流体床催化裂化过程中的汽油脱硫的制作方法

文档序号:5127623阅读:593来源:国知局
专利名称:流体床催化裂化过程中的汽油脱硫的制作方法
技术领域
本发明涉及降低通过催化裂化工艺生产的汽油和其他石油产品中的含硫量。本发明提供了一种降低产品含硫量的催化组合物和使用这种组合物降低产品含硫量的工艺。
催化裂化是一种石油精炼工艺,已非常大规模商业化应用,尤其是在美国,大多数精炼石油掺合池(blending pool)是通过催化裂化制备的,并且几乎所有这些都来自于流体床催化裂化(FCC)工艺。在催化裂化工艺中,重烃馏分通过高温下在催化剂存在的条件下发生反应转化成较轻的产品,并且大多数转化或裂化发生在汽相时。这样原料就转化成汽油、馏出液和其他液态裂化产品以及较轻的每分子含四个或更少碳原子的气态裂化产品。该气体部分由烯族烃,部分由饱和烃所组成。
在裂化反应中,一些称作焦炭的重物质沉积在催化剂上。这会降低其催化活性,因此需要再生。从用过的裂化催化剂中除去封留的烃后,通过烧去焦炭实现再生,之后催化活性得到恢复。因此催化裂化的三个特征性步骤可以区分为裂化步骤,将烃转化成较轻的产品;汽提步骤,除去吸附在催化剂上的烃和再生步骤,烧去催化剂上的焦炭。再生的催化剂可在裂化步骤中重新使用。
催化裂化的原料通常含有以有机硫化合物形式存在的硫,如硫醇、硫化物和噻吩类。虽然在裂化工艺中半数的硫转化成硫化氢,主要由于催化分解非噻吩硫化合物,相应地,裂化工艺的产品易于含有硫杂质。硫在裂化产品中的分布取决于多种因素,包括原料、催化剂类型、存在的添加剂、转化和其他操作条件,但在任何情况下,一定比例的硫会进入轻或重汽油馏分并放入产物池。随着实施于石油产品的环境条例的增加,例如在Reformulated Gasoline(RFG)条例中,作为燃烧过程后将氧化硫和其他硫化合物排放进大气中的关注的反应,通常会相应地降低产品的含硫量。
已经开始使用一种通过在裂化前氢化处理的方法从FCC原料中除去硫。尽管非常有效,由于氢气的消耗太多,这种方法在设备的投资以及运行方面较为昂贵。另一种方法是通过氢化处理除去裂化产品中的硫。同样地,尽管有效,这种方法的缺点是当辛烯饱和后,有价值的产品辛烷可能会丢失。
从经济的观点看,需要在裂化工艺中实现硫自身的排除,因为这会有效脱去汽油掺合池中主要成分中的硫而无需额外处理。已经研制了各种催化物用以在FCC工艺中脱硫,但到目前为止,大多数研制集中于从再生器的烟道气中脱硫。Chevron早期研制的方法使用氧化铝化合物作为裂化催化剂投料(Cinventory)的添加剂以吸附FCC再生器中的氧化硫;进入该过程的原料中被吸附的硫化合物在循环的裂化部分以硫化氢的形式释放并进入装置中的产品回收部分,在那里被除去。见Krishna等,Additives Improve FCC Process,Hydrocarbon Processing,1991年11月,59-66页。再生器的烟道气中的硫被除去,但即使除去,产品的含硫量水平未受很大的影响。
除去再生器中氧化硫的另一种可选择的技术是基于使用镁-铝尖晶石作为FCCU中的循环催化剂投料的添加剂。在这一工艺中,使用名为DESOXTM作为添加剂时,该技术已获得显著的商业成就。关于这种脱硫添加剂的专利包括U.S.4963520;4957892;4957718;4790982及其他。然而同样的,产品的含硫量水平并无显著降低。
Wormsbecher和Kim在U.S.5376608和U.S.5525210中建议使用催化剂添加剂用以降低在液态裂化产品的含硫量水平,使用氧化铝承载的路易斯酸作为裂化催化剂添加剂以制备脱硫汽油,但此体系没有获得显著的商业成功。因此仍然存在对降低液态催化裂化产品的含硫量的有效添加剂的需要。
我们现已研制出用于催化裂化工艺的催化添加剂,能降低裂化工艺的液态产品的含硫量。使汽油裂化馏分和其他馏分包括来自于轻催化裂化油的中间馏分的脱硫成为可能。
本发明的脱硫催化剂是与裂化装置中的活性裂化催化剂结合使用的,即与常规的循环裂化催化剂投料的主要成分结合使用,该主要成分通常是一种以八面沸石(通常是沸石Y)为基础的含催化剂的基质化沸石。脱硫催化剂可用作单独的颗粒状添加剂,与裂化催化剂结合使用或作为整体催化剂的一种成分使用。
根据本发明,脱硫组合物包含多孔分子筛,它含有一种氧化态大于零的金属位于分子筛孔状结构的内部。分子筛一般是一种沸石并且可能是一种具有特征与大孔沸石如β沸石或USY沸石或中等孔径沸石如ZSM-5一致的沸石。非沸石分子筛如MeAPO-5、MePSO-5和中孔性结晶物质如MCM-41可用作催化剂的分子筛成分。金属如钒、锌、铁、钴和稼都是有效的。在流体床催化裂化(FCC)装置中,含金属的分子筛或沸石与活性催化裂化催化剂(通常是八面沸石如Y沸石)结合用于处理烃原料以制备低硫汽油和其他液态产品,如轻循环油可用作低硫柴油掺合组分或取暖用油。
尽管还不能准确理解含金属沸石除去通常存在于裂化烃产品中的硫成分的机理,它确实涉及将原料中的有机硫化合物转化成无机硫,所以该工艺是一种真正的催化工艺。在该工艺中,可以相信,沸石或其他分子筛根据孔大小的不同提供形态选择性,沸石中的金属位点提供硫元素的吸附位点。因而我们将我们的工艺称为“形状选择性的脱硫作用”。
FCC工艺本发明的脱硫催化剂在催化裂化工艺中用作催化剂循环投料的催化成分,催化裂化工艺目前几乎一定是指流体床催化裂化(FCC)工艺。为了方便起见,本发明将参考FCC工艺进行描述,尽管本发明添加剂可用于较老式的移动床型(TCC)裂化工艺并适当调节颗粒尺寸以适应该工艺的需要。除了将本发明添加剂添加到催化剂投料中和产品回收部分中的一些可能的变化将在下文讨论,操作工艺的方式会保持不变。因而可以使用常规的FCC催化剂,例如含有八面沸石裂化成分的沸石基催化剂,如Venuto和Habib在讨论评述中所述,Fluid Catalytic Cracking with Zeolite Catalysts,Marcel Dekker,New York 1979,ISBN 0-8247-6870-1以及在多种其他资料如Sadeghbeigi,Fluid Catalytic CrackingHandbook,GulfPulb.Co.Houston,1995.ISBN 0-88415-290-1中所述。
简要地说,在流体床催化裂化工艺中,含有有机硫化合物的重烃原料会裂化成较轻的产品,这一过程是通过在循环催化剂再循环裂化工艺中,将原料与由20-100微米大小的颗粒组成的循环可流动催化裂化催化剂投料接触而发生的。在循环过程中的关键步骤是(ⅰ)原料在催化裂化区通常是梯级竖板裂化区被催化裂化,通过将原料与热的再生裂化催化剂源接触在催化裂化条件下进行操作,制造出的流出物含有裂化产品和用过的含焦炭和可汽提的烃的催化剂;(ⅱ)放出流出物,并通常在一个或多个旋风分离器中分离成富含裂化产品的汽相和含有用过的催化剂的富含固体的相。
(ⅲ)汽相作为产品移走,并在FCC主塔和其关联的边塔中分馏成包括汽油的液态裂化产品。
(ⅳ)通常用蒸汽将用过的催化剂汽提,从催化剂中除去封留的烃,之后氧化再生汽提的催化剂,生成热的再生催化剂,它之后再循环用于裂化区以裂化更多原料。
FCC工艺中的原料是高沸点的石油,通常初沸点至少290℃(550°F)并且一般大于315℃(600°F)。多数FCC原料的精炼分馏点至少为345℃(650°F)。终沸点会根据原料的确切特性或精炼的操作特性而变化。原料可以或是馏出液,通常终沸点为550℃(1020°F)或更高,例如590℃(1095°F)或620℃(1150°F),或原料中可含有残油(不可蒸馏的)和甚至包括原料全部或大部分。可蒸馏原料包括天然原料如柴油,例如重或轻常压粗柴油,重或轻减压粗柴油以及裂化原料如轻焦化粗柴油,重焦化粗柴油。可以使用氢化处理的原料,例如氢化处理的柴油,特别是氢化处理的重柴油,但由于本发明催化剂能显著降低含硫量,可以省却目的为降低含硫量的最初的氢化处理而依然可以改善可裂化性。
