物从填充剂粒子的表面脱离,存在保留时间或测定值产生变动的问题。另外,根据吸附的亲水性化合物的批间差异,也存在保留时间或测定值变动的问题点。专利文献l:日本特开平1-262468号公报专利文献2:日本特公昭63-59463号公报专利文献3:日本特公平8-7197号公报专利文献4:日本特开2001-91505号公报
发明内容本发明鉴于上述现状,其目的在于提供一种抑制在水系介质中的溶胀且对于水系介质的分散性优异的亲水性高分子微粒、可以有效抑制蛋白质等的非特异吸附的离子交换液相色谱用填充剂、使用了该离子交换液相色谱用填充剂的糖化血红蛋白的分析方法、可以长时间维持对溶胀、非特异吸附等的抑制效果的离子交换液相色谱用填充剂的制造方法、使用该离子交换液相色谱用填充剂的制造方法进行制造的离子交换液相色谱用填充剂、以及糖化血红蛋白分析用的离子交换液相色谱用填充剂。本发明为一种亲水性高分子微粒,其特征在于,分别使其分散在水和丙酮中之后照射超声波15分钟,并在25'C下放置240小时使其平衡后,用粒度分布测定仪分别测定粒径时,使其在水中分散时的粒径Dw与使其在丙酮中分散时的粒径DA的比Dw/DA为2.0以下,并且,将所述亲水性高分子微粒无间隙地排列成单层并在其上面形成纯水的液滴之后,在25°。条件下用接触角计测定的水的接触角为70°以下。另外,本发明为一种离子交换液相色谱用填充剂,其由基材微粒和在该基材微粒表面存在的离子交换基团构成,其特征在于,分别使其分散在水和丙酮中之后,照射超声波15分钟,并在25'C下放置240小时使其平衡后,用粒度分布测定仪分别测定粒径时,使其在水中分散时的粒径Dw与使其在丙酮中分散时的粒径DA的比Dw/DA为2.0以下,并且,所述离子交换液相色谱用填充剂无间隙地排列成单层并在其上面形成纯水的液滴之后,在25'C条件下用接触角计测定的水的接触角为60。以下。本发明为一种离子交换液相色谱用填充剂,其具有离子交换基团,水的接触角为60。以下,且表面没有被亲水性化合物覆盖。另外,本发明为一种离子交换液相色谱用填充剂,其是由疏水性交联聚合物粒子和具有离子交换基团的亲水性聚合物层构成的,所述疏水性交联聚合物粒子由合成有机高分子组成,所述亲水性聚合物层共聚在所述疏水性交联聚合物粒子的表面上,所述离子交换液相色谱用填充剂的最表面被臭氧水实施亲水化处理。本发明还为一种离子交换液相色谱用填充剂的制造方法,其中具有如下的亲水化工序,所述亲水化工序中通过使用溶存臭氧气浓度为20ppm以上的臭氧水洗涤具有离子交换基团的填充剂粒子表面而进行亲水化,所述亲水化工序中,进行基于加速氧化法的处理。以下详细叙述本发明。本发明人进行了深入研究,结果发现通过使高分子微粒的Dw/DA(以下也称为溶胀度)及对于表面的水的接触角在一定的范围,可以得到一种抑制在水系介质中的溶胀且对于水系介质的分散性优异的亲水性高分子微粒,从而完成了本发明。本发明的亲水性高分子微粒,分别使其分散在水和丙酮中之后照射超声波15分钟,并在25。C下放置240小时使其平衡后,用粒度分布测定仪分别测定粒径时,使其在水中分散时的粒径Dw与使其在丙酮中分散时的粒径Da的比Dw/DA为2.0。通常高分子微粒具有在有机溶剂中收缩、在水系介质中进行不同程度溶胀的倾向。因此,在水系介质中的溶胀程度大时,Dw/Da増大,相反,在水系介质中的溶胀程度小时,Dw/Da減小。当Dw/DA超过2.0时,由于在水系介质中的溶胀程度过大,因此在用于例如液相色谱用填充剂时,压力变动增大,平衡花费时间,因此不实用。另外,用于水性涂料时,由于引起涂装前的粘度上升,操作性变差,因此不实用。优选的下限为l.O,优选的上限为1.8。作为上述粒度分布测定仪,没有特别的限定,可以列举例如Accusizer780(ParticleSizingSystems公司制)等。另外,本发明的亲水性高分子微粒,将该亲水性高分子微粒无间隙地排列成单层并在其上面形成纯水的液滴之后,在25'C条件下用接触角计测定的水的接触角为70°以下。接触角测定,被用作评价以高分子材料为主的表面亲水性、疏水性的方法。水的接触角越小,则判断亲水性越高,本发明中通过设定上限为70°,亲水性大幅度提高,对水的分散性提高,另外,将本发明的亲水性高分子微粒作为液相色谱用填充剂使用时,即使接触蛋白质等生物样品,也几乎不引起非特异吸附。另外,用于水性涂料时,由于分散性良好,因此涂装操作性提高。优选的上限为60。。作为上述接触角计,可以使用例如协和界面科学公司制造的Dropmaster500等自动接触角计。上述水的接触角可以使用如上所述的接触角计,可以根据由连结液滴左右端点与顶点的直线相对于固体表面的角度而求出接触角的方法(9/2法)等进行测定,具体可以列举如下方法。用显微镜进行确认,同时将干燥的亲水性高分子微粒在载玻片上贴附的双面带上无间隙地排列成单层,之后用空气喷涂除去剩余的亲水性高分子微粒,将亲水性高分子微粒在双面带上固定。制作25'C的纯水1uL的液滴,使其着液在载玻片上固定的亲水高分子微粒上,使用接触角计通过e/2法计算出接触角。需要说明的是,当接触角小于90°时,着液后的水滴容易润湿,因此着液后的接触角经时变小。因此使用着液后0.5秒后的接触角值进行评价。本发明的亲水性高分子微粒,通过其溶胀度满足上述范围,可以成为即使在水系介质也几乎不溶胀的高分子微粒,通过水的接触角满足上述范围,可以成为对于水系介质的分散性优异的高分子微粒。作为满足上述溶胀度范围和上述水的接触角范围的亲水性高分子微粒,具体可以列举例如由疏水性交联聚合物构成、并且在最表面实施了亲水化处理的微粒,其中所述疏水性交联聚合物,由水溶解度为5重量%以下的疏水性交联性单体和/或疏水性非交联性单体构成。上述疏水性交联聚合物可以是以下聚合物中的任意物质将1种水溶解度为5重量%以下的疏水性交联性单体进行单独聚合而得到的疏水性交联聚合物(例如,由乙二醇二甲基丙烯酸酯单独构成的聚合物、由二乙烯基苯单独构成的聚合物等);将2种以上的水溶解度为5重量°/。以下的疏水性交联性单体进行共聚而得到的疏水性交联聚合物(例如,由乙二醇二甲基丙烯酸酯和三羟甲基丙垸三甲基丙烯酸酯构成的共聚物、由二乙烯基苯和二乙烯基甲苯构成的共聚物等);将至少1种水溶解度为5重量%以下的疏水性交联性单体和至少1种水溶解度为5重量%以下的疏水性非交联性单体进行共聚而得到的疏水性交联聚合物(例如,由乙二醇二甲基丙烯酸酯和三羟甲基丙烷三甲基丙烯酸酯和甲基丙烯酸丁酯构成的共聚物、由二乙烯基苯和苯乙烯构成的共聚物等)。作为上述水溶解度为5重量%以下的疏水性交联性单体,只要在单体1分子中具有2个以上乙烯基,则没有特别的限定,可以列举例如乙二醇二甲基丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯等二(甲基)丙烯酸酯;四羟甲基甲烷三(甲基)丙烯酸酯、三羟甲基丙垸三(甲基)丙烯酸酯、四羟甲基甲垸四(甲基)丙烯酸酯等三(甲基)丙烯酸酯或四(甲基)丙烯酸酯;二乙烯基苯、二乙烯基甲苯、二乙烯基二甲苯、二乙烯基萘等芳香族类化合物等。在此,水溶解度是指在水100mL中加入单体20mL,室温下搅拌10分钟X3次,在20'C的保温器中放置一夜,之后,将在水中溶解的单体量用氢炎气相色谱仪根据双键(PSDB)法进行测定,由此而计算得到的值。作为上述水溶解度为5重量%以下的疏水性非交联性单体,只要是具有疏水性性质的非交联性的聚合性有机单体,则没有特别的限定,可以列举例如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸叔丁酯等(甲基)丙烯酸酯;苯乙烯、甲基苯乙烯等苯乙烯类单体等。上述疏水性交联聚合物由上述水溶解度为5重量%以下的疏水性交联性单体与上述水溶解度为5重量%以下的疏水性非交联性单体的共聚构成时,水溶解度为5重量%以下的疏水性非交联性单体的使用量,相对于水溶解度为5重量%以下的疏水性交联性单体100重量份,优选为50重量份以下。作为对最表面进行亲水化处理的方法,没有特别的限定,可以列举例如在高分子微粒的表面实施臭氧水处理、臭氧气处理、等离子体处理、电晕处理、通过双氧水、次氯酸钠等的表面氧化处理等的方法,或者使以蛋白质或多糖类为主的来自生物体的亲水性化合物或聚乙稀醇、聚乙稀吡咯垸酮、聚丙烯酸、磷脂质聚合物等亲水性高分子化合物进行物理吸附或化学键在高分子微粒表面的方法等。其中,当考虑制备时的操作性、批管理的容易性、经时性能维持等时,优选臭氧水处理。上述臭氧水,是指臭氧气在水中溶解而成的臭氧水。臭氧中具有强力的氧化作用,但在臭氧气中,通过将高分子微粒表面进行均匀氧化而实施亲水化处理非常困难。但是,通过使用臭氧水,可以仅仅通过使高分子微粒分散在臭氧水中而简便地使高分子微粒表面氧化而实施亲水化处理。亲水化处理的结果,可以认为疏水性的结构部分被氧化,生成亲水基团(-OH、-CHO、-COOH等)。作为上述臭氧水中溶存臭氧气的浓度,没有特别限定,但优选下限为20ppm。当低于20ppm时,在亲水化处理上费时间,且不能实施充分的亲水化处理,从而将高分子微粒用作液相色谱用填充剂时不能充分抑制测定对象物质等的非特异吸附。更优选的下限为50ppm。浓度的优选上限没有特别限定。作为上述臭氧水的制备方法,没有特别的限定,可以列举例如曰本报中所记载,通过只透过气体而阻止液体透过的臭氧气透过膜,使原料水和臭氧气接触的方法等。另外,进行上述臭氧水处理时,优选使用加速氧化处理法。加速氧化处理法是指使臭氧水的氧化作用增强的方法,可以将紫外线照射、超声波照射、碱水添加等促进溶存臭氧分解的方法进行单独使用或者并用2种以上。通过进行基于这样的加速氧化处理法的处理,促进溶存臭氧的分解,增加由臭氧的分解而生成的羟基自由基的生成量。这样生成的羟基自由基,由于具有比臭氧更高的氧化力,因此认为可能进一步提高亲水化处理的效果。利用上述加速氧化处理法时,可以进一步促进高分子微粒表面上的亲水基(-OH、-CHO、-COOH等)的生成。即使未进行亲水化处理而对于高分子微粒表面的水的接触角也为70°以下的情况,没有必要特别进行亲水化处理。