用于碳纳米管的均相负载型催化剂的制备方法

文档序号:4937933阅读:108来源:国知局
用于碳纳米管的均相负载型催化剂的制备方法
【专利摘要】本发明涉及一种用于碳纳米管的均相负载型催化剂的制备方法,并有利地提供了该方法,所述用于碳纳米管的均相负载型催化剂的制备方法通过引入高温浸渍熟化过程而诱发了催化剂物质向载体微孔中的深度浸渍,从而显示出较高的CNT产率。
【专利说明】用于碳纳米管的均相负载型催化剂的制备方法
【技术领域】
[0001]本发明涉及用于碳纳米管的均相负载型催化剂的制备方法。
【背景技术】
[0002]碳纳米管(下文中,称作“CNT”)已知是指直径为3至150nm,优选为3至IOOnm而长度为直径的很多倍,即至少100倍的圆柱形碳纳米管。CNT由成行排列的碳原子层构成,并且具有不同种类的核。CNT也被称作碳原纤或中空碳纤维。
[0003]CNT由于其尺寸和特有性质而在工业上制备复合材料中必不可少,并且可以使用在包括电气应用和能源应用的更多应用中。
[0004]CNT通常通过电弧放电、激光烧蚀或化学气相沉积等方法来制备。然而,电弧放电和激光烧蚀不利地不适合于大批量生产,而且涉及过高的制备成本或激光采购成本。
[0005]此外,化学气相沉积法的问题在于在使用气相分散催化剂的情况下,合成速度非常低且所合成的CNT粒子极其小;而且在使用负载型基底催化剂(substrate-supportedcatalyst)的情况下,由于显著降低了反应器内部的空间利用而在CNT的批量生产方面存在局限。
[0006]催化剂的催化活性组分通常具有氧化物形式、部分或全部还原的形式或氢氧化物形式,而且所述催化剂可以为常用于制备CNT的负载型催化剂(supported catalyst)或共沉淀催化剂等。在这些催化剂中,负载型催化剂是较为优选的,这是因为碳纳米管催化剂有利地具有比共沉淀催化剂更高的体积密度;不同于共沉淀催化剂,碳纳米管催化剂降低了因摩擦而产生细粉的可能性(这种情况可能在流体化过程中由于产生少量10微米以下的细粉而发生);并且由于该催化剂优良的机械强度而使反应器能够稳定地运转。
[0007]另外,作为制备负载型催化剂的方法,提出了一种浸溃法,该方法包括将金属水溶液和载体混合,然后进行涂布和干燥。当在室温下使用旋转式蒸发器等将催化剂制备到介质中至约60°C的低温时,可以提高CNT的产率和负载金属的量,但是由于均相金属溶液的粘度较高,因此基于负载金属的量,产生了例如活性劣化的问题。
[0008]因此,需要对能够解决上述问题的制备负载型催化剂的方法进行研究。

【发明内容】

[0009]技术问题
[0010]因此,鉴于上述问题而作出了本发明,本发明的目的是提供一种用于碳纳米管的均相负载型催化剂的制备方法,该方法改善了负载金属在微孔中的浸溃效率,并且提高了浸溃过的金属在干燥和烘焙过程中的稳定性。
[0011]技术方案
[0012]根据本发明的一方面,以上和其它目的可以通过提供一种制备用于碳纳米管的均相负载型催化剂的方法来实现,该方法包括:使活性组分(A)的前体水溶液与沉淀抑制组分(M)混合,然后将所得的混合物与催化剂组分的前体水溶液混合,制得均相金属水溶液;将所述均相金属水溶液与载体混合,并使所得的混合物在高于20°C且不高于100°C的温度下熟化-浸溃长于30分钟且不长于15小时的时间,制得混合物;以及真空干燥所制得的混合物,制备负载型催化剂。
[0013]下文中,将详细描述本发明。
[0014]所述制备用于碳纳米管的均相负载型催化剂的方法的特征在于,鉴于对负载型催化剂的微孔中的浸溃,在浸溃过程中采用了高温熟化,以尝试解决如下问题,包括:在干燥用于制备CNT的金属催化剂的过程中形成固体簇,难以完全去除溶剂(水),最终催化剂产率的劣化,以及烘焙过程中活性的劣化。
[0015]作为参考,根据用来制备常规的CNT制备用金属催化剂的采用烘箱干燥的浸溃催化剂载体的方法,由于在100°C或高于100°c下金属组分与活性组分之间的沉淀而形成了直径小于载体的细粉。例如,当使用Fe作为所述金属组分并将Mo用作所述活性组分时,通过由Fe3++3MO0_->Fe (MoO)3丨表示的反应而形成深黄色的沉淀物,因此不能制备出澄清的均相负载型催化剂。
