吸入侧消声器及密闭型电动压缩机的制作方法

文档序号:5774640阅读:244来源:国知局
专利名称:吸入侧消声器及密闭型电动压缩机的制作方法
技术领域
本发明适用于电冰箱、空气调节器等的密闭型电动压缩机(以下称作压缩机),特别是关于设置在压缩机中的吸入侧消声器。
背景技术
下文简单地说明电冰箱、空气调节器等的冷却原理。压缩机对制冷剂气体进行压缩使其变成高压。将高压制冷剂气体冷却使之液化。液化的制冷剂气体在蒸发器内蒸发、气化时,从冰箱内或室内空气中吸收气化热。再把气化的制冷剂气体送到压缩机中。通过反复地进行以上的动作,可使冰箱或室内空气的温度降低。在本发明中,将制冷剂从压缩机排出到再返回压缩机的上述变化称作冷冻循环。
作为制冷剂,使用不含氯的氟碳氢化合物(HFC)系和碳氢化合物(HC)系的物质。这种制冷剂作为代替因对臭氧层的破坏而受到禁止的氟里昂的制冷剂,近年来得到广泛地应用。特别是,HC系制冷剂,由于其温室效果比较低,使用也有防止地球暖化的目的。
作为以往的压缩机,如日本特公平3-45212号公报所记载的结构,已是公知技术。下面,将这种压缩机称作以往例子1的压缩机。图8是表示以往例子1的压缩机内部的断面平面图。
密闭容器1基本上是圆筒状的,其直径与高度大致相同。密闭容器1的上面及下面将内部空间气密地封闭住。在密闭容器1的内部容纳有公知的压缩机构2、电动机3及吸入侧消声器18。
电动机3由弹簧弹性地支持在置于密闭容器1内部底上的三个支架3上。这时,电动机3设置成使其轴基本上与密闭容器1同轴。电动机3通过端子11与外部电源电连接。
压缩机构2由气缸4、活塞5及曲轴部12构成,设置在电动机3的上部。曲轴部12与电动机3的轴上端相连。在通过曲轴部12传递的电动机3的转动力作用下,活塞5在气缸4内沿水平方向滑动。气缸4内的用于活塞5滑动的空间由活塞5的尖端和阀板6封闭,形成制冷剂气体用的压缩室。阀板在图8中未示出。在阀板6上设有把制冷剂气体向压缩室吸入用的吸入阀和从压缩室排出制冷剂气体的排出阀。隔着阀板6,在压缩室的外侧设有气缸盖7。排出管10连接在气缸盖7上,把制冷剂气体从气缸盖7的内部向密闭容器1外排出。
另一方面,在压缩室的外侧18b上连接有吸入侧消声器18。在吸入侧消声器18的内部设有从压缩室的外侧18b连接到吸入口18a的空腔。吸入口18a以给定间隔与吸入管9的开口端9a相对向。吸入管9从密闭容器1的外部向内部吸入制冷剂气体。
具有以上结构的以往的密闭型电动压缩机通过如下方式的动作提高制冷剂气体的压力,把高压制冷剂气体供给外部的冷冻循环。
当电动机3起动时,通过曲轴部12使活塞5在气缸55内往复滑动。随着这种滑动的进行,压缩室内的空间周期地变化。在压缩室内的空间增加期间,压缩室内的制冷剂气体的压力降低。这时,通过压缩室外侧18b与压缩室内的压力差打开吸入阀(图中省略),将吸入侧消声器18内的制冷剂气体吸入。另一方面,在压缩室内的空间减少期间,压缩室内的制冷剂气体的压力上升。这时,气缸盖7内与压缩室内的压力差使排出阀(图中省略)打开,将压缩室内的高压制冷剂气体向气缸盖7内排出。气缸盖7内的高压制冷剂气体通过排出管10向密闭容器1外面的冷冻循环的高压侧排出。高压制冷剂气体在冷冻循环内压力降低,从冷冻循环的低压侧流入的制冷剂气体通过吸入管9从其开口端9a导入到密闭容器1内。从开口端9a流出来的制冷剂气体几乎原封不动地进入吸入侧消声器18的吸入口18a。通过周期地反复进行以上动作,以往例子1的压缩机将高压制冷剂气体连续供给冷冻循环。
密闭容器1将内部空间与外部切断。由此,使电动机3、压缩机构2及向压缩室吸入时的制冷剂气体等发出的噪音很难漏到外部。另外,密闭容器1防止经过电动机3及压缩机构2各部循环的润滑油飞溅到外部,同时,把润滑油保留在内部空间的底部,使润滑油不会漏到外部。
吸入侧消声器18的作用是衰减向压缩室内吸入的高速制冷剂气体流所产生的噪音。向吸入侧消声器18内流入的制冷剂气体沿着吸入侧消声器18内的空腔流动,并从气缸4内的压缩室的外侧18b吸入压缩室内。要设计吸入侧消声器18内的空腔的形状,使得在这一过程中的制冷剂气体流的速度充分地降低。例如,在吸入侧消声器18中设有内壁(图8中未示),通过该内壁把内部空腔隔成几个室。在这种情况下,制冷剂气体流逐个经过吸入侧消声器18内的室蛇形地流动并前进,使流速降低。结果,降低了制冷剂气体流在压缩室的外部18b附近所产生的噪音量。