作为本发明的亲水性高分子微粒的平均粒径,没有特别限定,可以采用对应目的的粒径。作为本发明的亲水性高分子微粒的粒度分布(CV值),没有特别限定,但优选的上限为40%。当超过40%时,不实用。更优选的上限为15%。本发明的离子交换液相色谱用填充剂,为由基材粒子、及上述基材粒子表面存在的离子交换基团构成的离子交换液相色谱用填充剂,分别使其分散在水和丙酮中之后照射超声波15分钟,并在25"C下放置240小时使其平衡后,用粒度分布测定仪分别测定粒径时,使其在水中分散时的粒径Dw与使其在丙酮中分散时的粒径DA的比Dw/DA为2.0以下,并且,将所述亲水性高分子微粒无间隙地排列成单层并在其上面形成纯水的液滴之后,在25'C条件下用接触角计测定的水的接触角为60。以下。以下对本发明的离子交换液相色谱用填充剂进行详述。本发明人进行了深入研究,结果发现通过将离子交换液相色谱用填充剤的Dw/Da(以下也称为溶胀度)及对于表面的水的接触角设定在一定的范围,可以抑制水系介质中的溶胀,并且有效抑制蛋白质等的非特异吸附,从而完成了本发明的离子交换液相色谱用填充剂。本发明的离子交换液相色谱用填充剂,分别使其分散在水和丙酮中之后照射超声波15分钟,并在25'C下放置240小时使其平衡后,用粒度分布测定仪分别测定粒径时,使其在水中分散时的粒径Dw与使其在丙酮中分散时的粒径DA的比DW/DA的上限为2.0。通常离子交换液相色谱用填充剂具有在有机溶剂中收縮、在水系介质中进行程度不同的溶胀的倾向,因此,当水系介质中的溶胀程度大时,Dw/Da変大,相反,当水系介质中的溶胀程度小时,Dw/Da変小。由于Dw/DA超过2.0时水系介质中的溶胀程度过大,色谱柱内压力变动增大,平衡花费时间,因此不实用。优选的下限为1.0,优选的上限为1.8。作为上述粒度分布测定仪,没有特别的限定,可以列举例如Accusizer780(ParticleSizingSystems公司制)等。另外,本发明的离子交换液相色谱用填充剂,将该离子交换液相色谱用填充剂无间隙地排列成单层并在其上面形成纯水的液滴之后,在25。C条件下用接触角计测定的水的接触角的上限为60。。接触角测定作为评价以高分子材料为主的表面亲水性、疏水性的方法而使用。水的接触角越小,判断亲水性越高,本发明中通过设定上限为60°,亲水性大幅度提高,即使接触蛋白质等生物样品时非特异吸附也很少。更优选的上限为50。。水的接触角,可以与本发明的亲水性高分子微粒的情况使用同样的接触角计,通过同样的方法进行测定。本发明的离子交换液相色谱用填充剂,通过使其溶胀度满足上述范围,可以成为即使在水系介质也几乎不溶胀的填充剂,通过使水的接触角满足上述范围,可以成为即使接触蛋白质等生物样品也不会引起非特异吸附和测定精度下降。本发明的离子交换液相色谱用填充剂,与目前公知的离子交换液相色谱用填充剂同样,由基材微粒、和上述基材微粒表面上存在的离子交换基团构成。作为满足上述溶胀度范围和上述水的接触角范围的离子交换液相色谱用填充剂,具体可以列举例如由疏水性交联聚合物构成的基材微粒和在上述基材微粒表面存在的离子交换基团构成、并且在最表面实施了亲水化处理的填充剂,其中所述疏水性交联聚合物,由水溶解度为5重量%以下的疏水性交联性单体和/或疏水性非交联性单体构成。关于上述疏水性交联聚合物、以及对最表面进行亲水化处理的方法,由于与本发明的亲水性高分子微粒的情况相同,因此省略其详细说明。上述亲水化处理可以在基材微粒的表面引入离子交换基团之前进行,也可以在基材微粒的表面引入离子交换基团之后进行。另外,即使未进行亲水化处理而对于表面的水的接触角也为60°以下的情况,没有必要特别进行亲水化处理。作为上述离子交换基团,没有特别限定,可以列举例如磺酸基、羧酸基、磷酸基等,其中使用磺酸基时,经过长时间也可以维持性能,另外,对于血红蛋白Alc等的分析也可以得到很高的效果,因此优选。作为上述离子交换基团的引入方法,没有特别的限定,可以列举例如日本特公平8-7197号公报中记载的使在基材微粒表面具有离子交换基团的单体进行共聚的方法等。作为具有上述离子交换基团的亲水性单体,没有特别的限定,从在水系介质中可能溶解的聚合性单体中,根据本发明的离子交换液相色谱用填充剂的使用目的进行选择即可,在用于阳离子交换液相色谱的情况下,可以列举例如丙烯酸、甲基丙烯酸等具有羧基的单体;苯乙烯磺酸、烯丙基磺酸、2-(甲基)丙烯酰胺-2-甲基丙垸磺酸等具有磺酸基的单体;((甲基)丙烯酰氧乙基)酸性磷酸盐、(2-(甲基)丙烯酰氧乙基)酸性磷酸盐等具有磷酸基的单体等。其中,优选使用具有磺酸基的单体。在用于阴离子交换液相色谱的情况下,可以使用例如(甲基)丙烯酸二甲基氨基乙酯、(甲基)丙烯酸二乙基氨基乙酯、烯丙胺等具有氨基的单体等。如果包含1种以上的含有离子交换基团的单体,则为了提高亲水性,可以与不含有离子交换基团的亲水性单体进行共聚。另外,可以使用在基材微粒表面使具有官能团的单体共聚并在该官能团上使具有离子交换基团的化合物进行反应而在基材微粒表面引入离子交换基团的方法。作为本发明的离子交换液相色谱用填充剂的平均粒径,没有特别限定,但优选的下限为O.lwm,优选的上限为20um。当低于0.1um时,色谱柱内压力过高,引起分离不良;当超过20um时,色谱柱内的死区容积过大,引起分离不良。作为本发明的离子交换液相色谱用填充剂的粒度分布(CV值),没有特别限定,但优选的上限为40%。当超过40%时,色谱柱内的死区容积过大,引起分离不良。更优选的上限为15%。本发明的离子交换液相色谱用填充剂,可以用于糖化血红蛋白等血红蛋白类(Hb)的测定。这样的糖化血红蛋白类的测定方法也是本发明之一。具体而言,例如,将本发明的离子交换液相色谱用填充剂填充到公知的色谱柱内之后,以预定的条件将洗脱液及测定样品送液到所得到的色谱柱,由此可以测定血红蛋白类。作为上述洗脱液,可以使用目前公知的洗脱液,例如,可以使用有机酸、无机酸、或者以它们的盐类作为成分的液体等。其他形式的本发明的离子交换液相色谱用填充剂,为具有离子交换基团、水的接触角为60。以下、且表面没有用亲水化合物被覆的填充剂。以下对其他形式的本发明的离子交换液相色谱用填充剂进行详述。本发明人进行了深入研究,结果发现没有用亲水化合物被覆表面而通过将对于表面的水的接触角设定在一定的范围,可以充分抑制由疏水性相互作用引起的非特异吸附,结果具有很高的测定精度,因此可以得到对各种分离分析极其有效的填充剂,从而完成了本发明。其他形式的本发明的离子交换液相色谱用填充剂(以下也简单称为其他形式的本发明的填充剂),其水的接触角为60。以下。在此,接触角测定可以作为评价以高分子材料为主的表面的亲水性、疏水性的方法使用,判断水的接触角越小亲水性越高。因此,通过设定水的接触角为60°以下,亲水性大幅度提高,可以充分抑制由疏水性相互作用引起的蛋白质等测定对象物质的非特异吸附,优选为50°以下。上述水的接触角,例如可以使用自动接触角计,根据由连结液滴左右端点与顶点的直线相对于固体表面的角度而求出接触角的方法(e/2法)等,进行测定。其他形式的本发明的填充剂,没有被亲水性化合物被覆表面。在本说化合物被覆表面",是指以蛋白质或多糖类为主的来自生物体的亲水性化合物、或者聚乙稀醇、聚乙稀吡咯烷酮、磷脂质聚合物等合成高分子亲水性化合物没有向填充剂的基材表面进行物理吸附或化学键。由于没有被亲水性化合物被覆表面,不存在亲水性化合物脱落的情况,经过长时间也可以维持亲水性。作为使其他形式的本发明的填充剂对于表面的水的接触角为60°以下的方法,没有特别限定,可以列举例如在填充剂的基材上进行臭氧水处理、臭氧气处理、等离子体处理、电晕处理、通过双氧水、次氯酸钠等的表面氧化处理等亲水化处理的方法等,其中,优选通过臭氧水进行亲水化处理。即使填充剂的基材未进行亲水化处理而水的接触角也为60°以下的情况,没有必要特别进行亲水化处理。作为其他形式的本发明的填充剂的基材,没有特别的限定,可以使用例如使用了聚合性单体等的合成高分子微粒、无机微粒等,优选为以下构成由合成有机高分子构成的疏水性交联聚合物粒子、及由在上述疏水性交联聚合物粒子表面进行共聚的具有离子交换基团的亲水性聚合物构成的层。另外,使用这样的基材时,优选最表面通过臭氧水实施亲水化处理。使用这样的基材时,通过使用疏水性粒子保持作为填充剂的机械强度,同时由亲水性的层被覆粒子表面,进一步实施亲水化处理,由此可以充分抑制由疏水性相互作用引起的非特异吸附,结果具有很高的测定精度,因此可以得到对各种分离分析极其有效的填充剂。其他形式的本发明的填充剂具有离子交换基团,作为上述离子交换基团,可以列举例如磺酸基、羧基、磷酸基等。其中,优选磺酸基。作为其他形式的本发明的填充剂的另外其他的形式,为具有以下构成的离子交换液相色谱用填充剂,该构成为由合成有机高分子构成的疏水性交联聚合物粒子、及由在上述疏水性交联聚合物粒子表面进行共聚的具有离子交换基团的亲水性聚合物构成的层。其为最表面通过臭氧水实施亲水化处理的离子交换液相色谱用填充剂。另外其他形式的本发明的填充剂具有以下构成由合成有机高分子构成的疏水性交联聚合物粒子、及由在上述疏水性交联聚合物粒子表面进行共聚的具有离子交换基团的亲水性聚合物构成的层。上述疏水性交联聚合物可以为以下聚合物中的任意物质,所述聚合物为将1种疏水性交联性单体进行单独聚合而得到的疏水性交联聚合物、将2种以上的疏水性交联性单体进行共聚而得到的疏水性交联聚合物、将至少1种的疏水性交联性单体和至少1种的疏水性非交联性单体进行共聚而得到的疏水性交联聚合物。作为上述疏水性交联性单体,只要为在单体1分子中具有2个以上乙烯基的疏水性交联性单体,则没有特别的限定,可以列举例如乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯等二(甲基)丙烯酸酯;四羟甲基甲烷三(甲基)丙烯酸酯、三羟甲基丙垸三(甲基)丙烯酸酯、四羟甲基甲烷四(甲基)丙烯酸酯等三(甲基)丙烯酸酯或四(甲基)丙烯酸酯;二乙烯基苯、二乙烯基甲苯、二乙烯基二甲苯、二乙烯基萘等芳香族类化合物等。