[0016]另一方面,由本发明提出的催化剂相当于均相催化剂,因为该催化剂适用于制备碳纳米管用的流化床反应器(FBR)中,并且通过快速干燥而防止沉淀。
[0017]首先,将沉淀抑制组分和催化剂组分的前体水溶液依次与活性组分的前体水溶液混合,制得澄清的均相金属水溶液(第一步骤)。将制得的均相金属水溶液与载体混合,并通过在高温下熟化而浸溃于该载体中,制得混合物(第二步骤)。然后,将制得的混合物真空干燥,制备载体表面涂布有催化剂的负载型催化剂(第三步骤)。
[0018]用于本发明的催 化剂组分可以包括选自Fe、Cc^PNi中的至少一种,可以例如包括选自Fe盐、Fe氧化物、Fe化合物、Co盐、Co氧化物、Co化合物、Ni盐、Ni氧化物和Ni化合物中的至少一种,并且可以为例如氮化物如Fe(NO3)2 WH2CKFe(NO3)2.9Η20、Ni (NO3)2.6Η20或 Co (NO3)2.6Η20。
[0019]另外,用于本发明的活性组分为例如Mo,例如Mo盐、Mo氧化物或Mo化合物,以及例如使用前可以溶解在蒸馏水中的氮化物如(NH4)6Mo7O24.4Η20。
[0020]此外,所述沉淀抑制组分为例如多羧酸,并且在另一实例中包括选自二羧酸、三羧酸和四羧酸中的至少一种。
[0021]更具体而言,使用这些组分的第一步骤包括:制备Mo前体水溶液(工序a),将Mo前体水溶液与沉淀抑制组分混合(工序b),以及将Mo前体和沉淀抑制组分的水溶液与催化剂组分前体混合(工序c)。
[0022]用于上述第一步骤的工序a的Mo前体可以为Mo氮化物等在蒸馏水中的溶液,但本发明并不局限于此。鉴于反应效率,基于所述活性组分,Mo前体水溶液的含量优选为0.5至12摩尔%。
[0023]在考虑到因防止水溶液沉淀而使CNT的产率提高以及均相催化剂的制备时,作为用于所述第一步骤的工序b的沉淀抑制组分(M),优选加入选自二羧酸、三羧酸和四羧酸中的至少一种,使得沉淀抑制组分(M)与Mo前体(A)的摩尔比(Μ/A)调节为0.2至0.5。
[0024]然后,用于所述第一步骤中工序c的催化剂组分前体可以包括选自Fe、Co和Ni中的至少一种,并且优选为其氮化物中至少一种在蒸馏水中的溶液。具体而言,鉴于反应效率,基于所述催化剂组分,该催化剂组分的含量可以为10至40摩尔%。[0025]就反应性而言,由此制得的均相金属水溶液的浓度优选为0.1至0.4g/ml或0.1至 0.3g/ml。
[0026]将载体与通过第一步骤制得的均相金属水溶液进行混合(第二步骤)。如下面的实施例中所示,用于所述第二步骤的载体可以选自氧化铝、氧化镁和二氧化硅中,优选为氧化铝。在另一个实例中,所述载体可以为常用的载体,例如A1203、MgO或Si02。
[0027]如下面的实施例中所述,所述熟化-浸溃优选在高于20°C且不高于100°C或60至100°c的温度下进行长于30分钟且不长于15小时或I至15小时的时间,这是因为高温熟化提高了金属盐在均相金属水溶液中的移动性,使金属盐向氧化铝的微孔深处移动,从而提供了较高的负载效率。
[0028]对熟化后制得的混合物进行快速干燥。如下面的实施例中所示,所述快速干燥在例如45至80°C的真空下进行I小时以内或I分钟至I小时,这是因为通过干燥可以使氧化铝微孔深处中仍未浸溃的过量金属盐均匀地浸溃在氧化铝中,并覆盖在该氧化铝的表面上。
[0029]对于在此处使用的真空干燥中的“真空”的含义没有特别限制,只要具有通常用于真空干燥的真空范围即可。
[0030]接下来,所述烘焙优选在650至800°C下进行30分钟至5小时。本发明的粒子状负载型催化剂具有粒径或平均粒径为30至200 μ m的球形,且由SEM观察到的表面粒径为10至lOOnm,但该粒径取决于所使用载体的粒径,因此并不局限于以上所限定的范围。
[0031]下文中,将详细描述制备所述均相负载型催化剂的设备。
[0032]具体而言,所述设备包括:用于制备均相金属水溶液的装置,用于混合由所述制备装置输送的均相金属水溶液和载体的装置,用于通过在高温下熟化而浸溃所得产物的装置,以及用于干燥由所述浸溃装置输送的熟化浸溃产物的装置。