在本发明工艺中,液态裂化产品的汽油部分的含硫量可通过在脱硫催化剂的存在下实施催化裂化而有效降至较低且更可接受的水平。
本发明的脱硫催化剂可以单独的颗粒状添加剂的形式使用,在FCCU中加入主裂化催化剂中,或可选择的,脱硫催化剂可包含于裂化催化剂作为附加成分以提供一种整体裂化/脱硫催化剂体系。裂化催化剂一般以八面沸石活性裂化成分为基础,通常是以其形态之一存在的Y沸石如煅烧过的稀土交换型的Y沸石(CREY),其制备公开于U.S.3402996,超稳定型Y沸石(USY)公开于U.S.3293192以及各种部分交换型的Y沸石公开于U.S.3607043和3676368。活性裂化成分通常与基质物料如氧化铝结合以便提供需要的力学特征(耐磨性等)以及对高活性沸石成分的活性控制。为了有效流体化,裂化催化剂的粒度通常在10-100微米的范围内。如果作为单独的颗粒添加剂使用,脱硫催化剂(和其他添加剂)一般选择可与裂化催化剂相比的粒度以便防止成分在裂化周期中分离。
分子筛成分根据本发明,脱硫催化剂含有多孔分子筛,其含有氧化态大于零的金属,位于分子筛孔状结构的内部。分子筛一般是沸石并且可以是特性与大孔沸石如β沸石或中孔沸石如ZSM-5一致的沸石,后者是优选的。
本发明脱硫催化剂的分子筛成分可如上所述是沸石或非沸石分子筛。使用时,沸石可选自大孔沸石或中孔沸石(见Shape Selective Catalysis in IndustrialApplications,Chen等,Marcel Dekker Inc.,New York 1989,ISBN 0-8247-7856-1,讨论根据Frilette等在J.Catalysis 67,218-222(1981)提出的基本方案通过孔径大小决定沸石分类)。小孔径沸石如沸石A和毛沸石,除了之外,通常为非优选的,因为它们的分子大小排除特性易于排除裂化原料成分以及多种裂化产品成分。如下所示,中孔和大孔径沸石均已发现是有效的,因此,由于含有中孔性结晶物如MCM-41,分子筛的孔径似乎并不关键。
具有与大孔(12环)结构相容特性的沸石可用于制备本发明的脱硫催化剂,包括以各种形态存在的沸石Y如Y、REY、CREY、USY,USY是优选的,以及其他沸石如沸石L、β沸石、丝光沸石包括脱铝酸盐丝光沸石,和沸石ZSM-18。通常,大孔径沸石的特征在于具有至少0.7nm环开口的孔状结构,中等或中间孔径的沸石具有小于0.7nm但大于0.56nm的孔开口。可使用的合适的中孔径沸石包括pentasil沸石如ZSM-5、ZSM-22、ZSM-23、ZSM-35、ZSM-50、ZSM-57、MCM-22、MCM-49、MCM-56,这些都是已知物质。沸石可与除铝之外的框架金属元素如硼、镓、铁、铬结合使用。
由于沸石USY通常用作裂化催化剂的活性裂化成分并因此使以整体裂化/脱硫催化剂的形式使用脱硫催化剂成为可能,所以特别需要使用这种沸石。用作裂化成分的沸石USY还可用作单独的颗粒状辅助催化剂的分子筛成分。稳定性与USY的低晶胞大小相关并且为了达到最佳效果,USY应为2.420-2.455nm,优选2.425-2.450nm,2.435-2.440nm是非常合适的。
由于为了达到最佳效果似乎需要带些酸性(常用α值测定),除了沸石之外,尽管并非令人满意的,也可使用其他分子筛。试验数据表明α值超过10(不含金属的分子筛)适合于充分的脱硫活性,一般需要α值在0.2-2000的范围内1。α值在0.2-300代表这些添加剂的正常酸性范围。注1α试验是测定固定物料如分子筛的综合酸性(包括其内部和外部酸性)的常规方法。此试验描述于US3,354,078;《催化剂杂志》第4卷,第527页(1965),第6卷,第278页(1966);和第61卷第395页(1980)。报道于本说明书中的α值均是在538℃常温下测定。
举例来说,可为本发明脱硫催化剂中的金属成分提供合适的载体的非沸石分子筛物质包括具有不同二氧化硅-氧化铝比值的硅酸盐(如金属硅酸盐metallosilicate和钛硅酸盐titanosilicate)、金属铝酸盐metalloaluminates(如锗铝酸盐germaniumaluminates)、金属磷酸盐metallophosphates、铝磷酸盐aluminophosphates如硅silico-和金属铝磷酸盐(metalloaluminophosphates)称为金属联合铝磷酸盐(MeAPO和ELAPO)、金属联合硅铝磷酸盐(MeAPSO和ELAPSO)、硅铝磷酸盐(SAPO)、镓锗酸盐(gallogerminates)和它们的结合物。从许多来源包括Stud.Surf.Catal.37 13-27(1987)中可以发现对SAPO、AIPO、MeAPO和MeAPSO的结构关系的论述。AIPO的结构中含有铝和磷,而在SAPO的结构中,一些磷和/或一些磷和铝被硅取代。在MeAPO的结构中,除了铝和磷,存在各种金属如Li、B、Be、Mg、Ti、Mn、Fe、Co、An、Ga、Ge和As,而在MeAPSO的结构中还含有硅。MeaAlbPcSidOe晶格的负电荷被阳离子抵销,其中Me是镁、锰、钴、铁和/或锌。MexAPSOs公开于U.S.4793984。SAPO型的分子筛物质如U.S.4440871eAPO型的催化剂公开于U.S.4544143和4567029;ELAPO催化剂公开于U.S.4500651,以及ELAPSO催化剂公开于欧洲专利申请159624。具体的分子筛见例如下列专利中所述MgAPSO或MAPSO-U.S.4758419;MnAPSO-U.S.4686092;CoAPSO-U.S.4744970;FeAPSO-U.S.4683217和ZnAPSO-U.S.4935216。可用的具体硅铝磷酸盐包括SAPO-11、SAPO-17、SAPO-34、SAPO-37;其他具体的分子筛物质包括MeAPO-5,MeAPSO-5。
另一种可用的结晶载体物质是大孔结晶类物质,例如MCM-41和MCM-48。这些大孔结晶物质公开于U.S.5098684、5102643和5198203。公开于U.S.5098684的MCM-41其特征在于微观结构为直径至少1.3nm的孔均匀六角形排列煅烧后其X射线衍射图谱具有至少一个大于1.8nm的d-间距,六角形电子衍射图谱可用相当于X射线衍射图谱中的d-间距峰的大于1.Snm的d100值作索引。尽管也可使用其他的金属硅酸盐,这种物质优选的催化形式是铝硅酸盐。MCM-48具有正六面体结构并可用相似的制备方法制备。
金属成分将金属成分加入分子筛载体材料组成了本发明的添加剂。为了有效,金属应存在于分子筛成分的孔状结构内部。含金属的沸石和其他分子筛可按如下方法制备(1)后加入金属至分子筛或含分子筛的催化剂中,(2)合成框架结构中含金属原子的分子筛,和(3)合成在沸石孔内截留大金属离子的分子筛。加入金属成分后,清洗以除去未结合的离子种类并进行干燥和煅烧。这些技术都是已知的。为了简单和经济,优选后加入金属离子,转化可用的分子筛材料用于本发明添加剂。可以使用多种金属后加料方法来制造本发明的催化剂,例如,金属离子的水交换、使用金属卤化物盐的固态交换,用金属盐溶液浸泡和金属的蒸汽沉积。然而,在所有情况下,为了金属成分进入分子筛成分的孔状结构,金属加料是很重要的。
现已发现当金属存在于分子筛成分孔内作为交换阳离子种类时,金属成分的氢转移活性降低至在裂化过程中使用优选的金属成分发生的氢转移反应保持在的可接受的低水平上。因而裂化过程中产生的焦炭和轻气体缓慢增加但保持在可容许的限度内。由于不饱和轻馏分在任何情况下均可用作烷基化原料并样循环到汽油池中,使用本发明添加剂招致的汽油范围的烃的损失并不严重。