作为上述疏水性非交联性单体,只要是具有疏水性性质的非交联性的聚合性有机单体,则没有特别的限定,可以列举例如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸叔丁酯等(甲基)丙烯酸酯;苯乙烯、甲基苯乙烯等苯乙烯类单体等。上述疏水性交联聚合物由上述疏水性交联性单体和上述疏水性非交联性单体的共聚构成时,上述疏水性交联性单体,相对于全部单体100重量份,优选为10重量份以上,更优选为20重量份以上。上述具有离子交换基团的亲水性聚合物,是由具有离子交换基团的亲水性单体构成的聚合物,只要含有具有离子交换基团的亲水性单体1种以上即可,即,可以列举使具有离子交换基团的亲水性单体单独聚合、使具有离子交换基团的亲水性单体与不具有离子交换基团的亲水性单体进行共聚的方法等。作为上述具有离子交换基团的亲水性单体,没有特别的限定,从在水性分散介质中可能溶解的聚合性单体中,根据本发明的填充剂的使用目的进行选择即可,在用于阳离子交换液相色谱的情况下,可以列举例如丙烯酸、甲基丙烯酸等具有羧基的单体;苯乙烯磺酸、烯丙基磺酸、2-(甲基)丙烯酰胺-2-甲基丙烷磺酸等具有磺酸基的单体;((甲基)丙烯酰氧乙基)酸性磷酸盐、(2-(甲基)丙烯酰氧乙基)酸性磷酸盐等具有磷酸基的单体等。其中,优选使用具有磺酸基的单体。在用于阴离子交换液相色谱的情况下,可以使用例如(甲基)丙烯酸二甲基氨基乙酯、(甲基)丙烯酸二乙基氨基乙酯、烯丙胺等具有氨基的单体等。作为上述不具有离子交换基团的亲水性单体,没有特别的限定,从在水性分散介质中可能溶解的聚合性单体中,根据本发明的填充剂的使用目的进行选择即可,可以列举例如2-羟基乙基(甲基)丙烯酸酯、甘油单(甲基)丙烯酸酯、聚乙二醇单(甲基)丙烯酸酯、甲氧基聚乙二醇单(甲基)丙烯酸酯、丙烯酰胺、甲基丙烯酰胺、乙烯基吡咯垸酮等。上述具有离子交换基团的亲水性单体与上述不具有离子交换基团的亲水性单体进行混合使用时,混合比率没有特别限定,根据需要的离子交换基团容量,可以决定混合比率。另外其他形式的本发明的填充剂,最表面通过双氧水实施亲水化处理。已知臭氧与双键的反应性很高,与双键反应后的臭氧,形成作为中间体的臭氧化物,然后形成羧基等。本发明中,用亲水性聚合物被覆后,表面上露出的疏水性交联聚合物的结构,可以认为是未反应的乙烯基,即双键,因此通过臭氧可以有效实施氧化处理。上述臭氧水是指臭氧气在水中溶解而成的臭氧水。关于上述臭氧水的溶存臭氧气浓度、制备方法,与本发明的离子交换液相色谱用填充剂的情况相同,因此省略对其的详细说明。另外其他形式的本发明的填充剂的接触角也与上述同样,优选为60°以下,更优选为50°以下。作为另外其他形式的本发明的填充剂的制造方法,没有特别限定,根据目前公知的方法,制造上述被覆聚合物粒子,使该被覆聚合物粒子分散在臭氧水中,由此可以进一步实施亲水化处理。作为上述其他形式的本发明以及另外其他形式的本发明的填充剂的平均粒径,没有特别限定,但优选的下限为0.1iim,优选的上限为20ym。当低于0.1um时,色谱柱内压力过高,引起分离不良;当超过20um时,色谱柱内的死区容积过大,引起分离不良。作为上述其他形式的本发明以及另外其他形式的本发明的填充剂的粒度分布(CV值),没有特别限定,但优选的上限为40%。当超过40%时,色谱柱内的死区容积过大,引起分离不良。更优选的上限为15%。上述其他形式的本发明以及另外其他形式的本发明的填充剂,可以用于糖化血红蛋白等血红蛋白类(Hb)的测定。这样的糖化血红蛋白类的测定方法也是本发明之一。具体而言,例如,将上述其他形式的本发明以及另外其他形式的本发明的填充剂填充到公知的色谱柱内之后,以预定的条件将洗脱液及测定样品送液到所得到的色谱柱,由此可以测定血红蛋白类。作为上述洗脱液,可以使用目前公知的洗脱液,例如,可以使用有机酸、无机酸、或者以它们的盐类作为成分的液体等。本发明的离子交换液相色谱用填充剂的制造方法,具有如下的亲水化工序,所述亲水化工序中通过使用溶存臭氧气浓度为20ppm以上的臭氧水洗涤具有离子交换基团的填充剂粒子表面而进行亲水化,所述亲水化工序中,进行基于加速氧化法的处理。以下对本发明进行详述。本发明人至此发现,通过利用臭氧水洗涤具有离子交换基团的填充剂粒子表面,可以制造一种仅仅填充剂粒子表面被亲水化、即使在水系介质中也不发生溶胀或收縮、能够有效抑制蛋白质等的非特异吸附的离子交换液相色谱用填充剂。但是,即使使用这样的方法时,得到的离子交换液相色谱用填充剂的表面也不能充分被亲水化。因此,进一步深入研究的结果发现,在使用臭氧水的亲水化工序中,通过进行基于加速氧化法的处理,可以促进溶存臭氧的分解,通过由分解生成的羟基自由基,可以进一步提高亲水化处理的效果,从而完成了本发明。本发明的离子交换液相色谱用填充剂的制造方法中,通过使用溶存臭氧气浓度为20ppm以上的臭氧水洗涤具有离子交换基团的填充剂粒子表面,而进行亲水化的亲水化工序,由此仅仅将填充剂粒子表面进行亲水化。上述臭氧水中具有强力的氧化作用,另外,溶存臭氧气缓慢分解,无残留性,因此广泛利用于日本特开2001-33069号公报中记载的半导体的抗蚀剂去除、日本特开2003-024464号公报中记载的有害物质的分解处理等。因此,通过这样的方法进行亲水化处理的情况下,仅仅臭氧水直接接触的表面部分被亲水化,因此即使在水系介质中也不会发生溶胀或收縮,另一方面,在其亲水化表面蛋白质等未进行非特异吸附。另外,由于是化学的亲水化处理,因此不会像物理的亲水化处理方法那样出现亲水性化合物脱落,经过长时间也可以维持亲水性。本发明中,在上述亲水化工序中进行基于加速氧化法的处理。本说明书中,加速氧化法是指使臭氧水的氧化作用增强的方法,可以将紫外线照射、超声波照射、碱水添加等促进溶存臭氧分解的方法进行单独使用,或者并用2种以上。通过进行基于这样的加速氧化法的处理,促进溶存臭氧的分解,增加由臭氧的分解而生成的羟基自由基的生成量。这样生成的羟基自由基,由于具有比臭氧更高的氧化力,因此认为可能进一步提高亲水化处理的效果。利用上述加速氧化法时,可以进一步促进填充剂粒子表面上的亲水基(-OH、-CHO、-COOH等)的生成。作为上述基于加速氧化法的处理,优选使用将臭氧水的pH设定为7.0以上、并且照射超声波的方法。上述臭氧水的pH通常显示4.05.0的较低值,但如果pH增高,则溶解性变得不稳定,促进分解。另外,通过在臭氧水中照射超声波,由于超声波照射时产生的空化作用,可以进一步促进羟基自由基的生成。因此,通过将这些进行组合,可以更加提高亲水化处理的效果。作为上述将臭氧水的pH调节为7.0以上的方法,没有特别限定,可以使用例如添加氢氧化钠、氢氧化钾等碱金属氢氧化物的水溶液的方法等。在上述基于加速氧化法的处理中,照射超声波时,超声波频率的优选下限为20kHz,优选的上限为lMHz。如果考虑到空化在低频率一侧容易发生,则更优选的上限为500kHz,进一步优选的上限为100kHz。作为进行超声波照射时的超声波照射装置,如果是可以照射具有上述频率数的超声波的装置,则没有特别的限定。另外,作为上述基于加速氧化法的处理,也优选为在臭氧水中进行紫外线照射。作为上述基于加速氧化法的处理,进行紫外线照射时,紫外线波长的优选下限为160nm,优选上限为280nm。通过照射波长领域在该范围的紫外线,可以进行加速氧化处理。另外,特别优选紫外线包括波长254nm。波长254nm的紫外线直接作用于臭氧分子,具有分解的功能。在该分解过程中,由于产生羟基自由基,因此能够进一步提高亲水化处理的效果。作为上述紫外线照射时使用的紫外线灯,没有特别限定,优选可以照射如上所述含有波长254nm的紫外线的灯,可以列举例如低压汞灯、高压汞灯、金属卤化物灯等。作为上述紫外线的照射强度及照射时间,没有特别限定,进行适宜调整即可,但在波长254nm的照射强度为0.5200mW/cm2下优选照射l1200秒,更优选照射60600秒。当照射强度过小、或者照射时间过短时,填充剂粒子表面的亲水化不充分、且不能充分防止蛋白质等的非特异吸附,当照射强度过强、或者照射时间过长时,可能导致填充剂粒子的强度下降。进行上述基于加速氧化法的处理时,优选在20'C以上进行,更优选的上限为8(TC。当超过80。C时,溶存臭氧气直接进行气泡化的可能性增高,反而可能导致反应效率降低。作为上述填充剂粒子,可以使用一直以来作为离子交换液相色谱法的填充剂粒子使用的粒子,可以列举例如二氧化硅、氧化锆等无机类粒子;由纤维素、聚氨基酸、壳聚糖等天然高分子构成的有机类粒子;由聚苯乙烯、聚丙烯酸酯等合成高分子构成的有机类粒子等。其中,由合成高分子构成的有机类粒子,通过调整交联度等可以得到很高的耐压性或耐溶胀性,因此优选。作为上述离子交换基团,没有特别限定,可以为阳离子交换基团,也可以为阴离子交换基团。作为阳离子交换基团,没有特别限定,可以列举例如羧基、磷酸基、磺酸基等。作为阴离子交换基团,没有特别限定,可以列举例如叔氨基、季氨基等。其中使用磺酸基时,经过长时间也可以维持性能,另外,对于血红蛋白Alc等的分析也可以得到很高的效果,因此优选。上述具有离子交换基团的填充剂粒子,可以通过在粒子表面引入离子交换基团、或者将包括具有离子交换基团的单体的单体混合物进行聚合制备粒子的方法,进行制备。作为上述在粒子表面引入离子交换基团的方法,没有特别的限定,可以使用目前公知的方法。可以列举例如为由高分子构成的有机类粒子时,制备由具有官能团的高分子构成的粒子后,在该官能团上使具有离子交换基团的化合物进行化学反应的方法等。作为上述将包括具有离子交换基团的单体的单体混合物进行聚合制备粒子的方法,可以列举例如将具有离子交换基团的单体与交联性单体混合,在聚合引发剂存在下进行聚合的方法等。另外,也可以使用以下方法如日本特公平8-7197号公报中记载的方法,在制备交联性聚合物粒子后,添加具有离子交换基团的单体,在聚合物粒子的表面附近使具有离子交换基团的单体进行聚合的方法;将(甲基)丙烯酸甲酯或(甲基)丙烯酸乙酯等聚合性酯化合物与交联性单体等混合,在聚合引发剂存在下进行聚合之后,水解处理得到的粒子,将酯化合物变换为阳离子交换基团的方法等。