[0033]所述均相金属水溶液制备装置可以为溶液搅拌混合器,该溶液搅拌混合器包括催化剂组分进料器、活性组分进料器、沉淀抑制组分进料器以及用于控制这三种进料器的控制器。
[0034]所述控制器可以以如下方式依次进行控制操作:关闭催化剂组分进料器和沉淀抑制组分进料器并开启活性组分进料器,完成活性组分前体的进料;关闭催化剂组分进料器和活性组分进料器并开启沉淀抑制组分进料器,完成沉淀抑制组分的进料;以及关闭活性组分进料器和沉淀抑制组分进料器并开启催化剂组分进料器,完成催化剂组分前体的进料。
[0035]将由均相金属水溶液制备装置输送的均相金属水溶液和载体在作为混合装置的搅拌混合器等中进行混合,使用浸溃装置通过在高温下熟化而浸溃所得的混合物,在干燥装置中对由该浸溃装置输送的熟化且浸溃过的产物进行干燥,并在烘焙装置中烘焙该产物,从而将粒子状催化剂组分均匀地浸溃和涂布在载体的表面上。所述干燥装置可以为真空干燥器,优选为旋转式加热器。
[0036]所述真空干燥器内部可以为直壁式表面,可以具有挡板,或者可以在相对于垂直轴具有倾角的情况下以预定的速率旋转。
[0037]另外,在输送至干燥装置之前,使用能够使过热的溶剂回流的用于熟化的回流器作为熟化-浸溃装置,在60至100°C下进行所述熟化I至15小时。[0038]本发明提供了一种制备用于碳纳米管的均相负载型催化剂的方法,以及用于该方法的设备,所述方法及设备改善了负载金属在微孔中的浸溃效率,并且提高了浸溃过的金属在干燥和烘焙过程中的稳定性。
[0039]有益效果
[0040]根据前述内容显而易见,本发明的制备用于碳纳米管的均相负载型催化剂的方法以及用于该方法的设备,通过采用高温熟化浸溃而诱发了催化剂金属在载体微孔中的深度浸溃,从而提供了因负载效率高而具有较高CNT产率的催化剂。
【专利附图】

【附图说明】
[0041]图1为显示了根据本发明的实施例1制备的粒子状催化剂的SEM图像(X35);
[0042]图2为显示了使用根据本发明实施例1的催化剂合成的CNT的SEM图像(X 100);
[0043]图3为显示了使用根据本发明实施例1的催化剂合成的CNT的高放大倍数SEM图像(X 50,000)。
【具体实施方式】
[0044]现在,将提供优选的实施例以更好地理解本发明。提供这些实施例仅用于举例说明本发明,而不应解释为对于本发明的范围和精神的限制。
[0045][实施例]
[0046]实施例1〈CNT催化剂的制各>
[0047]向在 15ml 水中含有 0.276g (NH4) 6Μο7024.4Η20[0.223mmol, Mo:1.53mmol]的溶液的烧瓶A中加入0.109g[0.57mmol]柠檬酸(柠檬酸/Mo摩尔比=0.36),并向其中加入
3.98g[9.85mmol]Fe (NO3)2.9H20,制备金属水溶液。
[0048]所述金属水溶液的浓度为0.3g/ml,并且该金属水溶液以无沉淀的澄清溶液的形式制得。
[0049]然后,将烧瓶A中的溶液加入到含有2.5g Al2O3 (D50v = 80微米,D50n = 55微米,孔体积:0.64cm3/g,表面积:237m2/g,由Saint Gobain生产的产品)的烧瓶B中,接着在包括95°C回流浴的恒温反应器中搅拌的同时进行熟化12小时,使催化活性金属前体充分地负载在Al2O3上。
[0050]通过旋转式蒸发对制得的样品进行真空干燥,并在700°C下烘焙3小时,制备均相负载型催化剂。
[0051]由图1可见,所制备的催化剂在干燥过程中形成粒子,并且,在基于上述制备所使用的金属溶液和氧化铝的量来计算制得的催化剂的量时,最终制得的催化剂的产率为95%。
[0052]实施例2〈CNT催化剂的制各2>
[0053]除了在70°C下进行熟化6小时,以及在60°C下通过旋转式蒸发再进行两次30分钟干燥以外,重复与实施例1中所述的相同过程。
[0054]所制备的催化剂也在干燥过程中形成粒子,并且,在基于上述制备所使用的金属溶液和氧化铝的量来计算制得的催化剂的量时,最终制得的催化剂的产率为93%。
[0055]比较例1〈CNT催化剂的制各3>[0056]除了在20°C下进行熟化15分钟,以及在60°C下通过旋转式蒸发再进行两次30分钟干燥以外,重复与实施例1中所述的相同过程。