由于担心在裂化过程中产生过多焦炭和氢,加入添加剂的金属应不具表现显著的氢化活性。由于这一原因,具有强氢化-脱氢功能性的贵金属如铂和钯不是合乎需要的。由于同样的原因,具有强氢化功能的碱金属和碱金属混合物如镍、铝、镍-钨、钴-钼和镍-钼也是不合乎需要的。优选的碱金属是元素周期表第3周期第5,8,9,12族(IUPAC分类法,以前的2B,5B和8B族)的金属。钒、锌、铁、钴和镓都是有效的,其中钒为优选金属成分。令人惊讶的是钒可以这种方式用于FCC催化剂中,因为通常认为钒对沸石裂化催化剂具有非常严重的影响并且人们在发展钒抑制剂方面也已付出很多努力。例如见Wormsbecher等,Vanadium Poisoning of Cracking CatalystsMechanism ofPoisoning and Design of Vanadium Tolerant Catalyst System,J.Catalysis 100,130-137(1986)。人们相信,钒在分子筛孔状结构内的位置能固定钒病阻止其形成对分子筛成分有害的钒酸;无论如何,本发明沸石为载体的含钒为金属成分的脱硫催化剂已经受了代表FCC循环特征的还原态和氧化态/汽蒸条件之间的反复循环而仍维持特征性沸石结构,表示金属的不同环境。
钒在以沸石USY为载体时特别适于汽油脱硫。V/USY脱硫催化剂的产品结构特别有趣。当其他沸石在加入金属后证明能汽油脱硫,它们倾向于将汽油转化成C3和C4汽油。虽然多数转化的C3=和C4=可被烷基化并再混回汽油池,由于许多炼油厂受其含油气压气机容量所限,高C4-含油气产量可能还应受到关注。含金属的USY具有与现有的FCC催化剂相似的产品结构;这一优点允许V/USY沸石在催化剂混合物中的含量可调节到目标脱硫水平而不受FCC单位的抑制。因此Y沸石催化剂中的钒,该沸石用USY代表,特别适于在FCC中对汽油脱硫。已发现能产生特别好效果的USY是具有2.435-2.450nm的低单元晶胞和相应的低α值的USY。碱金属的混合物如钒-锌在总的脱硫方面也是合适的。
一般地说使用脱硫催化剂最适宜的方式是作为单独的颗粒添加剂加入催化剂投料中。以这种方式使用时,可以纯分子筛晶体、压制(无基质)成合适大小的丸的形式用于FCC,但为了获得足够的颗粒耐磨性以便维持满意的流动性,含金属的分子筛通常是矩阵的。常规的裂化催化剂基质物质如氧化铝或二氧化硅-氧化铝,通常再加入粘土,适于这一目的。基质相对于分子筛的重量比一般是20∶80至80∶20。可以使用常规的矩阵技术。
作为使用单独颗粒添加剂的可选择的方式,脱硫催化剂可结合裂化催化剂形成FCC裂化/汽油脱硫整合的催化剂。因为已表明沸石USY作为一种有用的裂化催化剂成分能提供良好的产品脱硫活性,适宜以确保金属进入分子筛即USY沸石的孔状结构内部的方式把金属加到裂化催化剂中。这可通过下述方法适当地完成,即再煅烧USY裂化催化剂确保低晶胞大小,然后在许可发生离子交换的条件下通过离子交换或浸渍加入金属例如钒,这样金属离子就固定在沸石的孔状结构中。在这种情况下,进行浸渍/交换过程应使用控制量的金属以便在分子筛上留下催化裂化反应必需的位点数目。可选择的是,经过任何必需的煅烧从整合物中除去有机物后,可将金属加到分子筛成分例如USY沸石或ZSM-5中,之后含金属的成分可通过加入裂化和基质成分制成成品催化剂组合物,并将制剂喷雾干燥形成催化剂成品。脱硫成分的量通常达到全部催化剂的25重量%,与如下所述的其可用作单独的颗粒添加剂的量一致。
脱硫辅助催化剂中金属成分含量一般为0.2-5重量%,代表性的是0.5-5重量%(以金属计,相对于分子筛成分的重量),但超过这一范围的用量例如0.10-10重量%也已发现具有一些脱硫效果。当以裂化/脱硫催化剂整合的催化剂的形式使用脱硫催化剂时,金属含量可稍微降低,反映了该体系的双重功能,但为了配制的实用目的,金属含量通常占全部催化剂的0.1-5重量%,更有代表性的是0.2-2重量%。
脱硫催化剂的使用为了简化制造以及保留控制的裂化特性,当将催化剂配制成整合的催化剂体系时,优选使用该催化剂的活性裂化成分作为脱硫系统的分子筛成分,优选沸石USY。然而,还可将另一种活性裂化分子筛物质如沸石ZSM-5加到整合催化剂系统中并且当需要第二活性分子筛物质的特性如ZSM-5的特性时,这种体系是有用的。在这两种情况下,进行浸渍/交换过程都应使用控制量的金属以便在分子筛上留下催化裂化反应必需数目的位点,这是存在的活性裂化成分或任何第二种裂化成分如ZSM-5需要的。
使用脱硫催化剂组合物使用脱硫催化剂的适宜方式是在催化剂投料中作为单独的颗粒添加剂。以沸石USY为分子筛成分,由于USY沸石的裂化活性,将催化剂添加剂以优选形式加入装置中的总催化剂投料中不会导致总的裂化的显著降低。当使用另一种活性裂化物质作为分子筛成分,情况也是一样的。以这种方式使用时,组合物可以纯分子筛晶体的形式使用,压丸(无基质但加入金属成分)成合适大小用于FCC。然而为了获得足够的颗粒耐磨性及保持令人满意的流动性,一般含金属的分子筛是矩阵排列的。常规裂化催化基质如氧化铝或氧化铝一二氧化硅,通常加入粘土,是适于这一目的的。基质相对与分子筛的重量比一般为20∶80-80∶20。可以使用常规矩阵化技术。
单独的颗粒添加剂的使用容许脱硫催化剂和裂化催化剂的比值根据原料中含硫量以及脱硫程度进行优化;以这种方式使用时,其在FCCU中的用量通常占全部催化剂投料的1-50重量%;一般用量为5-25重量%,例如5-15重量%。10%代表大多数实用目的标准。添加剂可以常规方式与标准催化剂一起加入再生器或通过其他常规方式。添加剂能长期保持脱硫活性,尽管高硫原料可能会导致短期内脱硫活性的损失。
可选择的单独颗粒添加剂的使用方法是使用脱硫催化剂加到裂化催化剂中形成整合的FCC裂化汽油脱硫催化剂。如果脱硫金属成分与除活性裂化成分之外的分子筛结合使用,例如,当主要活性裂化成分是USY时与ZSM-5或β沸石结合,脱硫成分(分子筛加金属)的含量通常达到全部催化剂重量的25%或更少,相当于如下所述其作为单独颗粒添加剂使用时的量。然而金属成分的存在并不会导致裂化活性的显著降低,由于这一原因,可通过向裂化催化剂的活性裂化成分如USY加入金属成分配制整合裂化/脱硫催化剂体系。加入金属成分的水平可根据运行的需要调节,保持需要的裂化活性和脱硫活性的平衡。
在催化剂的循环投料中除了裂化催化剂和脱硫添加剂还可存在其他催化活性成分。这种其他物质的实例包括以沸石ZSM-5为载体的辛烷增强型催化剂、基于被承载的贵金属如铂的CO燃烧促进剂、烟道气脱硫添加剂如DESOXTM(镁铝尖晶石)、钒截留剂和底部裂化添加剂如Krishna,Sadeghbeigi,op cit和Scherzer在Octane Enhencing Zeolitic FCC Catalysts,Marcel Dekker,NewYork,1990,ISBN 0-8247-8399-9中所述。这些其他成分可以其常规用量使用。
本发明添加剂的效果是降低液态裂化产品特别是轻和重汽油馏分的含硫量,尽管在轻循环油中也发现了含硫量的降低,这使得本发明添加剂更适于用作柴油机或家庭取暖用油的配料成分。通过催化剂脱去的硫转化成无机态并以硫化氢的形式释放,这部分硫化氢可与裂化过程中常规释放出的硫化氢以同样的方式回收到FCCU的产品回收部分。增加的硫化氢负荷可能会负担额外的酸气/水处理需要,但由于得到的汽油硫含量显著降低,这些可能不认为是限制性的。