作为上述具有离子交换基团的填充剂粒子的平均粒径,没有特别限定,但优选的下限为0.1um,优选的上限为20ym。当低于0.1ym时,色谱柱内压力过高,引起分离不良;当超过20um时,色谱柱内的死区容积过大,引起分离不良。关于上述具有离子交换基团的填充剂粒子的粒度分布,粒径的CV值的优选上限为40%。当超过40%时,色谱柱内的死区容积过大,引起分离不良。更优选的上限为15%。在本发明中使用的臭氧水,溶存臭氧气浓度的下限为20ppm。当低于20ppm时,没有实施充分的亲水化处理,不能充分抑制蛋白质的非特异吸附。优选的下限为50ppm。另外,溶存臭氧气浓度的上限没有特别限定。这样高浓度的臭氧水可以通过以下方法进行制备,所述方法为..例如日本特开2001-330969号公报中所记载的那样,借助只透过气体而阻止液体透过的臭氧气透过膜,使原料水和臭氧气接触的方法等。通过本发明的离子交换液相色谱用填充剂的制造方法制造得到的离子交换液相色谱用填充剂,仅臭氧水直接接触的表面部分被亲水化,因此即使在水系介质中也不会发生溶胀或收縮,另外,也不会产生蛋白质等非特异吸附,因此可以进行极其准确的测定。另外,经过长时间也可以维持这样的性能,即使长期使用后保留时间或测定值的偏差也很少。另外,由于批间差异的保留时间或测定值的偏差也极少。通过本发明的离子交换液相色谱用填充剂的制造方法制造得到的离子交换液相色谱用填充剂,也是本发明之一。本发明的离子交换液相色谱用填充剂的水的接触角优选为60°以下。在此,接触角测定被用作评价以高分子材料为主的表面亲水性、疏水性的方法。水的接触角越小,判断亲水性越高。本发明中,需要充分抑制蛋白质等测定对象物质的非特异吸附,优选上述范围。更优选为5(T以下。通过本发明的离子交换液相色谱用填充剂的制造方法制造得到的离子交换液相色谱用填充剂,可以特别适用于糖化血红蛋白的分析。通过本发明的离子交换液相色谱用填充剂的制造方法制造得到的糖化血红蛋白分析用离子交换液相色谱用填充剂,也是本发明之一。另外,使用本发明的糖化血红蛋白分析用离子交换液相色谱用填充剂的糖化血红蛋白分析方法,也是本发明之一。具体而言,例如,将本发明的糖化血红蛋白分析用离子交换液相色谱用填充剂填充到公知的色谱柱内,然后,以预定的条件将洗脱液及测定样品送液到所得到的色谱柱,由此可以分析糖化血红蛋白。作为上述洗脱液,可以使用目前公知的洗脱液,例如,可以使用有机酸、无机酸、或者以它们的盐类作为成分的液体等。根据本发明,可以提供一种抑制在水系介质中的溶胀且对于水系介质的分散性优异的亲水性高分子微粒、可以有效抑制蛋白质等的非特异吸附的离子交换液相色谱用填充剂、使用了该离子交换液相色谱用填充剂的糖化血红蛋白的分析方法、可以长时间维持对溶胀、非特异吸附等的抑制效果的离子交换液相色谱用填充剂的制造方法、使用该离子交换液相色谱用填充剂的制造方法进行制造的离子交换液相色谱用填充剂、以及糖化血红蛋白分析用的离子交换液相色谱用填充剂。图1是将关于实施例3、比较例5的血红蛋白Alc测定中的血红蛋白类(Hb)回收率的结果用曲线表示的图。图2是将关于实施例4、比较例6、比较例7的血红蛋白Alc测定中的Hb回收率的结果用曲线表示的图。图3是将关于实施例6、比较例8、比较例9的血红蛋白Alc测定中的Hb回收率的结果用曲线表示的图。图4是将耐久性评价中血红蛋白Alc测定的测定值变动用曲线表示的图。图5是将关于实施例11、比较例1416的血红蛋白Alc测定中的血红蛋白类(Hb)回收率的结果用曲线表示的图。具体实施方式以下列举实施例对本发明更加详细进行说明,但本发明并不只限定于这些实施例。实施例(实施例O在带有搅拌机的反应器中,向3%聚乙烯醇(日本合成化学社制)水溶液中添加四甘醇二甲基丙烯酸酯(新中村化学社制)300g、三甘醇二甲基丙烯酸酯(新中村化学社制)100g及过氧化苯甲酰(年、乂夕M七学社制)1.0g的混合物。搅拌的同时进行加热,在氮气氛围中在8(TC下聚合1小时。将得到的聚合组合物用水和丙酮洗漆,由此得到高分子微粒。关于得到的高分子微粒,使用激光衍射式粒度分布测定装置进行测定,结果平均粒径为5um,CV值为14。/。。将得到的高分子微粒10g浸渍于溶存臭氧气浓度为110ppm的臭氧水300mL中,进行搅拌,同时使用可以照射含波长254nm的紫外线的点式UV照射装置(7M夕,7C/夕7社制UP-200G),从lcm的距离以照射强度95mW/cm^照射紫外线300秒,从而实施亲水化处理。紫外线照射后,使用离心分离机(日立制作所社制HimacCR20G)进行离心分离,除去上清液。重复该操作2次,实施亲水化处理,从而得到亲水性高分子微粒。臭氧水使用包括臭氧溶解组件的臭氧水制造系统(积水化学工业社制)进行制备,所述臭氧溶解组件,在具有内径15cmX长度20cm的圆柱形的外套内,容纳由全氟烷氧树脂构成的内径0.5mmX厚度0.04mmX长度350cm的中空管状臭氧气透过膜400根。(实施例2)在带有搅拌机的反应器中,向3%聚乙烯醇(日本合成化学社制)水溶液中添加二乙烯基苯(年、乂夕M七学社制)300g、苯乙烯(和光纯药社制)100g及过氧化苯甲酰(斧、乂夕'化学社制)l.Og的混合物。搅拌的同时进行加热,在氮气氛围中在8(TC下聚合1小时。将得到的聚合组合物用水和丙酮洗涤,由此得到高分子微粒。关于得到的高分子微粒,使用激光衍射式粒度分布测定装置进行测定,结果平均粒径为5um,CV值为13。/c)。以下与实施例1同样操作,进行通过臭氧水的亲水化处理,由此制作亲水性高分子微粒。(比较例1)除了没有进行通过臭氧水的亲水化处理之外,与实施例1同样操作,制造高分子微粒。(比较例2)除了没有进行通过臭氧水的亲水化处理之外,与实施例2同样操作,制造高分子微粒。(比较例3)在带有搅拌机的反应器中,向3%聚乙烯醇(日本合成化学社制)水溶液中添加四甘醇二甲基丙烯酸酯(新中村化学社制)100g、聚乙二醇甲基丙烯酸酯(日本油脂社制,乙二醇链n-4)400g、及过氧化苯甲酰(年〉夕'化学社制)l.Og的混合物。搅拌的同时进行加热,在氮气氛围中在80'C下聚合1小时。将得到的聚合组合物用水和丙酮洗涤,由此得到高分子微粒。关于得到的高分子微粒,使用激光衍射式粒度分布测定装置进行测定,结果平均粒径为10ym,CV值为14n/。。<评价>关于实施例l、2以及比较例13中得到的(亲水性)高分子微粒,进行以下评价。结果如表l所示。(1)溶胀度测定关于实施例1、2以及比较例13中得到的(亲水性)高分子微粒,进行溶胀度测定。测定使用粒度分布仪Accusizer780(ParticleSizingSystem社制)。在干燥的(亲水性)高分子微粒lg中加入纯水或丙酮30mL,充分搅拌,照射超声波15分钟,得到分散液。分散后,至达到平衡溶胀在25"C下放置240小时,测定水中粒径Dw与丙酮中的粒径DA,使Dw/Da作为溶胀度。(2)接触角测定关于实施例1、2以及比较例13中得到的(亲水性)高分子微粒,进行接触角测定。测定使用自动接触角计(协和界面科学公司制,Dropmaster500)进行。将干燥的(亲水性)高分子微粒在25mmX75mm载玻片上贴附的双面带上无间隙排列成单层,之后用空气喷涂除去剩余的粒子。由此,将高分子微粒固定在双面带上。该状态用显微镜进行确认。25X:的条件下,制作纯水1UL的液滴,使其着液在载玻片上固定的高分子微粒上,通过e/2法计算出接触角。需要说明的是,当接触角小于90°时,着液后的水滴容易润湿,因此,着液后的接触角经时变小。使用着液后0.5秒后的接触角值进行评价。(3)分散性评价关于实施例1、2以及比较例13中得到的(亲水性)高分子微粒,进行分散性评价。评价方法为在25'C的条件下,在干燥的(亲水性)高分子微粒lg中加入纯水30mL后,充分搅拌,照射超声波15分钟之后,放置30分钟。其后,将轻微搅拌的分散液少量滴加在载玻片上,盖上盖玻片,进行显微镜观察,根据以下基准进行评价。〇无凝聚的粒子。X:有凝聚的粒子。表l<table>tableseeoriginaldocumentpage26</column></row><table>实施例1、2的溶胀度、接触角均比较小,因此,水根据环境变化的形状变化小,并且由于亲水性高,因此分散性也良好。相对于此,比较例1、2的溶胀度小,但接触角大。因此,水根据环境的形状变化小,但由于疏水性高,因此分散性差。比较例3由于增加了亲水性单体的含量,故溶胀度大,接触角小。因此,水根据环境变化的变化大,但由于亲水性高,因此分散性良好。(实施例3)在带有搅拌机的反应器中,向3%聚乙烯醇(日本合成化学社制)水溶液中添加四甘醇二甲基丙烯酸酯(新中村化学社制)300g、三甘醇二甲基丙烯酸酯(新中村化学社制)100g、及过氧化苯甲酰(年、乂夕'化学社制)l.Og的混合物。搅拌的同时进行加热,在氮气氛围中在8(TC聚合1小时。之后,在离子交换水中溶解2-甲基丙烯酰胺-2-甲基丙烷磺酸(东亚合成化学社制)100g、聚乙二醇甲基丙烯酸酯(日本油脂社制,乙二醇链11=4)100g作为具有离子交换基团的单体。将该混合物添加到相同反应器中,进行同样操作,搅拌的同时在氮气氛围中在80'C聚合2小时。将得到的聚合组合物用水和丙酮洗涤,由此得到具有离子交换基团的亲水性的被覆聚合物粒子(具有离子交换基团的基材微粒)。关于得到的被覆聚合物粒子,使用激光衍射式粒度分布测定装置进行测定,结果平均粒径为8nm,CV值为14。/。。将得到的被覆聚合物粒子10g浸渍于溶存臭氧气浓度为100ppm的臭氧水300mL中,进行搅拌30分钟,搅拌结束后,使用离心分离机(日立制作所社制HimacCR20G)进行离心分离,除去上清液。重复该操作2次,实施亲水化处理,从而得到离子交换液相色谱用填充剂。臭氧水使用包括臭氧溶解组件的臭氧水制造系统(积水化学工业社制)进行制备,所述臭氧溶解组件,在具有内径15cmX长度20cm的圆柱形的外套内,容纳由全氟垸氧树脂构成的内径0.5mmX厚度0.04mmX长度350cm的中空管状臭氧气透过膜400根。(比较例4)在带有搅拌机的反应器中,向3%聚乙烯醇(日本合成化学社制)水溶液中添加乙二醇二甲基丙烯酸酯(新中村化学社制)240g、甲基丙烯酸正丁酯(共荣社化学社制)160g、及过氧化苯甲酰(年、乂夕'化学社制)l.Og的混合物。