[0057]所制备的催化剂也在干燥过程中形成粒子,并且,在基于上述制备所使用的金属溶液和氧化铝的量来计算制得的催化剂的量时,最终制得的催化剂的产率为92%。
[0058]比较例2〈CNT催化剂的制各4>
[0059]除了进行熟化30分钟,以及在60°C下通过旋转式蒸发再进行两次30分钟干燥以外,重复与实施例1中所述的相同过程。
[0060]由图2可见,所制备的催化剂在干燥过程中形成簇,并且,在基于上述制备所使用的金属溶液和氧化铝的量来计算制得的催化剂的量时,最终制得的催化剂的产率为90%。
[0061]CNT制各实施例
[0062]使用实施例1至2中制备的用于合成CNT的催化剂,在实验室级的固定床反应器中对碳纳米管的合成进行试验。
[0063]具体而言,将实施例1中制备的用于合成CNT的催化剂安放在内径为55mm的石英管中部,在氮气气氛下加热至700°C并放置,以预定的体积混合比通入氮气、氢气和乙烯气体,使得总流速设定为每分钟180ml,然后经I小时合成出预定量的碳纳米管。
[0064]在室温下得到所合成的碳纳米管并测量其含量。基于合成CNT所使用的催化剂的重量以及反应后催化剂重量的增量,根据下面的等式计算反应产率:
[0065]CNT产率(g CNT/g催化剂)=[反应后的总重量(g) _所使用催化剂的重量(g)]/所使用催化剂的重量(g)。
[0066]在实施例1中,反应I小时后,相对于所加入催化剂的量,在CNT收集器中收集的CNT显示出28.6g CNT/g催化剂的CNT产率,且粒径或平均粒径为20至30nm。实施例2的结果汇总于下表1中。
[0067]CNT制各比较例
[0068]除了使用比较例I至2的催化剂替代实施例1的催化剂以外,以与实施例1中所述的相同方式进行CNT合成试验。
[0069]在比较例I中,反应I小时后,相对于所加入催化剂的量,在CNT收集器中收集的CNT显示出15.3g CNT/g催化剂的CNT产率,且制得的CNT的粒径或平均粒径为20至30nm。比较例2的结果也汇总于下表1中。
[0070][表 I]
[0071]
【权利要求】
1.一种制备用于碳纳米管的均相负载型催化剂的方法,包括如下步骤: 使活性组分(A)的前体水溶液与沉淀抑制组分(M)混合,然后将所得的混合物与催化剂组分的前体水溶液混合,制得均相金属水溶液; 将所述均相金属水溶液与载体混合,并使所得的混合物在高于20°C且不高于100°C的温度下熟化-浸溃长于30分钟且不长于15小时的时间,制得混合物;以及真空干燥所制得的混合物,制备负载型催化剂。
2.根据权利要求1所述的方法,其中,所述熟化-浸溃在60至100°C下进行I至15小时。
3.根据权利要求1所述的方法,其中,加入所述沉淀抑制组分(M)和所述活性组分(A),使得该沉淀抑制组分(M)与该活性组分(A)的摩尔比(Μ/A)调节为0.2至0.5。
4.根据权利要求1所述的方法,其中,所述沉淀抑制组分包括多羧酸。
5.根据权利要求4所述的方法,其中,所述多羧酸包括选自二羧酸、三羧酸和四羧酸中的至少一种。
6.根据权利要求1所述的方法,其中,所述催化剂组分的前体水溶液包括选自Fe、Co和Ni中至少一种的 前体水溶液。
7.根据权利要求1所述的方法,其中,所述活性组分的前体水溶液包括Mo的前体水溶液。
8.根据权利要求1所述的方法,其中,所述均相金属水溶液的浓度为0.1至0.4g/ml。
9.根据权利要求1所述的方法,其中,所述载体包括选自氧化铝、氧化镁和二氧化硅中的至少一种。
10.根据权利要求1所述的方法,其中,所述真空干燥包括快速真空干燥,该快速真空干燥使用旋转式真空干燥器,在45至80°C下进行I小时以内。
【文档编号】B01J37/02GK103958061SQ201380004138
【公开日】2014年7月30日 申请日期:2013年1月9日 优先权日:2012年1月11日
【发明者】姜京延, 金镇道, 金成真, 尹载根 申请人:Lg化学株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1