通过使用本发明催化剂可显著降低汽油含硫量,相对于使用常规裂化催化剂的基础情况,使用上述催化剂的优选形式恒定转化有时能达到75%。如下列实施例所述,使用本发明的多种添加剂很容易实现汽油脱硫25%。脱硫程度取决于裂化原料的原始有机硫含量,原料含硫量越高能获得最大的脱硫度。平衡状态的单位催化剂中的金属含量也可影响完成的脱硫度,平衡催化剂中较低的金属含量,特别是钒含量有利于更强的脱硫作用。如表17所示,尽管本发明催化剂在更高含钒量下仍然有效,当E-催化剂的含钒量低于1000ppm时脱硫作用非常有效。脱硫不仅可以有效改善产品质量而且还能在精炼汽油终沸点受重汽油馏分所限的情况下有效增加产量;通过提供一种有效且经济的方法来降低重汽油馏分的含硫量,不需借助于昂贵的氢化处理就能延长终沸点,结果在精炼厂的经济方面产生良好影响。如果打算随后进行氢化处理,在不太恶劣的条件下通过氢化处理除去难于除去的噻吩衍生物也是理想的。
实施例1到实施例7描述含金属的沸石的制备。
实施例1锌交换沸石的制备如表1总结的那样制备具有变化的孔径的一系列Zn2+交换沸石。使用SiO2/Al2O3比率为26/1的ZSM-5,SiO2/Al2O3比率为19/1的MCM-49,SiO2/Al2O3比率为35/1的β和含硅的MCM-41。首先通过铵交换和煅烧用氢型制备。从PQ获得SiO2/Al2O3体积比为5.4的低晶胞大小的USY(CBV600 USY,2.438nmUCS)样品,并不经进一步处理而使用。通过用ZnCl2溶液水交换将锌加到氢型沸石中。将Zn交换的沸石进行冲洗直到在冲洗液中不含Cl-以去除任何的非结合类的离子。然后将沸石干燥,并在540℃下流动空气中煅烧3小时。沸石孔中的锌负载量在0.9%锌到8.3%锌的范围内变化。在表1中总结了锌/沸石的物理特性。表1锌/沸石实施例的物理特性Zn/ZSM-5 Zn-MCM-49 Zn-β Zn/USY Zn/MCM-41锻烧了的催化剂的含锌 1.50.92.00.9 8.3量,wt%Na,ppm - -- 580 -表面积,m2g-1392 542 711 685 779α1050 420 60 60 -ucs,nm - -- 2.438-蒸汽钝化了的催化剂(815℃4小时)表面积(m2g-1) 290 362 187 534 545α13 28 1-实施例2钒交换沸石的制备如表2总结的那样制备具有变化的孔径的一系列钒交换沸石。制备步骤与实施例1的类似,除了将硫酸氧钒用作钒交换。沸石孔中的钒负载量在0.1%钒到1.1wt%钒的范围内变化。
用X-射线光电光谱学(XPS)评定V在V/USY中的氧化态。对新的蒸过的V/USY测量的键能与参比样品V2O4和V2O5的相近。XPS结果表明在V/USY的钒类的氧化态在Ⅳ价和Ⅴ价之间。当它被充分氧化,氧化态接近于V5+。在高温下用丙烯/N2还原,氧化态就变为V4+(见表面催化,I.M.Campbell,4.4.4章,Chapman and HVALL有限公司,纽约,1988,对XPS催化特性的讨论)。表2钒/沸石实施例物理特性V/ZSM-5V/MCM/49V/β V/USY V/MCM-41锻烧了的催化剂的含钒0.2 0.4 0.81.10.1量,wt%Na,ppm 205 - - 330 -表面积,m2g-1409 543 723732 770α950430 84020 -ucs,_ -- -24.36-蒸汽钝化了的催化剂(815℃4小时)表面积(m2g-1)328 404 169 268549α -- - 1 -实施例3铁交换沸石的制备如表3所示制备具有不同孔径的一系列铁交换沸石。使用SiO2/Al2O3比率为26/1的ZSM-5,SiO2/Al2O3比率为19/1的MCM-49,SiO2/Al2O3比率为35/1的β和SiO2/Al2O3体积比为5.4的低单元晶胞大小的USY(CBV600 USY,24.38_ UCS)样品。制备步骤与实施例1的类似,除了将氯化铁(Ⅲ价)用于铁交换。沸石中载荷的铁含量变化很大,从0.6到3.5wt%铁的范围。所有的交换沸石在蒸汽钝化时表现出优良的表面积保留和沸石结晶度。表3铁/沸石实施例的物理特性Fe/ZSM-5 Fe/MCM/49 Fe/β Fe/USY锻烧了的催化剂的含铁量,wt%0.6 1.22.0 3.5表面积,m2g-1402586 704771α 1540 320 140 20ucs,_ - -- 24.35蒸汽钝化了的催化剂(815℃4小时)表面积(m2g-1) 322456 419 509α 1.4 1.9 1.70.8实施例4钴交换沸石的制备如表4所示制备具有不同孔径的一系列钴交换沸石。采用的交换步骤是根据Li等在Applied Catalysis A150,1997 pp231-242公开的实验。使用26/1 m2g-1的ZSM-5,SiO2/Al2O3比率为450/1的含硅ZSM-5,SiO2/Al2O3比率为35/1的β、SiO2/Al2O3体积比为5.4的USY(产自希腊的Z14 USY,24.52_ UCS)和含硅的MCM-41。将从Aldrich购买的28.2g CoCl3.6H2O均匀研细,与50g SiO2/Al2O3比率为26/1的ZSM-5晶体混合,然后将混合物轻轻研磨在一起。CoCl3.6H2O的重量与ZSM-5中2∶1摩尔比的钴和铝含量是对应的。混合物加入到有开口盖的瓷盘中,在370℃气氛中煅烧6小时。将煅烧产品倒进去离子水中并静置10分钟,过滤,用去离子水冲洗,直到冲洗液中不含Cl-。然后将滤饼干燥,并在540℃下煅烧3小时。其它沸石的制备步骤与Co/ZSM-5的类似,除了将USY中使用Co∶Al摩尔比0.5∶1,过剩的Co用作硅沸石。沸石中的钴负荷量在1.5到3.2重量%钴范围内。所有的交换沸石在蒸汽钝化时表现出优良的表面积保留和沸石结晶度。表4钴/沸石实施例的物理特性Co/ZSM-5Co/ZSM-5Co/β Co/USY Co/MCM-41锻烧了的催化剂的含钴 (26/1)(450/1)量,wt% 3.2 2.2 1.9 2.1 1.5Na,ppm 125 110160 1380 120表面积,m2g-1363 410739 776 738α 200 40 94 108 0蒸汽钝化了的催化剂(815℃4小时)表面积(m2g-1) 284378 182197 409α 3 4 3 00实施例5镓交换沸石的制备如表5所述制备具有不同孔径的一系列镓交换沸石。使用SiO2/Al2O3比率为26/1的ZSM-5,SiO2/Al2O3比率为19/1的MCM-49,SiO2/Al2O3比率为35/1的β和SiO2/Al2O3体积比为5.4的USY(产自希腊的Z14 USY,2.452 nm UCS)样品。制备步骤与实施例1的类似,除了将硝酸镓(Ⅲ价)用于镓交换。沸石中的镓载荷量在0.7到5.6wt%镓范围内变化。所有的交换沸石在蒸汽钝化时表现出优良的表面积保留和沸石结晶度。表5镓/沸石实施例的物理特性Ga/ZSM-5 Ga/MCM/49 Ga/β Ga/USY锻烧了的催化剂的含镓量,wt% 0.71.2 3.15.6表面积,m2g-1403 571708788α1700 320 60 -ucs,nm - --2.450蒸汽钝化了的催化剂(815℃4小时)表面积(m2g-1) 331 429244 714α3 40 18 -
实施例6框架含铁ZSM-5沸石的制备将有不同框架铁含量的[Fe]ZSM-5 沸石样品首先在480℃氮气下煅烧3小时。用1 mol/L醋酸铵溶液(10-cc/g沸石)在65℃下铵交换1小时,过滤并用去离子水冲洗。重复多次铵交换并在540℃下煅烧6小时。H-型[Fe]ZSM-5样品的物理特性概括于表6。所有的交换沸石在蒸汽钝化时表现出优良的表面积保留和沸石结晶度。表6铁/沸石实施例的物理特性[Fe]ZSM-5 [Fe]ZSM-5 [Fe]ZSM-5 [Fe]ZSM-5锻烧了的催化剂的含铁量,wt% 2.4 4.46.2 10.4Al,wt% 0.530.23 0.29 0.34Na,wt% 0.012 0.036 0.0521.3表面积,m2g-1- 385 375 243α26 8 4 1蒸汽钝化了的催化剂(815℃4小时)表面积(m2g-1) 335 354 338 194实施例7框架含金属的MeAPO分子筛的制备含金属的AIPO-11和AIPO-5从UOP(MeAPO)获得。在评价前将它们在815℃ 100%蒸汽中蒸4小时。在表7总结的物理特性表明FeAPO-5和ZnAPO-5比FeAPO-11和MnAPO-5有更好的水热稳定性。表7MeAPO分子筛的物理特性FeAPO-11 MnAPO-5 FeAPO-5 ZnAPO-5锻烧了的催化剂的金属含量,wt% 2.3%Fe 0.3%Mn 2.1%Fe0.3%ZnNa,ppm 160 <50<50 120表面积,m2g-1227 371 372 345α 0.5 1.4 1.1 2.6蒸汽钝化了的催化剂(815℃4小时)表面积(m2g-1) 6 7 134186