搅拌的同时进行加热,在氮气氛围中在8(TC聚合1小时。之后,在离子交换水中溶解2-甲基丙烯酰胺-2-甲基丙烷磺酸(东亚合成化学社制)100g、聚乙二醇甲基丙烯酸酯(日本油脂社制,乙二醇链11=4)100g作为具有离子交换基团的单体。将该混合物添加到相同反应器中,进行同样操作,搅拌的同时在氮气氛围中在8(TC聚合2小时。将得到的聚合组合物用水和丙酮洗涤,由此得到具有离子交换基团的亲水性的被覆聚合物粒子(具有离子交换基团的基材微粒)。关于得到的被覆聚合物粒子,使用激光衍射式粒度分布测定装置进行测定,结果平均粒径为8um,CV值为16c/。。将得到的被覆聚合物粒子10g进行与实施例3同样的操作,进行臭氧水处理,得到离子交换液相色谱用填充剂。(比较例5)除了没有进行臭氧水处理之外,与实施例3同样操作,得到被覆聚合物粒子、以及离子交换液相色谱用填充剂。<评价>关于实施例3以及比较例45中得到的离子交换液相色谱用填充剂,进行以下评价。结果如表2、图1所示。(1)溶胀度测定关于实施例3以及比较例4、5中得到的离子交换液相色谱用填充剂,进行溶胀度测定。测定使用粒度分布仪Accusizer780(ParticleSizingSystem社制)。在干燥的离子交换液相色谱用填充剂lg中加入纯水或丙酮30mL,充分搅拌,照射超声波15分钟,得到分散液。分散后,至达到平衡溶胀在25'C下放置240小时,测定水中粒径Dw与丙酮中的粒径DA,使DW/DA作为溶胀度。(2)接触角测定关于实施例3以及比较例4、5中得到的离子交换液相色谱用填充剂,进行接触角测定。测定使用自动接触角计(协和界面科学公司制,Dropmaster500)进行。将干燥的离子交换液相色谱用填充剂在25mmX75mm载玻片上贴附的双面带上无间隙排列,之后用空气喷涂除去剩余的粒子。由此,将离子交换液相色谱用填充剂固定在双面带上。该状态用显微镜进行确认。25'C的条件下,制作纯水IPL的液滴,使其着液在载玻片上固定的离子交换液相色谱用填充剂上,通过9/2法计算出接触角。需要说明的是,当接触角小于90。时,着液后的水滴容易润湿,因此,着液后的接触角经时变小。使用着液后0.5秒后的接触角值进行评价。(3)压力变动评价将实施例3以及比较例4、5中得到的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。向填充离子交换液相色谱用填充剂后的色谱柱中通液pH不同的洗脱液,测定此时色谱柱的压力变动、以及至色谱柱压力稳定所需要的时间(平衡时间)。具体将50mM磷酸缓冲液(pH5.7:A液)通液30分钟。色谱柱压力达到一定后,通液300mM磷酸缓冲液(pH8.5:B液),确认色谱柱压力的变动。(4)基于血红蛋白Alc测定的Hb回收率的评价将实施例3以及比较例5中得到的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。另一方面,将glycoHbcontroUevel2(国际试药制,参考数值10.4±0.5%)用200uL注射用水溶解后,制备用稀释液(含有0.1%卜!J卜^X-100的磷酸缓冲液(pH7.0))稀释至100倍的溶液,作为测定样品。使用得到的色谱柱,根据下述条件用色谱峰面积对测定样品中的血红蛋白Ale量、以及血红蛋白Alc与非糖化血红蛋白的合计量进行评价。测定以10试样连续进行,以后一半5试样的血红蛋白Alc峰的面积值、以及血红蛋白Alc峰与非糖化血红蛋白峰的面积值的平均值作为测定值。图1是将实施例3中得到的血红蛋白Alc峰面积、以及血红蛋白Alc与非糖化血红蛋白峰的面积值合计设定为100%,对实施例3、比较例5中得到的各峰面积进行比较。系统输液泵LC-9A(岛津制作所社制)自动进样器ASU-420(积水化学工业社制)检测器SPD-6AV(岛津制作所社制)洗脱液第l液170mM磷酸缓冲液(pH5.7)第2液300mM磷酸缓冲液(pH8.5)洗脱法03分钟用第1液洗脱、33.2分钟用第2液洗脱、3.24分钟用第1液洗脱流速1.0mL/分钟检测波长415nm进样量10uL表2<table>tableseeoriginaldocumentpage29</column></row><table>变动小,另外,也完全没有血红蛋白成分的非特异吸附。另外,在实施例3中,形成含有离子交换基团的亲水性聚合物层,并且,通过用臭氧水进行亲水化处理,可以成为水的接触角为60。以下的表面。另一方面,比较例4为交联度低的填充剂,因此溶胀度大,色谱柱内压力变动非常大。由于接触角小,因此认为是可以抑制血红蛋白的非特异吸附的填充剂,但色谱柱内压力变动过大,不能进行评价(4)。因此,控制溶胀度在一定范围内非常重要。比较例5的填充剂的交联度与实施例3同样,因此溶胀度小,色谱柱内压力变动也小。但是,由于接触角大,因此容易引起血红蛋白成分的非特异吸附。因此,控制接触角在一定范围内,与溶胀度同样非常重要。(实施例4)在带有搅拌机的反应器中,向3%聚乙烯醇(日本合成化学社制)水溶液中添加四甘醇二甲基丙烯酸酯(新中村化学社制)300g、三甘醇二甲基丙烯酸酯(新中村化学社制)100g、及过氧化苯甲酰(年〉夕'化学社制)l.Og的混合物。搅拌的同时进行加热,在氮气氛围中在8(TC聚合1小时。之后,在离子交换水中溶解2-甲基丙烯酰胺-2-甲基丙垸磺酸(东亚合成化学社制)100g、聚乙二醇甲基丙烯酸酯(日本油脂社制,乙二醇链n-4)100g作为具有离子交换基团的单体。将该混合物添加到相同反应器中,进行同样操作,搅拌的同时在氮气氛围中在80。C聚合2小时。将得到的聚合组合物用水和丙酮洗涤,由此得到具有离子交换基团的亲水性的被覆聚合物粒子。关于得到的被覆聚合物粒子,使用激光衍射式粒度分布测定装置进行测定,结果平均粒径为8um,CV值为14。/。。将得到的被覆聚合物粒子10g浸渍于溶存臭氧气浓度为100ppm的臭氧水300mL中,进行搅拌30分钟,搅拌结束后,使用离心分离机(日立制作所社制HimacCR20G)进行离心分离,除去上清液。重复该操作2次,实施亲水化处理,从而得到离子交换液相色谱用填充剂。臭氧水使用包括臭氧溶解组件的臭氧水制造系统(积水化学工业社制)进行制备,所述臭氧溶解组件,在具有内径15cmX长度20cm的圆柱形的外套内,容纳由全氟垸氧树脂构成的内径0.5mmX厚度0.04mmX长度350cm的中空管状臭氧气透过膜400根。(实施例5)除了将聚乙二醇甲基丙烯酸酯置换为甲氧基聚乙二醇甲基丙烯酸酯(日本油脂社制,乙二醇链11=4)之外,与实施例4同样操作,得到被覆聚合物粒子、以及离子交换液相色谱用填充剂。(比较例6)除了没有进行臭氧水处理之外,与实施例4同样操作,得到被覆聚合物粒子、以及离子交换液相色谱用填充剂。(比较例7)在与实施例4同样操作得到的被覆聚合物粒子中,实施蛋白质的涂布处理代替臭氧水处理。将在磷酸缓冲液(pH5.7)中溶解的0.2%BSA(牛血清白蛋白)200mL加入到上述填充剂粒子10g中,超声波处理2分钟,在60'C的恒温水槽中缓慢搅拌24小时之后,从恒温水槽中取出,放置至室温。之后,离心分离除去上清液,向其中添加磷酸缓冲液(pH8.5)200mL,再次通过离心分离除去上清液。向其中添加磷酸缓冲液(pH5.7)200mL,再次通过离心分离除去上清液。得到通过物理吸附进行蛋白质涂布的离子交换液相色谱用填充剂。<评价>关于实施例45以及比较例67中得到的离子交换液相色谱用填充剂,进行以下评价。(1)接触角测定关于实施例45以及比较例67中得到的被覆聚合物粒子,进行接触角测定。测定使用自动接触角计(协和界面科学公司制,Dropmaster500)进行。将干燥的被覆聚合物粒子在载玻片上贴附的双面带上排列均匀,之后用空气喷涂除去剩余的粒子。由此,将被覆聚合物粒子1层分固定在双面带上。该状态用显微镜进行确认。制作离子交换水1"L的液滴,使其着液在载玻片上固定的被覆聚合物粒子上,通过e/2法计算出接触角。需要说明的是,当接触角小于90°日寸,着液后的水滴容易润湿,因此,着液后的接触角经时变小。因此使用着液后0.5秒后的接触角值进行评价。结果如表3所示。(2)基于血红蛋白Alc测定的Hb回收率的评价将实施例4以及比较例6、7中制作的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。另一方面,将glycoHbcontrollevel2(国际试药制,参考数值10.4±0.5%)用200uL注射用水溶解后,制备用稀释液(含有0.1%卜y卜yX-100的磷酸缓冲液(pH7.0))稀释至100倍的溶液,作为测定样品。使用得到的色谱柱,根据下述条件用色谱峰面积对测定样品中的血红蛋白Alc量、以及血红蛋白Alc与非糖化血红蛋白的合计量进行评价。测定以10试样连续进行,以其后一半5试样的血红蛋白Alc峰的面积值、以及血红蛋白Alc峰与非糖化血红蛋白峰的面积值的平均值作为测定值。结果如表4、图2所示。图2是将实施例4中得到的血红蛋白Alc峰面积、以及血红蛋白Alc与非糖化血红蛋白的峰面积值合计设定为100%,对比较例6、比较例7中得到的各峰面积进行比较。系统输液泵LC-9A(岛津制作所社制)自动进样器ASU-420(积水化学工业社制)检测器SPD-6AV(岛津制作所社制)洗脱液第l液170mM磷酸缓冲液(pH5.7)第2液300mM磷酸缓冲液(pH8.5)洗脱法03分钟用第1液洗脱、33.2分钟用第2液洗脱、3.24分钟用第1液洗脱流速1.0mL/分钟检测波长415nm进样量10UL(3)血红蛋白Alc测定中的测定值变动的评价(耐久性评价)将实施例4、比较例6及比较例7中制作的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。另一方面,将glycoHbcontrollevel2(国际试药制,参考数值10.4±0.5%)用200uL注射用水溶解后,制备用稀释液(含有0.1%卜y卜>X-100的磷酸缓冲液(pH7.0))稀释至100倍的溶液,作为测定样品。另外,作为负荷样品,健康人血进行NaF采血,用溶血稀释液(含有0.1重量%卜y卜乂X-100的磷酸缓冲液(pH7.0))进行溶血,使用稀释至150倍的溶液。测定样品与负荷样品一起进行约1000试样的测定,以任意间隔连续测定了测定样品10试样,使用其平均值进行评价。根据下述条件对测定样品中的血红蛋白Alc量及非糖化血红蛋白量进行测定,求出相对于血红蛋白Alc与非糖化血红蛋白的合计的血红蛋白Alc的比例(血红蛋白Alc值(%))。另外,也测定血红蛋白Alc的保留时间。结果如表5所示。系统输液泵LC-9A(岛津制作所社制)自动进样器ASU-420(积水化学工业社制)检测器SPD-6AV(岛津制作所社制)洗脱液第l液170mM磷酸缓冲液(pH5.7)第2液300mM磷酸缓冲液(pH8.5)洗脱法03分钟用第1液洗脱、33.2分钟用第2液洗脱、3.24分钟用第1液洗脱流速1.0mL/分钟检测波长415nm进样量10UL表3接触角实施例4400实施例5470比较例6650比较例735。表4<table>tableseeoriginaldocumentpage34</column></row><table>表5<table>tableseeoriginaldocumentpage34</column></row><table>如表3所示,在实施例4、5中,形成了包含离子交换基团的亲水性聚合物层,并且通过用臭氧水进行亲水化处理,可以得到使水的接触角为60°以下的表面。另外,在比较例7中,通过用作为亲水性化合物的蛋白质进行涂布,也可以得到使水的接触角为60°以下的表面。在比较例6中,与实施例4比较接触角明显变大。如图2所示,其结果与实施例4比较,接触角大的比较例6中,血红蛋白Alc峰的面积值、以及血红蛋白Alc峰与非糖化血红蛋白峰的面积值合计降低。另外,接触角小的比较例7中,血红蛋白Alc峰的面积值、以及血红蛋白Alc峰与非糖化血红蛋白峰的面积值合计,与实施例4水平相同。即,接触角为60°以上时,显示血红蛋白Alc或其他的血红蛋白成分吸附在填充剂粒子表面。如表4所示可知,使用实施例4中制作的离子交换液相色谱用填充剂时,在1000试样测定之间,血红蛋白Alc值(%)的变动、保留时间的变动均非常小,能够准确测定。另一方面,在比较例6的情况下,血红蛋白Alc值大幅变动。认为这是由于血红蛋白Alc或其他的血红蛋白成分产生非特异吸附引起的。另外,比较例7的情况下,保留时间变动,认为这是由于为了提高亲水性而进行涂布的蛋白质在测定中脱离引起的。(实施例6)在带有搅拌机的反应器中,向3%聚乙烯醇(日本合成化学社制)水溶液中添加四甘醇二甲基丙烯酸酯(新中村化学社制)300g、三甘醇二甲基丙烯酸酯(新中村化学社制)100g、及过氧化苯甲酰(年乂夕M七学社制)l.Og的混合物。搅拌的同时进行加热,在氮气氛围中在8(TC聚合1小时。之后,在离子交换水中溶解2-甲基丙烯酰胺-2-甲基丙垸磺酸(东亚合成化学社制)100g、聚乙二醇甲基丙烯酸酯(日本油脂社制,乙二醇链n-4)100g作为具有离子交换基团的单体。将该混合物添加到相同反应器中,进行同样操作,搅拌的同时在氮气氛围中在8(TC聚合2小时。将得到的聚合组合物用水和丙酮洗涤,由此得到具有离子交换基团的亲水性的被覆聚合物粒子。关于得到的被覆聚合物粒子,使用激光衍射式粒度分布测定装置进行测定,结果平均粒径为8um,CV值为14。/c)。将得到的被覆聚合物粒子10g浸渍于溶存臭氧气浓度为100ppm的臭氧水300mL中,进行搅拌30分钟,搅拌结束后,使用离心分离机(日立制作所社制HimacCR20G)进行离心分离,除去上清液。重复该操作2次,实施亲水化处理,从而得到离子交换液相色谱用填充剂。臭氧水使用包括臭氧溶解组件的臭氧水制造系统(积水化学工业社制)进行制备,所述臭氧溶解组件,在具有内径15cmX长度20cm的圆柱形的外套内,容纳由全氟烷氧树脂构成的内径0.5mmX厚度0.04mmX长度350cm的中空管状臭氧气透过膜400根。(实施例7)除了将聚乙二醇甲基丙烯酸酯置换为甲氧基聚乙二醇甲基丙烯酸酯(日本油脂社制,乙二醇链11=4)之外,与实施例6同样操作,得到被覆聚合物粒子、以及离子交换液相色谱用填充剂。(实施例8)除了将聚乙二醇甲基丙烯酸酯置换为甲基丙烯酸甘油酯(日本油脂社制)之外,与实施例6同样操作,得到被覆聚合物粒子、以及离子交换液相色谱用填充剂。(实施例9)除了未添加聚乙二醇甲基丙烯酸酯之外,与实施例6同样操作,得到被覆聚合物粒子、以及离子交换液相色谱用填充剂。(比较例8)除了没有进行臭氧水处理之外,与实施例6同样操作,得到被覆聚合物粒子、以及离子交换液相色谱用填充剂。(比较例9)除了使用双氧水实施氧化处理代替臭氧水处理之外,与实施例6同样操作,得到被覆聚合物粒子、以及离子交换液相色谱用填充剂。使用双氧水的氧化处理方法如下所示。将得到的被覆聚合物粒子10g浸渍于1%的双氧水300mL中,进行搅拌30分钟。需要说明的是,1%的双氧水使用30。%的双氧水(和光纯药工业社制)进行制备。搅拌结束后,使用离心分离机(日立制作所社制HimacCR20G)进行离心分离,除去上清液。重复该操作2次,得到离子交换液相色谱用填充剂。<评价>关于实施例69以及比较例89中得到的离子交换液相色谱用填充剂,进行以下评价。(4)由亲水性聚合物构成的层的厚度测定关于实施例69以及比较例89中制作的具有离子交换基团的亲水性被覆聚合物粒子,根据日本特公平8-7197号公报中公开的"被覆层的平均厚度的测定方法",对由亲水性聚合物构成的层的厚度进行测定。其结果确认得到的被覆聚合物粒子的被覆层厚度为510nm,在优选范围l30nm的范围内。(5)接触角测定关于实施例69以及比较例89中得到的被覆聚合物粒子,进行接触角测定。测定使用协和界面科学公司制造的Dropmaster500进行。将干燥的被覆聚合物粒子在载玻片上贴附的双面带上排列均匀,之后用空气喷涂除去剩余的粒子。由此,将被覆聚合物粒子l层分固定在双面带上。该状态用显微镜进行确认。制作离子交换水1PL的液滴,使其着液在载玻片上固定的被覆聚合物粒子上,通过e/2法计算出接触角。需要说明的是,当接触角小于90°时,着液后的水滴容易润湿,因此,着液后的接触角经时变小。因此使用着液后0.5秒后的接触角值进行评价。结果如表6所示。(6)通过红蛋白Alc测定的Hb回收率的评价将实施例6以及比较例8、9中制作的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。另一方面,将glycoHbcontrollevel2(国际试药制,参考数值10.4±0.5%)用200uL注射用水溶解后,制备用稀释液(含有0.1%卜U卜>X-100的磷酸缓冲液(pH7.0))稀释至100倍的溶液,作为测定样品。使用得到的色谱柱,根据下述条件用色谱峰面积对测定样品中的血红蛋白Alc量、以及血红蛋白Alc与非糖化血红蛋白的合计量进行评价。测定以10试样连续进行,以其后一半5试样的血红蛋白Alc峰的面积值、以及血红蛋白Alc峰与非糖化血红蛋白峰的面积值的平均值作为测定值。结果如表7、图3所示。图3是将实施例6中得到的血红蛋白Alc峰面积、以及血红蛋白Alc与非糖化血红蛋白峰的面积值合计设定为100%,对比较例8、9中得到的各峰面积进行比较。系统输液泵LC-9A(岛津制作所社制)自动进样器ASU-420(积水化学工业社制)检测器SPD-6AV(岛津制作所社制)洗脱液第l液170mM磷酸缓冲液(pH5.7)第2液300mM磷酸缓冲液(pH8.5)洗脱法03分钟用第1液洗脱、33.2分钟用第2液洗脱、3.24分钟用第1液洗脱流速1.0mL/分钟检测波长415nm进样量10UL(7)血红蛋白Alc测定中的测定值变动的评价(耐久性评价)将实施例6、比较例8、9中制作的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。另一方面,将glycoHbcontrollevel2(国际试药制,参考数值10.4±0.5%)用200uL注射用水溶解后,制备用稀释液(含有0.1%卜y卜yX-100的磷酸缓冲液(pH7.0))稀释至100倍的溶液,作为测定样品。另外,作为负荷样品,对健康人血进行NaF采血,用溶血稀释液(含有0.1重量%卜y卜yX-100的磷酸缓冲液(pH7.0))进行溶血,使用稀释至150倍的溶液。测定样品与负荷样品一起进行约1000试样的测定,以任意间隔连续测定测定样品10试样,使用其平均值进行评价。根据下述条件对测定样品中的血红蛋白Alc量及非糖化血红蛋白量进行测定,求出相对于血红蛋白Alc与非糖化血红蛋白的合计的血红蛋白Alc的比例(血红蛋白Alc值(%))。结果如表8、图4所示。系统输液泵LC-9A(岛津制作所社制)自动进样器ASU-420(积水化学工业社制)检测器SPD-6AV(岛津制作所社制)洗脱液第l液170mM磷酸缓冲液(pH5.7)第2液300mM磷酸缓冲液(pH8.5)洗脱法03分钟用第1液洗脱、33.2分钟用第2液洗脱、3.24分钟用第1液洗脱流速1.0mL/分钟<table>tableseeoriginaldocumentpage39</column></row><table>如表6所示,在实施例69中,形成了包含离子交换基团的亲水性聚合物层,并且通过用臭氧水进行亲水化处理,可以得到使水的接触角为60。以下的表面。另外,实施例6由于没有添加不包含离子交换基团的亲水性单体,疏水性聚合物的露出面增大,由此接触角也有所增大。在比较例8、9中,与实施例6比较接触角明显变大。由比较例9的结果可知,使用双氧水的氧化处理方法不充分。根据表7、图3,得到结果为与实施例6比较,比较例8、9中血红蛋白Alc峰的面积值、以及血红蛋白Alc峰与非糖化血红蛋白峰的面积值合计均降低。即,显示血红蛋白Alc或其他的血红蛋白成分吸附在填充剂粒子表面。