实施例8钒/铝和锌/铝催化剂的制备在这一实施例的催化剂作为参比例而制备,以与钒浸制的铝催化剂比较,从而表现出金属/沸石系统(见实施例16)的唯一性。
1.V/Al2O3催化剂的制备通过喷雾干燥氧化铝的水浆液将pseudobohemite无定形氧化铝制成流体催化剂微粒。喷雾干燥的Al2O3微粒,表面积200 m2g-1,用含草酸钒的溶液浸制到1重量%钒。通过加热在70g去离子水中的15 g的草酸和9.5 g的V2O5制备草酸钒溶液(6重量%的钒)。加热混合物直到所有的V2O5反应并溶解。向所得钒溶液另外加入水到总溶液为100g。将8.3g6%的钒溶液用水稀释到48 ml,浸渍喷雾干燥的Al2O3微粒(99 g干基质)以填入催化剂孔中。然后将该物质在100℃干燥2小时。
2.Zn/Al2O3催化剂的制备将喷雾干燥的Al2O3,表面积200 m2g-1,用Zn(NO3)2溶液浸制到含10重量%的锌。用溶于足量水的45.5 g Zn(NO3)2·6H2O浸渍87.5 gAl2O3(干基质)制成49ml溶液。该物质在100℃干燥2小时然后在650℃煅烧2小时。表8V/Al2O3和Zn/Al2O3添加剂的物理特性
下面的实施例,从实施例9到15,说明利用本发明的脱硫添加剂而改善的催化裂解工艺。
实施例9锌交换沸石的流体催化裂解评估将实施例1的锌/沸石压丸并调整大小为平均粒度约7微米(T),然后在马弗炉中815℃下蒸4小时以模拟在FCC单元中的催化剂钝化。用10重量%的蒸过的锌/沸石丸与蒸气钝化的从W.R.Grace得到的Super Nova DTMFCC催化剂混合。SuperNova DTM在770℃ 50%蒸气下钝化20小时。
用ASTM微活性试验(ASTM步骤D-3907)对添加剂做柴油裂解活性和选择性测验。在下表列出减压粗柴油原料的特性。通过改变催化剂对油的比率扫描转化率的范围并在525℃进行反应。用硫GC(AED)分析每一物料平衡中的汽油范围的产品以测定汽油硫浓度。为了减少在与汽油蒸馏馏分点的波动相关的硫浓度的实验误差,将在共原料中从噻吩到C4-噻吩的硫类(去除苯并噻吩和沸点更高的硫类)定量并将其总和定义为“馏出汽油硫”。
真空气油进料的特性进料特性API比重 26.6苯胺点℃ 83CCR,重量% 0.23硫,重量% 1.05氮,ppm 600碱性氮,ppm 310Ni,ppm 0.32V,ppm 0.68Fe,ppm 9.15Cu,ppm 0.05Na,ppm 2.93蒸馏IBP,℃ 18050重量%,℃ 38099.5重量%,℃ 610在表9总结了催化剂的性能,其中内推产品的选择性为恒定的转化率,进料到220℃-材料有65重量%或70重量%转化。表9锌/沸石实施例的催化裂解性能量剂 +10%+10% 量剂 +10%+10%情况 Zn/ZSM-5 Zn/MCM-41 情况 Zn/MCM-49 Zn/β只含锌的沸石含锌量无 1.5 8.3 无 0.9 2.0MAT产品转化率wt% 65 6565 70 7070催化剂/油2.4 2.3 2.4 3.23.2 3.1H2得率,wt% 0.05 +0.02 +0 0.06 +0.04+0.13C1+C2气,wt% 1.1+0.4 -0.1 1.4 +0.3 +0所有C3气,wt% 4.1+3.7 +0 4.8 +1.9 +0.8C3=得率,wt% 3.5+3.1 +0 4.1 +1.3 +0.7所有C4气,wt% 8.4+3.4 +0 9.6 +2.2 +1.2C4=得率,wt% 4.4+1.3 +0 4.8 +0.2 +0.5IC4得率,wt% 1.0+1.8 +0 4.0 +1.7 +0.6C5+汽油,wt% 48.9 -8.0 -0.4 50.8 -5.5 -3.0LFO,w% 29.5 -0.8 -0.1 24.9 -0.2 -0.3HFO,wt% 5.52 +0.8 +0 4.6 +0.1 +0.3焦碳,wt% 2.2+0.4 +0 2.6 +0.9 +0.8汽油馏分S502 394 453 374328 284PPM在汽油馏分S的脱氢% 量剂21.49.6 量剂 12.4 24.3在进料汽油S中的脱氢%量剂34.29.0 量剂 21.8 28.7表9前三栏总结了当将10重量%的沸石结晶混合到一般的FCC催化剂中进行汽油脱硫时,用Zn2+交换ZSM-5和MCM-41沸石使性能增强。用Zn/ZSM-5沸石汽油硫浓度减少了21.4%,用Zn/MCM-41减少了9.6%。Zn/ZSM-5将一些汽油和LCO范围的物质转化为C3和C4链烯和异丁烷。这些有价值的C3和C4成分一般烷基化为汽油范围的产品并重新混合进汽油池中。因此当考虑潜在的烷基化产物时汽油的净体积就不会显著降低。
为了指出由于各种沸石造成的汽油体积损失,也比较了基于进料硫的脱硫率。当考虑了汽油体积损失再重新计算脱硫结果,Zn/ZSM-5脱硫达34%,Zn/MCM-41脱硫9%。我们观察到氢和焦碳产率只稍微增加。Zn/MCM-41结果的较差性能提示对汽油脱硫而言酸和金属的存在都是需要的。
锌交换MCM-49和β沸石也表明了在FCC条件下汽油脱硫的潜力(表9)。用Zn/MCM-49汽油硫浓度减少12%,用Zn/β脱硫24%。当结合考虑到汽油体积损失重新计算结果,Zn/MCM-49脱硫22%,Zn/β脱硫29%。观察到氢和焦碳产率只中度增加。
实施例10钒交换沸石的流体催化裂解评估将实施例2的钒/沸石压丸并调整大小为平均粒度约70T,然后在马弗炉中815℃下蒸4小时。用10重量%的蒸过的V/ZSM-5、V/MVM-49和V/β丸与蒸气钝化的、从W.R.Grace得到的Super Nova DTMFCC催化剂混合。蒸气钝化的V/ZSM-5丸催化剂与来源于FCC单元的平衡催化剂(Ecat)混合。平衡催化剂金属含量很低(120ppm V和60ppm Ni)。在表10总结了钒/沸石的性能。表10钒/沸石催化裂解性能蒸汽FCC催化剂 E-催化剂量剂 +10%+10% +10% E 催化剂 +10%情况 V/ZSCM-5 V/MCM-49 V/β量剂 V/USY只含钒的沸石含钒量 无 0.20.4 0.8 无 2.0MAT产品转化率wt% 70 70 70 7070 70催化剂/油 3.7 3.3 3.63.44. 23.1H2得率,wt% 0.070.03 +0.01 +0.1 0.04 +0.13C1+C2气,wt%1.5 +1.3 +0.2 0 1.6 +0.03所有C3气,wt% 4.9+6.5 +1.7 +1.05.4-0.3C3=得率,wt% 4.0+4.9 +1.2 +0.84.4-0.5所有C4气,wt% 10.2+5.5 +2.2 +1.2 10.5-0.7C4=得率,wt% 4.7+1.5 +0.5 +0.74.9-0.7IC4得率,wt%4.6+3.5 +1.5 +0.54.8-0.1C5+汽油,wt%50.0 -14.4 -3.8 -2.9 49.3+0.4LFO,wt% 25.6-0.9-0.3 -0-425.6-0.5HFO,wt% 4.4+0.9+0.3 +0.44.4+0.5焦碳,wt% 3.2+0.9+0.4 +0.63.2+0.2汽油馏分S 412 370 344 243 505 127PPM在汽油馏分的脱硫% 量剂10.116.641.0量剂74.8在进料量剂汽油的脱硫% 量剂35.922.844.4量剂74.6
钒水交换的沸石在MAT评估中对汽油脱硫非常有效。在蒸汽钝化后10重量%的V/ZSM-5、V/MCM-49、V/β和V/USY(0.8%)和碱裂解催化剂混合能得到满意的结果,观察到各汽油脱硫10%、17%、41%和75%(基于汽油硫浓度)。当结合汽油体积损失重新计算结果,V/ZSM-5、V/β和V/USY看来都很有前途。观察到氢和焦碳产率只中度增加。
实施例11 铁交换沸石的流体催化裂解评估将实施例3的铁交换沸石压丸并调整大小为平均微度约70T,然后在马弗炉中815℃下蒸4小时以模拟在FCC单元的平衡性能。用10重量%的Fe/MCM-49、Fe/β和Fe/USY丸与FCC单元的平衡催化剂混合。平衡催化剂金属含量很低(120ppmV和60ppm Ni)。在表11总结了铁/沸石的性能。表11铁/沸石实施例的催化裂解性能ECat +10% +10% +10%量剂情况 Fe/MCM-49 Fe/β Fe/USY沸石含铁量,wt% 无1.2 2.0 3.5MAT产品转化得率wt% 65 65 65 65催化剂/油 3.0 4.3 3.4 2.0H2得率,wt% 0.03 +0.07 +0.15 +0.19C1+C2气,wt%1.0+0.5+0.2+0所有C3气,wt%4.2 +2.7+1.9-0.3C3=得率,wt% 3.5 +1.5+1.5-0.4所有C4气,wt%9.3 +4.0+2.1-0.8C4=得率,wt% 4.7 -0.1+0.9-1.0i-C4得率,wt% 4.0 +3.5+1.1+0.1C5+汽油,wt% 47.9 -9.6-6.1-0.8LFO,wt%29.7 -1.7-0.3-0.1HFO,wt%5.4 +1.7+0.3+0.1焦碳,wt% 2.5 +2.5+1.9+1.6汽油馏分S,PPM 566395 347 283在汽油馏分的脱硫%量剂 30.238.750.0在进料汽油的脱硫%量剂 44.246.450.9
铁交换沸石在MAT评估中对汽油脱硫也非常有效。10重量%的Fe/MCM-49、Fe/β和Fe/USY与平衡FCC催化剂混合各汽油脱硫30%、39%和50%(基于汽油硫浓度)。当结合汽油体积损失重新计算结果,Fe/MCM-49、Fe/β和Fe/USY各汽油脱硫44%、46%和51%。Fe/MCM-49、Fe/β将大部分汽油和LCO范围的产物转化为C3和C4链烯和链烷烃。Fe/USY能保持液体产率并稍微降低C3和C4链烯的产率。
上面得到的产量结构提示当从FCC中希望得到更多的低硫汽油和C4-链烯和异链烷烃时,金属交换ZSM-5、MCM-49和β是优选的。当更希望得到最大的汽油产量时,金属交换USY催化剂是优选的。
实施例12钴交换沸石的流体催化裂解评估将实施例4的钴固态交换沸石压丸并调整大小为平均粒度约70T,然后在马弗炉中815℃下蒸4小时以模拟在FCC单元的平衡性能。用10重量%的蒸过的钴粒与FCC单元的平衡催化剂混合。平衡催化剂金属含量很低(120ppm V和60ppm Ni)。在表12总结了钴/沸石的性能。表12钴/沸石实施例的催化裂化效果ECat+10% +10%+10%+10%量剂 Co/ZSM- Co/ZSM-5 Co/USY Co/MCM-情况 5 (450/1) 41(26/1)沸石钴荷载量wt%无 3.22.2 2.1 1.5MAT产品产量转化,wt% 72 72 72 72 72催化剂油3.7 3.53.82.3 4.0H2产量,wt% 0.04 +0.19 0.07 +0.09+0.14总C3气,wt% 5.8+4.9 +1.6 +0.2 +0.1C3=产量,wt% 4.9+3.5+1.4 -0.6 +0.1总C4气,wt% 11.4+3.9 +1.7 -0.2 +0.2C4=产量,wt% 5.6 +0.9 +0.9 -1.6 +0.3IC4产量,wt% 5.0 +2.6 +0.7 +0.9 -0.1C5+汽油,wt%50.0 -12.0 -3.7 -1.4 -.9LFO,wt% 24.0-1.1 -0.3 -0.6 +0HFO,wt% 4.0+1.1 +0.3 +0.6 +0焦炭,wt% 3.0+1.7 +0.3 +0.9 +0.6汽油馏分中的硫,PPM 502 409337 305 414汽油馏分中的脱硫率%量剂18.5 32.9 39.2 17.5进料汽油脱硫率%量剂38.1 37.9 40.8 19.1
这些结果表明用MAT评价钴交换沸石在汽油脱硫方面也是有效的。将10重量%的Co/ZSM-5(26/1),Co/ZSM-5(450/1),Co/USY和Co/MCM-41和平衡的FCC催化剂混合得到19%,33%,39% 18%的汽油脱硫效果(汽油S浓度基准)。当结合汽油体积的损失来重新计算,脱硫率分别为38%,38%,41%和19%。
实施例13一镓交换沸石的流体床催化裂化评估将实施例5中的镓交换β和USY沸石压丸并高速大小为平均粒度约70T,然后在马弗炉中815℃蒸4小时以模拟FCC单元中的平衡性能。10%的沸石颗粒与来自FCC单元的平衡催化剂混合。平衡催化剂具有非常低的金属水平(120ppmV和60ppm Ni)。镓/沸石的性能概括于表13。表13镓/沸石实施例的催化裂化效能ECat +10% +10%量剂情况Ga/B Ga/USY沸石镓荷载量 无 3.1 5.6MAT产品产量转化度wt% 70 70 70催化剂/油 3.3 3.3 2.4H2得率,wt% 0.04+0.15 +0.22C1+C2气,wt% 1.5+0.1+0.1所有C3气,wt% 5.7+0.6-0.2C3=得率,wt% 4.8+0.5-0.4所有C4气,wt% 11.5+0.8-0.6C4=得率,wt% 5.6+0.6-0.9IC4得率,wt% 4.9+0.2+0.2C5+汽油,wt% 48.5-2.4-1.0LFO,wt% 25.3+0.3-0.6HFO,wt% 4.7+0.3+0.6焦炭,wt%2.6+0.8+1.4馏分汽油中的硫,PPM 505 440 320汽油馏分的脱硫率%量剂 13 36原料汽油脱硫率% 量剂 17 38
如这些结果所述,在FCC条件下镓交换沸石也能降低汽油中的硫。将10%镓/β沸石和镓USY与平衡的FCC催化剂混合得到13%和36%的汽油脱硫率(Gasoline S concentration basis)。
实施例14-含框架铁ZSM-5沸石的流体床催化裂化评估将实施例6的含框架铁[Fe]ZSM-5沸石压丸并调节大小至平均粒度约70T,然后在马弗炉中815℃蒸4小时以模拟FCC单元中的平衡性能。10%的沸石颗粒与来自FCC单元的平衡催化剂混合。平衡催化剂具有非常低的金属水平(120ppmV和60ppm Ni)。[Fe]ZSM-5的性能概括于表14。表14[Fe]ZSM-5实施例的催化裂化性能量剂 +10% +10% +10%情况 [Fe]ZSM-5 [Fe]ZSM-5 [Fe]ZSM-5沸石镓荷载量 无 4.4 6.2 10.4MAT产品产量转化度wt% 70 7070 70催化剂/油 3.3 3.2 3.1 3.5H2得率,wt% 0.03 +0.06 +0.07 +0.07C1+C2气,wt% 1.4+0.4 +0.2 +0.1所有C3气,wt% 5.4 +0.7 +0.3 +0.1C3=得率,wt% 4.5 +0.5 +0.1+0.1所有C4气,wt% 10.8+0.8 +0.3+0.2C4=得率,wt% 5.3+0.2 +0 +0.2i-C4得率,wt% 4.6+0.4 +0.2 +0C5+汽油,wt% 49.6 -2.1 +0.9+0.6LFO,wt% 25.8-0.6 -0.6-0.2HFO,wt% 4.2 +0.6 +0.6+0.2焦炭,wt%2.6 +0.5 +0.3+0.4馏分汽油中的硫,PPM 495 246 326 453汽油馏分的脱硫率% 量剂 54.1 39.015.2原料汽油脱硫率% 量剂 56.1 40.216.2在这些MAT评估中,含框架铁的ZSM-5对汽油脱硫有效。取决于框架铁含量,[FE]ZSM-5与平衡的FCC催化剂混合得到54%、39%和15%的汽油脱硫率(汽油S浓度基准)。含4%铁的ZSM-5具有最令人满意的脱硫活性。随着脱硫性能的增加,H2和焦炭的产量只是稍有增加。[Fe]ZSM-5样品具有低汽油体积损失和低焦炭和氢气产量增加。