根据表8、图4可知,使用实施例6中制作的离子交换液相色谱用填充剂时,在1000试样测定之间,血红蛋白Alc值的变动非常小,能够准确测定。另一方面,可知使用比较例8、9中制作的离子交换液相色谱用填充剂时,至初期300试样测定,血红蛋白Alc值(X)大幅变动。认为这是由于评价(6)中观察到的血红蛋白Alc或其他的血红蛋白成分产生非特异吸附引起的。(实施例10)(1)具有离子交换基团的填充剂粒子的制备将2-丙烯酰胺-2-甲基丙烷磺酸200g、二乙二醇二甲基丙烯酸酯400g、2-羟基-l,3-二甲基丙烯酰氧丙垸80g、以及苯甲酰过氧化物1.5g进行混合,使其分散在2.5L的4重量%聚乙烯醇水溶液中。将其在氮气氛围下进行搅拌,同时升温,8(TC下聚合8小时后,进行洗涤、分级,得到具有磺酸基的填充剂粒子。关于得到的填充剂粒子,使用激光衍射式粒度分布测定装置进行测定,结果平均粒径为8um,CV值为14%。(2)通过臭氧水的亲水化处理将得到的填充剂粒子10g浸渍于溶存臭氧气浓度为150ppm的臭氧水300mL中,进行搅拌,同时滴加1N的NaOH(和光纯药工业社制),调节溶液pH至ll.O。调节pH后,迅速在设定水槽内的温度为5CTC的超声波照射装置(7X'7y社制USD-2)内照射频率为28kHz的超声波30分钟。照射超声波后,使用离心分离机(日立制作所社制HimacCR20G)进行离心分离,除去上清液。重复该操作2次,实施亲水化处理,从而得到离子交换液相色谱用填充剂。臭氧水使用包括臭氧溶解组件的臭氧水制造系统(积水化学工业社制)进行制备,所述臭氧溶解组件,在具有内径15cmX长度20cm的圆柱形的外套内,容纳由全氟烷氧树脂构成的内径0.5mmX厚度0.04mmX长度350cm的中空管状臭氧气透过膜400根。(比较例IO)不进行通过臭氧水的亲水化处理,而直接将实施例10中制造的具有磺酸基的填充剂粒子作为离子交换液相色谱用填充剂。(比较例11)除了在通过臭氧水进行的亲水化处理中将溶存臭氧气浓度设定为10ppm以外,与实施例10同样操作,进行亲水化处理,得到离子交换液相色谱用填充剂。(比较例12)除了在通过臭氧水进行的亲水化处理中不进行pH调节和超声波照射的操作以外,与实施例10同样操作,进行亲水化处理,得到离子交换液相色谱用填充剂。(比较例13)将在磷酸缓冲液(pH5.7)中溶解的0.2%牛血清白蛋白(BSA)200mL加入到实施例10中制备的具有磺酸基的填充剂粒子10g中,超声波处理2分钟,在8CTC的恒温水槽中缓慢搅拌24小时之后,从恒温水槽中取出,放置至室温。之后,离心分离除去上清液,向其中添加磷酸缓冲液(pH8.5)200mL,再次通过离心分离除去上清液。之后,添加磷酸缓冲液(pH5.7)200mL,再次通过离心分离除去上清液。得到通过物理吸附固定BSA的离子交换液相色谱用填充剂。<评价>关于实施例10以及比较例1013中得到的离子交换液相色谱用填充剂,进行以下评价。(1)血红蛋白Alc测定中的初期测定值的评价将实施例10以及比较例1012中制作的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。另一方面,将glycoHbcontrollevel2(国际试药制,参考数值10.4±0.5%)用200^L注射用水溶解后,制备用稀释液(含有0.1%卜y卜yX-100的磷酸缓冲液(pH7.0))稀释至100倍的溶液,作为测定样品。使用得到的色谱柱,根据下述条件对测定样品中的血红蛋白Alc量、以及非糖化血红蛋白量进行测定。求出相对于血红蛋白Alc与非糖化血红蛋白的合计的血红蛋白Alc的比例(血红蛋白Alc值(%))。测定以10试样连续进行,以其后一半5试样的平均值作为测定值。结果如表9所示。系统输液泵LC-9A(岛津制作所社制)自动进样器ASU-420(积水化学工业社制)检测器SPD-6AV(岛津制作所社制)洗脱液第1液170mM磷酸缓冲液(pH5.7)第2液300mM磷酸缓冲液(pH8.5)洗脱法03分钟用第1液洗脱、33.2分钟用第2液洗脱、3.24分钟用第1液洗脱流速1.0mL/分钟检测波长415nm进样量10"L表9<table>tableseeoriginaldocumentpage42</column></row><table>根据表9,使用实施例10中制作的离子交换液相色谱用填充剂时,能够极其准确进行测定。相对于此,使用比较例10中制作的离子交换液相色谱用填充剂时,得到比预想值低很多的血红蛋白Alc值(%)。这是由于使用比较例10中制作的离子交换液相色谱用填充剂时血红蛋白Alc的比例特别地显著降低的原因,即,表示血红蛋白成分在填充剂粒子表面进行非特异吸附。另外,使用比较例11中制作的离子交换液相色谱用填充剂时,虽然与比较例10相比有所改善,但得到比预想值低的血红蛋白Alc值(%),即,在溶存臭氧气浓度为10ppm时,显示不能得到充分的亲水化效果。另外,使用比较例12中制作的离子交换液相色谱用填充剂时,得到与实施例IO相当的血红蛋白Alc值(%)。但是,与实施例10比较可知,计算出血红蛋白Alc值(%)的血红蛋白Alc量和非糖化血红蛋白量分别降低约10%。因此,即使血红蛋白Alc值(%)相当,也意味着血红蛋白成分非特异吸附在填充剂表面。(2)血红蛋白Alc测定中的测定值变动的评价(耐久性评价)将实施例10、比较例13中制作的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。另一方面,将glycoHbcontrollevel2(国际试药制,参考数值10.4±0.5%)用200uL注射用水溶解后,制备用稀释液(含有0.1%卜i;卜yX-100的磷酸缓冲液(pH7.0))稀释至100倍的溶液,作为测定样品。另外,作为负荷样品,对健康人血进行NaF采血,用溶血稀释液(含有0.1重量%卜y卜^X-100的磷酸缓冲液(pH7.0))进行溶血,使用稀释至150倍的溶液,l天测定300试样。使用各负荷试样数测定后的色谱柱,根据下述条件对测定样品中的血红蛋白Alc量及非糖化血红蛋白量进行测定。求出相对于血红蛋白Alc与非糖化血红蛋白的合计的血红蛋白Alc的比例(血红蛋白Alc值(%))。测定以10试样连续进行,以其平均值作为测定值。另外,也测定血红蛋白Alc的保留时间。结果如表10所示。系统输液泵LC-9A(岛津制作所社制)自动进样器ASU-420(积水化学工业社制)检测器SPD-6AV(岛津制作所社制)洗脱液第l液170mM磷酸缓冲液(pH5.7)第2液300mM磷酸缓冲液(pH8.5)洗脱法03分钟用第1液洗脱、33.2分钟用第2液洗脱、3.24分钟用第1液洗脱流速1.0mL/分钟检测波长415nm进样量10UL表10<table>tableseeoriginaldocumentpage44</column></row><table>根据表10,判断使用实施例10中制作的离子交换液相色谱用填充剂时,即使在进行4500试样的负荷试验之后,血红蛋白Alc的保留时间也几乎不变化,能够得到准确的血红蛋白Alc值(%)。另一方面,使用比较例13中制作的离子交换液相色谱用填充剂时,随着负荷试样数增加,存在血红蛋白Alc的保留时间变化的倾向,得到的血红蛋白Alc值(%)与实施例10的情况相比,偏差也比更大。(实施例11)(1)具有离子交换基团的填充剂粒子的制备在带有搅拌机的反应器中,向3%聚乙烯醇(日本合成化学社制)水溶液中添加四甘醇二甲基丙烯酸酯(新中村化学社制)300g、三甘醇二甲基丙烯酸酯(新中村化学社制)100g、及过氧化苯甲酰(年、乂夕'化学社制)l.Og的混合物。搅拌的同时进行加热,在氮气氛围中在80'C聚合1小时。之后,在离子交换水中溶解2-甲基丙烯酰胺-2-甲基丙烷磺酸(东亚合成化学社制)100g、聚乙二醇甲基丙烯酸酯(日本油脂社制,乙二醇链n-4)100g作为具有离子交换基团的单体。将该混合物添加到相同反应器中,同样进行操作,搅拌的同时在氮气氛围中在8(TC聚合2小时。将得到的聚合组合物用水和丙酮洗涤,由此得到具有磺酸基作为离子交换基团的填充剂粒子。关于得到的填充剂粒子,使用激光衍射式粒度分布测定装置进行测定,结果平均粒径为8um,CV值为14n/。。(2)通过臭氧水进行的亲水化处理将得到的填充剂粒子10g浸渍于溶存臭氧气浓度为130ppm的臭氧水300mL中,进行搅拌,同时使用可以照射包括波长254nm的紫外线的点式UV照射装置(T^7,:7Y、;/夕7社制造的UP-200G),从lcm的距离以照射强度95mW/cm^照射紫外线300秒,从而实施亲水化处理。紫外线照射后,使用离心分离机(日立制作所社制HimacCR20G)进行离心分离,除去上清液。重复该操作2次,实施亲水化处理,从而得到离子交换液相色谱用填充剂。臭氧水使用包括臭氧溶解组件的臭氧水制造系统(积水化学工业社制)进行制备,所述臭氧溶解组件,在具有内径15cmX长度20cm的圆柱形的外套内,容纳由全氟烷氧树脂构成的内径0.5mmX厚度0.04mmX长度350cm的中空管状臭氧气透过膜400根。(比较例14)不进行通过臭氧水的亲水化处理,而直接将实施例11中制造的具有磺酸基作为离子交换基团的填充剂粒子,作为离子交换液相色谱用填充剂。(比较例15)的亲水化处理中将溶存臭氧气浓度设定为10ppm以外,与实施例11同样操作,进行亲水化处理,得到离子交换液相色谱用填充剂。(比较例16)除了在通过臭氧水进行的亲水化处理中不进行基于加速氧化法的处理以外,与实施例11同样操作,进行亲水化处理,得到离子交换液相色谱用填充剂。(比较例17)将在磷酸缓冲液(pH5.7)中溶解的0.2重量%牛血清白蛋白(BSA)200mL加入到实施例11中制备的具有磺酸基作为离子交换基团的填充剂粒子10g中,超声波处理2分钟,在80'C的恒温水槽中缓慢搅拌24小时之后,从恒温水槽中取出,放置至室温。之后,离心分离除去上清液,向其中添加磷酸缓冲液(pH8.5)200mL,再次通过离心分离除去上清液。之后,添加磷酸缓冲液(pH5.7)200mL,再次通过离心分离除去上清液。