实施例15-含框架铁MeAPO分子筛的流体床催化裂化评估将实施例7的含框架铁FeAPO-5分子筛压丸并调节大小至平均粒度约70T,然后在马弗炉中815℃蒸4小时以模拟FCC单元中的平衡性能。10%的FeAPO-5颗粒与来自FCC单元的平衡催化剂混合。平衡催化剂具有非常低的金属水平(120ppmV和60ppm Ni)。FeAPO-5的性能概括于表15。表15FeAPO-5分子筛的催化裂化性能量剂ECat +10%FeAPO-5分子筛金属荷载量 无2.1%FeMAT产品产量转化度wt%70 70催化剂/油 3.23.1H2得率,wt%0.03 +0.02C1+C2气,wt%1.4 +0.3所有C3气,wt% 5.4 -0.6C3=得率,wt%4.5 -0.2所有C4气,wt% 10.9 -1.4C4=得率,wt% 5.5 -0.1IC4得率,wt% 4.6 +1.2C5+汽油,wt% 49.5 -2.7LFO,wt% 25.7 -1.0HFO,wt% 4.3 +1.0焦炭,wt%2.6 +0.5馏分汽油中的硫,PPM 482 336汽油馏分的脱硫率%量剂 11.5原料汽油脱硫率% 量剂 16.3
FeAPO-5 分子筛也能在FCC条件下脱去汽油中的硫。10重量%的FeAPO-5与平衡的FCC催化剂混合得到12%的汽油脱硫率(汽油S浓度基准)。
下面的实施例16和17表明为了实现有效的汽油脱硫,将金属成分定位于分子筛成分孔状结构内部是很重要的。
实施例16-钒交换β催化剂对钒/氧化铝催化剂的性能比较在本实施例中,将本发明的金属交换沸石概念实践为商业上可行的流体催化剂形式(催化剂A和B)并与实施例8的参比催化剂(钒浸渍的氧化铝催化剂)比较。
使用具有二氧化硅-与-氧化铝的比为35的商品化NH4-形式的β制备V/β催化剂-催化剂A。NH4-形式的β在N2中480℃煅烧3小时然后在空气中540℃煅烧6小时。得到的H-形式的β与VOSO4溶液的V4+交换。交换过的β进一步清洗、干燥和空气煅烧。得到的V/β含有1.3重量%的V。通过喷雾干燥含二氧化硅-氧化铝/粘土基质中占40重量%V/β结晶体的含水稀浆来制备流体催化剂。基质含25重量%二氧化硅、5重量%氧化铝和30重量%高岭土。喷雾干燥的催化剂在540℃煅烧3小时。成品催化剂含0.56%V。用试验装置评估前,用50%蒸汽和50%空气在770℃和 1Atm对催化剂钝化20小时。
使用相似的步骤制备V/β催化剂-催化剂B。通过后交换钒将额外的钒荷载到H-形式的β上。通过喷雾干燥含二氧化硅-氧化铝/粘土基质中占40重量%V/β结晶体的含水稀浆将二氧化硅-与-氧化铝的比为35的商业NH4-形式的β转化成流体催化剂。基质含25重量%二氧化硅、5重量%氧化铝和30重量%高岭土。喷雾干燥的催化剂在540℃煅烧3小时。H-形式的β催化剂与VOSO4溶液交换V4+。交换过的β催化剂进一步清洗、干燥和空气煅烧。得到的V/β催化剂含0.45%V。用试验装置评估前,用50%蒸汽和50%空气在770℃和1Atm将催化剂钝化20小时。
10重量%的每种催化剂与来自FCC单元的平衡催化剂混合。平衡催化剂具有非常低的金属水平(120ppm和60ppm Ni)。性能总结于表16。表16V/β与V/Al2O3催化剂的催化裂化性能比较量剂ECat+10%+10%+10%情况V/βV/βV/氧化铝(催化剂A) (催化剂B)辅助催化剂钒载荷量 无 0.56 0.451.0MAT产品产量转化度wt%70 707070催化剂/油 3.23.2 2.8 3.8H2得率,wt% 0.03 +0.06+0.04 +0.19C1+C2气,wt%1.4 +0 -0.1+0.1所有C1气,wt%5.4 +0 +0.4-0.1C3=得率,wt% 4.5+0.4 +0.4-0.1所有C4气,wt%10.9 +0.1 +1.0-0.2C4=得率,wt% 5.5+0.2 +0.6+0.1i-C4得率,wt% 4.6+0.4 +0.4-0.2C5+汽油,wt% 49.5 -0.3 -1.5-0.9LFO,wt%25.7 -0.3 -0.3 +0HFO,wt%4.3+0.3 -0.3 +0焦炭,wt% 2.6+0.2 +0.1+1.0馏分汽油中的硫,PPM 482 336 342 408汽油馏分的脱硫率% 量剂30.329.215.5原料汽油脱硫率% 量剂30.831.217.1基于本发明的催化剂制剂(催化剂A和催化剂B)对汽油脱硫非常有效。当10重量%催化剂A和B(4重量%β沸石添加物)分别与平衡FCC催化剂混合,实现汽油硫浓度减低30%。比较而言,V/氧化铝催化剂只能实现汽油硫浓度降低15%。虽然在混合催化剂成品中V/氧化铝催化剂(0.1%对0.02%)的钒荷载量更高,脱硫活性却更低。这些意外结果清楚表明了本发明的益处。此外,本发明的催化剂表明对氢气和焦炭的产量仅有较低增加。
实施例17-钒交换USY与含钒平衡FCC催化剂的性能比较使用具有5.4大二氧化硅-氧化铝比率的低晶胞大小的USY(24.35_ UCS)制备V/USY催化剂-催化剂C。原始H-形式的USY与VOSO4溶液的V4+交换。交换过的USY进一步清洗、干燥和空气煅烧。得到的V/USY含有1.3重量%的V。通过喷雾干燥含二氧化硅-氧化铝凝胶/粘土基质中占40重量%V/USY结晶体的含水淤浆来制备流体催化剂。基质含25重量%二氧化硅、5重量%氧化铝和30重量%高岭土。喷雾干燥的催化剂在540℃煅烧3小时。成品催化剂含0.46%V。用试验装置评估前,用50%蒸汽和50%空气在770℃和1Atm将催化剂钝化20小时。
25重量%的V/USY催化剂与来自FCC单元的平衡催化剂混合。平衡催化剂具有非常高的金属水平(2900ppmV和720ppm Ni)。性能总结于表17。表17V/USY添加催化剂与高钒含量的ECat的催化裂化性能比较高V ECat +25%V/USY情况 (催化剂C)发明催化剂的总钒荷载量 0.29 0.33MAT产品产量转化度wt% 7070催化剂/油 3.0 3.7H2得率,wt%0.08+0.13C1+C2气,wt% 1.2 +0.3所有C3气,wt% 5.0 +0.3C3=得率,wt% 4.3 +0.2所有C4气,wt%10.1+0.1C4=得率,wt% 5.8 +0.2iC4得率,wt% 3.7 -0.2C5+汽油,wt%46.2-1.5LFO,wt% 29.1-0.3HFO,wt% 5.9 +0.3焦炭,wt% 2.1 +0.7馏分汽油中的硫,PPM 367 273汽油馏分的脱硫率% 量剂 25.6原料汽油脱硫率% 量剂 28.0基于本发明的催化剂制剂(催化剂C)在降低汽油硫浓度方面比高钒荷载量的平衡催化剂更为有益。当25重量%催化剂C(10重量%V/USY沸石添加物)分别与平衡FCC催化剂混合,实现汽油硫浓度减低28%。对表17所列两种情况,最终混合催化剂的钒荷载量是相似的(0.29%对0.33%的钒),但催化剂C具有更高的脱硫活性。
实施例18-Mo/MCM-49/Al2O3和Pd/β/Al2O3催化剂的性能本实施例表明在FCC中将金属离子加入沸石孔以及正确选择金属以获得低硫汽油产品的重要性。
使用H-形式的65重量%MCM-49/35重量%氧化铝压出物制备Mo/MCM-49/氧化铝催化剂-催化剂D。将65份MCM-49和35份pseudobohemite氧化铝粉末(LaRoche VersalTM氧化铝)的物理状态混合物研磨成均匀混合物并使用标准augur挤出机制成1.5mm圆柱形挤出物。挤出物在带式过滤器上120℃干燥并在氮气中540℃煅烧3小时。挤出物经过干燥和540℃空气煅烧后,使用5cc/g的NH4NO3溶液进行铵交换。然后将催化剂在100%蒸汽中480℃下蒸约4小时。
使用含七钼酸铵(ammonium heptamolybdate)和H3PO4的溶液浸渍H-形式的MCM-49氧化铝挤出物,使之浸渍4重量%Mo和2重量%P。七氯钼酸铵中的钼离子存在于由7和钼原子和24个氧原子构成的多聚阴离子笼形结构中,[Mo2O24]6-(Greenwood and Eamshaw,“Chemistry of the Elements”,pp 1177,Pergamon Press,1984)。钼多聚阴离子太大以致于不能填入沸石孔,因此所有的钼原子选择性沉积在沸石晶体和氧化铝基质的外表面。将钼浸渍的挤出物在空气中540℃下干燥并煅烧3小时。
Pd/β/Al2O3催化剂-催化剂E是通过下列步骤制备的。将65份沸石β和35份pseudobohemite氧化铝粉末的物理状态混合物研磨成均匀混合物。加入四胺氯化钯的稀释溶液(相当于0.6重量% Pd)将固体水平的研磨混合物调制成可挤出的糊。使用标准augur挤出机将研磨混合物制成1.5mm圆柱形挤出物。挤出物在120℃干燥过夜,然后在480℃氮气煅烧3小时,接着在540℃空气煅烧6小时。
将催化剂D和E调节大小至平均粒径约70m,然后在马弗炉中540℃蒸4小时以模拟FCC单位中的平衡性能。10重量%添加剂与实验室钝化的FCC催化剂(优质Nova DTM,W.R.Grace)混合。性能总结于表18。表18Mo/MCM-49和Pd/β催化剂的催化裂化性能量剂情况+10%+10%MoMCM-49/氧化铝 Pd/Beta/氧化铝(催化剂D) (催化剂E)辅助催化剂的金属荷载量 无 4%Mo 1%PdMAT产品产量转化度wt%7575 75催化剂/油 3.8 4.4 4.2H2得率,wt% 0.11 +0.33 +0.75C1+C2气,wt%2.2 -0.2+0.3所有C3气,wt% 5.4 -0.5+0.4C3=得率,wt% 4.5 -0.4+0.4所有C4气,wt% 12.3 -0.7-0.4C4=得率,wt% 6.3+0 +0.2i-C4得率,wt% 4.90.5-0.4C5+汽油,wt%50.2 -1.3-5.8LFO,wt%21.3 +0.1-0.4HFO,wt% 3.7 -0.1+0.3焦炭,wt%3.4 +2.4 +4.8馏分汽油中的硫,PPM 368359 668汽油馏分的脱硫率%量剂 2.5 -81Mo/MCM-49催化剂(非发明)在汽油脱硫方面性能非常差,汽油脱硫率仅有2.5%。这种催化剂的不良性能可能归因于不合需要的金属(Mo)的选择以及Mo的位置(均结合在与沸石孔状结构内部相对的一面)。
Pd/β催化剂的性能特别差,增加80%汽油含硫量。Pd/β的不良性能可能归因于不合需要的金属的选择以及高氢化功能。这两种催化剂都显著增加焦炭和氢气的产量。这一实施例证明金属的位置和选择在FCC条件下的汽油脱硫中很重要。
权利要求
1.一种降低催化裂化石油馏分含硫量的方法,包括在高温下有产品脱硫催化剂存在的条件下催化裂化石油原料馏分,制备低含硫量的液态裂化产品,该脱硫催化剂包括一种在其孔状结构内部含有金属成分的多孔分子筛和一种氧化态大于零的金属。
2.如权利要求1所述的方法,其中裂化是在含有大孔径八面沸石的裂化催化剂的存在下进行。
3.如权利要求1或2所述的方法,其中的产品脱硫催化剂包括一种大孔或中孔沸石作为分子筛成分以及作为金属成分的至少一种元素周期表第3周期第5、8、9或12族的金属。
4.如权利要求3所述的方法,其中的产品脱硫催化剂中的沸石包括沸石USY、沸石β、ZSM-5、MCM-22或MCM-49。
5.如权利要求4所述的方法,其中的产品脱硫催化剂包括一种UCS是2.420-2.455nm及α值为0.2-300和5.0的大二氧化硅/氧化铝比值的USY沸石作为分子筛成分以及作为金属成分的至少一种氧化态大于零的锌或钒。
6.如权利要求1-5中任一项所述的方法,其中除裂化催化剂外还存在的脱硫催化剂是分散的颗粒辅助催化剂。
7.如权利要求1-5中任一项所述的方法,其中脱硫催化剂存在于整合裂化/脱硫催化剂体系中。
8.如权利要求7所述的方法,其中脱硫催化剂的分子筛成分是催化剂体系的活性分子筛裂化成分。
9.一种在催化裂化过程中降低催化裂化汽油馏分含硫量的可流动催化裂化产品脱硫辅助催化剂,包括粒径为20-100微米的分子筛裂化成分的可流动颗粒,分子筛孔状结构内部含有金属成分,该金属成分包括至少一种氧化态大于零的铁、钴或钒。
10.如权利要求9所述的可流动催化裂化产品脱硫辅助催化剂,其中的分子筛成分包括一种大孔或中孔沸石分子筛。
11.如权利要求10所述的可流动催化裂化产品脱硫辅助催化,其中的大孔分子筛包括一种UCS为2.420-2.455nm,α值为0.2-300以及至少5.0的大二氧化硅/氧化铝比值的USY沸石。
12.如权利要求9所述的可流动催化裂化产品脱硫辅助催化剂,其中的大孔径沸石分子筛包括沸石β、丝光沸石或ZSM-20。
13.如权利要求9-12中任一项所述的可流动催化裂化产品脱硫辅助催化剂,其中含有基于沸石重量0.2-5%的金属成分。
14.如权利要求13所述的可流动催化裂化产品脱硫辅助催化剂,其中包括铁、钴或钒中的至少一种作为金属成分。
15.如权利要求9-14中任一项所述的可流动催化裂化产品脱硫辅助催化剂,其中的金属成分被引进分子筛作为分子筛孔内的交换阳离子。
16.一种用于裂化重烃原料来生产包括汽油的液态裂化产品以及用于在催化裂化过程中降低催化裂化汽油馏分的含硫量的整合的可流动催化裂化/产品脱硫催化剂,包括孔径为20-100微米的大孔径沸石分子筛成分的可流动颗粒,分子筛中含有至少一种铁、钴或钒。
17.如权利要求16所述的整合的可流动催化裂化/产品脱硫催化剂,其中的大孔径分子筛成分包括一种UCS为2.420-2.455nm,α值为0.2-300以及至少5.0的二氧化硅/氧化铝比值的USY沸石。
18.如权利要求16或17所述的整合的可流动催化裂化/产品脱硫催化剂,其中含有基于沸石重量0.1-5%的金属成分。
19.如权利要求16-18中任一项所述的整合的可流动催化裂化/产品脱硫催化剂,其中的金属成分包括锌和至少一种铁、钴和钒。
20.如权利要求16-19中任一项所述的整合的可流动催化裂化/产品脱硫催化剂,其中的金属成分被引进分子筛作为分子筛孔内的交换阳离子。
全文摘要
通过使用包括一种多孔分子筛的脱硫添加剂降低催化裂化过程中催化裂化产品特别是裂化汽油的含硫量,在多孔分子筛的孔状结构内部含有氧化态大于零的金属。分子筛衣摆是大孔径沸石如USY或沸石β或中孔沸石如ZSM-5。金属一般是元素周期表第3周期的金属,优选锌或钒。脱硫催化剂可以单独的颗粒添加剂或整合裂化/脱硫催化剂中的一种成分的形式使用。
文档编号C10G11/18GK1281887SQ99121758
公开日2001年1月31日 申请日期1999年8月31日 优先权日1998年8月31日
发明者A·W·切斯特, T·G·罗贝里, 赵惠京, M·S·兹巴奇 申请人:美孚石油公司, 格雷斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1