得到通过物理吸附固定BSA的离子交换液相色谱用填充剂。<评价>关于实施例11以及比较例1417中得到的离子交换液相色谱用填充剂,进行以下评价。结果如表1113所示。(3)接触角测定关于实施例11以及比较例14、16中得到的填充剂粒子,进行接触角测定。观l淀使用协和界面科学公司制造的Dropmaster500进行。将干燥的填充剂粒子在载玻片上贴附的双面带上排列均匀,之后用空气喷涂除去剩余的粒子。由此,将填充剂粒子1层分固定在双面带上。该状态用显微镜进行确认。制作离子交换水1PL的液滴,使其着液在载玻片上固定的填充剂粒子上,通过e/2法计算出接触角。需要说明的是,当接触角小于卯。时,着液后的水滴容易润湿,因此,着液后的接触角经时变小。因此使用着液后0.5秒后的接触角值进行评价。结果如表ll所示。(4)基于血红蛋白Alc测定的血红蛋白类(Hb)回收率的评价将实施例11以及比较例1416中制作的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。另一方面,将glycoHbcontrollevel2(国际试药制,参考数值10.4±0.5%)用200uL注射用水溶解后,制备用稀释液(含有0.1%卜U卜yX-100的磷酸缓冲液(pH7.0))稀释至100倍的溶液,作为测定样品。使用得到的色谱柱,根据下述条件用色谱峰面积对测定样品中的血红蛋白Alc量、以及血红蛋白Alc与非糖化血红蛋白的合计量进行评价。测定以10试样连续进行,以其后一半5试样的血红蛋白Alc峰的面积值、以及血红蛋白Alc峰与非糖化血红蛋白峰的面积值的平均值作为测定值。结果如表12、图5所示。将实施例11中得到的血红蛋白Alc峰面积、以及血红蛋白Alc与非糖化血红蛋白峰的面积值合计设定为100%,对比较例1416中得到的各峰面积进行比较。系统输液泵LC-9A(岛津制作所社制)自动进样器ASU-420(积水化学工业社制)检测器SPD-6AV(岛津制作所社制)洗脱液第1液170mM磷酸缓冲液(pH5,7)第2液300mM磷酸缓冲液(pH8.5)洗脱法03分钟用第1液洗脱、33.2分钟用第2液洗脱、3.24分钟用第1液洗脱流速1.0mL/分钟检测波长415nm进样量10iiL(3)血红蛋白Alc测定中的测定值变动的评价(耐久性评价)将实施例11、比较例17中制作的离子交换液相色谱用填充剂填充到液相色谱系统的色谱柱中。另一方面,将glycoHbcontrollevel2(国际试药制,参考数值10.4土0.5%)用200UL注射用水溶解后,制备用稀释液(含有0.1%卜y卜yX-100的磷酸缓冲液(pH7.0))稀释至100倍的溶液,作为测定样品。另外,作为负荷样品,健康人血进行NaF采血,用溶血稀释液(含有0.1重量%卜y卜yX-100的磷酸缓冲液(pH7.0))进行溶血,使用稀释至150倍的溶液。测定样品与负荷样品一起进行约1000试样的测定,以任意间隔连续测定测定样品10试样,使用其平均值进行评价。根据下述条件对测定样品中的血红蛋白Alc量及非糖化血红蛋白量进行测定,求出相对于血红蛋白Alc与非糖化血红蛋白的合计的血红蛋白Alc的比例(血红蛋白Alc值(%))。另外,也测定血红蛋白Alc的保留时间。结果如表13所示。系统输液泵LC-9A(岛津制作所社制)自动进样器ASU-420(积水化学工业社制)检测器SPD-6AV(岛津制作所社制)洗脱液第1液170mM磷酸缓冲液(pH5.7)第2液300mM磷酸缓冲液(pH8.5)洗脱法03分钟用第1液洗脱、33.2分钟用第2液洗脱、3.24分钟用第1液洗脱流速1.0mL/分钟检测波长415nm进样量10uL表11<table>tableseeoriginaldocumentpage48</column></row><table>表12<table>tableseeoriginaldocumentpage48</column></row><table>表13<table>tableseeoriginaldocumentpage49</column></row><table>如表11所示,在实施例11中,与比较例16所示的仅经过臭氧水处理的接触角相比小8。,从而可知通过基于加速氧化法的处理,填充剂粒子表面的亲水性提高。如表12、图5所示可知,进行基于加速氧化法的处理的实施例11,Alc面积和总面积均比比较例1416大。即,可以抑制血红蛋白Alc成分或其他血红蛋白成分向填充剂粒子表面的吸附。如表13所示可知,使用实施例11中制作的离子交换液相色谱用填充剂时,在1000试样测定之间,血红蛋白Alc值的变动、保留时间的变动均非常小,能够准确测定。另一方面,在比较例17的情况下,保留时间变动大,认为这是由于为了提高亲水性而进行涂布的蛋白质在测定性根据本发明,可以提供一种抑制在水系介质中的溶胀且对于水系介质的分散性优异的亲水性高分子微粒、可以有效抑制蛋白质等的非特异吸附的离子交换液相色谱用填充剂、使用了该离子交换液相色谱用填充剂的糖化血红蛋白的分析方法、可以长时间维持对溶胀、非特异吸附等的抑制效果的制造离子交换液相色谱用填充剂的方法、使用该离子交换液相色谱用填充剂的制造方法进行制造的离子交换液相色谱用填充剂、以及糖化血红蛋白分析用的离子交换液相色谱用填充剂。权利要求1.一种亲水性高分子微粒,其特征在于,分别使其分散在水和丙酮中之后照射超声波15分钟,并在25℃下放置240小时使其平衡后,用粒度分布测定仪分别测定粒径时,使其在水中分散时的粒径Dw与使其在丙酮中分散时的粒径DA的比Dw/DA为2.0以下,并且,将所述亲水性高分子微粒无间隙地排列成单层并在其上面形成纯水的液滴之后,在25℃条件下用接触角计测定的水的接触角为70°以下。2.—种离子交换液相色谱用填充剂,其由基材微粒和在该基材微粒表面存在的离子交换基团构成,其特征在于,分别使其分散在水和丙酮中之后,照射超声波15分钟,并在25t:下放置240小时使其平衡后,用粒度分布测定仪分别测定粒径时,使其在水中分散时的粒径Dw与使其在丙酮中分散时的粒径DA的比Dw/DA为2.0以下,并且,所述离子交换液相色谱用填充剂无间隙地排列成单层并在其上面形成纯水的液滴之后,在25'C条件下用接触角计测定的水的接触角为60°以下。3.—种离子交换液相色谱用填充剂,其特征在于,具有离子交换基团,水的接触角为60。以下,且表面没有被亲水性化合物覆盖。4.一种离子交换液相色谱用填充剂,其特征在于,其是由疏水性交联聚合物粒子和具有离子交换基团的亲水性聚合物层构成的,所述疏水性交联聚合物粒子由合成有机高分子组成,所述亲水性聚合物层共聚在所述疏水性交联聚合物粒子的表面上,所述离子交换液相色谱用填充剂的最表面被臭氧水实施亲水化处理。5.根据权利要求4所述的离子交换液相色谱用填充剂,其中,水的接触角为60°以下。6.根据权利要求4或5所述的离子交换液相色谱用填充剂,其中,臭氧水的浓度为20ppm以上。7.根据权利要求2、3、4、5或6所述的离子交换液相色谱用填充剂,其中,离子交换基团为磺酸基。8.—种糖化血红蛋白的分析方法,其特征在于,使用权利要求l所述的亲水性高分子微粒或权利要求2、3、4、5、6或7所述的离子交换液相色谱用填充剂。9.一种离子交换液相色谱用填充剂的制造方法,其特征在于,其中具有如下的亲水化工序,所述亲水化工序中通过使用溶存臭氧气浓度为20ppm以上的臭氧水洗涤具有离子交换基团的填充剂粒子表面而进行亲水化,所述亲水化工序中,进行基于加速氧化法的处理。10.根据权利要求9所述的离子交换液相色谱用填充剂的制造方法,其中,作为基于加速氧化法的处理,使臭氧水的pH为7以上并且进行超声波照射。11.根据权利要求10所述的离子交换液相色谱用填充剂的制造方法,其中,使用频率为20kHzlMHz的超声波进行照射。12.根据权利要求9所述的离子交换液相色谱用填充剂的制造方法,其中,作为基于加速氧化法的处理,进行紫外线照射。13.根据权利要求12所述的离子交换液相色谱用填充剂的制造方法,其中,紫外线包括254nm的波长。14.根据权利要求9、10、11、12或13所述的离子交换液相色谱用填充剂的制造方法,其中,在2(TC以上进行基于加速氧化法的处理。15.根据权利要求9、10、11、12、13或14所述的离子交换液相色谱用填充剂的制造方法,其中,离子交换基团为磺酸基。16.—种离子交换液相色谱用填充剂,其特征在于,通过权利要求9、10、11、12、13、14或15所述的离子交换液相色谱用填充剂的制造方法所制造而成。17.—种用于糖化血红蛋白分析的离子交换液相色谱用填充剂,其特征在于,通过权利要求9、10、11、12、13、14或15所述的离子交换液相色谱用填充剂的制造方法所制造而成。全文摘要本发明的目的在于提供一种抑制在水系介质中的溶胀且对于水系介质的分散性优异的亲水性高分子微粒、可以有效抑制蛋白质等的非特异吸附的离子交换液相色谱用填充剂、使用了该离子交换液相色谱用填充剂的糖化血红蛋白的分析方法、可以长时间维持对溶胀、非特异吸附等的抑制效果的离子交换液相色谱用填充剂的制造方法、使用该离子交换液相色谱用填充剂的制造方法进行制造的离子交换液相色谱用填充剂、以及糖化血红蛋白分析用的离子交换液相色谱用填充剂。本发明为一种亲水性高分子微粒,分别使其分散在水和丙酮中之后照射超声波15分钟,并在25℃下放置240小时使其平衡后,用粒度分布测定仪分别测定粒径时,使其在水中分散时的粒径D<sub>w</sub>与使其在丙酮中分散时的粒径D<sub>A</sub>的比D<sub>w</sub>/D<sub>A</sub>为2.0以下,并且,将所述亲水性高分子微粒无间隙地排列成单层并在其上面形成纯水的液滴之后,在25℃条件下用接触角计测定的水的接触角为70°以下。文档编号B01J20/26GK101257969SQ20068003260公开日2008年9月3日申请日期2006年11月14日优先权日2005年12月2日发明者与谷卓也,高原诚申请人:积水化学工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1