吸入侧消声器18如下文所述,其作用是将混入吸入侧消声器18内部的制冷剂气体中的雾状润滑油分离,并且防止该润滑油吸入压缩室内。制冷剂气体通过吸入口18a吸入吸入侧消声器18内时,与在密闭容器1内的空间变成雾状并悬浮的润滑油一起被吸入。雾状润滑油在原来状态下吸入压缩室内时,会粘附在吸入阀或排出阀上,降低其功能。而且,当润滑油通过排出管10向冷冻循环内部排出时,粘附在冷冻循环内的各种部位,也会降低冷冻能力。然而,如上文所述,由于吸入侧消声器18内部的空腔隔成数个室,制冷剂气体流经过各室蛇形地流动并前进。一般来说,由于混入制冷剂气体的润滑油较制冷剂气体重,因此,润滑油会与分割吸入侧消声器18内部的空腔的壁产生冲击,很容易粘附在该位置。这样,粘附在壁上的润滑油朝下方流落到吸入侧消声器18的内部,从吸入侧消声器18底部的小孔(图中未示)向密闭容器1内部的底部排出。
如上文所述,由于吸入侧消声器18具有充分降低通过其内部的制冷剂气体的速度并使混入制冷剂气体的雾状润滑油分离的目的,因此,其形状一般都比较复杂。
除此之外,吸入侧消声器18还具有使电动机3的高热量很难传递给吸入前的制冷剂气体的目的。吸入前的制冷剂气体的温度上升时,制冷剂气体的密度降低。于是,在压缩室内压缩的制冷剂气体的压力会发生不能达到给定的高度的情况。由于吸入侧消声器18有为了避免这种现象发生的目的,因此,其热传导率必须低。
由于上述理由,一般来说,吸入侧消声器18由成形性好、热传导率低的热可塑性合成树脂形成。另外,吸入侧消声器18通过将数个复杂结构部彼此接合而形成。图9是表示这样形成的以往的吸入侧消声器18的透视图,

图10是其分解透视图。如图10所示,吸入侧消声器18由两个部分181及182构成。部分181及182分别通过把热可塑性合成树脂注射模塑成形而形成。从图9及图10可以明显地看出,部分181及182彼此的接合面18c及18d相互接触。两个接合面18c及18d通过以往的超声波熔敷接合在一起。
超声波熔敷按照如下方式进行。图11是接合面18c及18d附近的放大纵断面图。图11的(a)部分、(b)部分及(c)部分分别示出了熔敷之前、熔敷过程中及熔敷后的各时刻中部分181及182的接合部的状态。如图11(a)部分所示,在接合面18c上设有凸起18g,在接合面18d上设有与凸起18g宽度大致相同的槽18h。凸起18g与槽18h相嵌合,并且从接合面18c及18d各自里侧的法兰18e及18f上按照图11(a)部分箭头所示的方式垂直地对接合面18c及18d加压。在俩接合面18c及18d基本无间隙地接触的状态下,把超声波传递到凸起18g的尖端18i附近。于是,如图11(b)部分箭头所示,让凸起18g的尖端18i与槽18h的底部18j振动,并反复地相互冲击。由此,凸起18g的尖端18i与槽18h的底部18j附近的树脂被加热而熔融。在熔融树脂18k埋没凸起18g与槽18h的间隙的时候,停止超声波的传送。于是,如图11(c)部分所示,熔融树脂18k凝固后,将凸起18g与槽18h固定在一起。这样,把部分181及182接合在一起。
作为与以往例子1不同的另一现有技术的压缩机,公知的如特开平10-252653号所记载的技术。以下,将该压缩机称作以往例子2的压缩机。图12是以往例子2的压缩机内部的断面平面图。以往例子2的压缩机与以往例子1同样,由气密地封闭在密闭容器1内的电动机3、压缩机构2及吸入侧消声器8构成。以往例子2的基本构成与以往例子1完全相同。因此,在相同构成要素上标有相同的符号,其说明省略。以往例子2与以往例子1的不同点是a)压缩机构2置于电动机3的下面;b)吸入侧消声器8的吸入口8a与吸气管9的开口端9a连接;以及特别重要的不同在于c)吸入侧消声器8的接合面的熔敷方法不同。
图14是吸入侧消声器8的透视图,图15是分解透视图。如图15所示,吸入侧消声器8由两个部分81及82构成。部分81及82分别通过把热可塑性合成树脂注射模塑成形而形成。从图14及图15可以明显地看出,部分81及82分别以其接合面8c及8d相互接触。以往例子2与以往例子1的不同是,两个接合面8c及8d通过振动熔敷接合在一起。
在以往例子2的情况下,接合面8c及8d的形状分别有两种形式。
图16是一种形式的接合面8c及8d附近的放大纵断面图。图16的(a)部分、(b)部分分别示出了熔敷过程中及熔敷后的各时刻中接合部的状态。在这种状态下,接合面8c及8d的任何一个面都是平面。在对法兰8e及8f两方加压使接合面8c及8d整体接触的状态下,如图16的部分(a)的箭头所示那样,上侧部分81相对下侧部分82在接合面8c及8d上平行地振动。于是,接合面8c及8d彼此摩擦而接合在一起,该摩擦热使部分81及82的材料的热可塑性合成树脂熔融。在从接合面8c及8d沿上下方向使给定高度的部分81及82熔融的时候,停止振动。于是,如图16的(b)部分所示那样,熔融部分8L冷却并固化,结果,使部分81及82相互接合在一起。
在这种状态下,接合面8c及8d完全熔敷,因而其熔敷强度高。但是,在其一方上,在熔敷时熔融部分很容易从接合面8c及8d之间溢出。
图17是另一种形式的接合面8c及8d附近的放大纵断面图。图17的(a)部分、(b)部分及(c)部分分别示出了熔敷之前、熔敷过程中及熔敷后的各时刻中接合部的状态。在这种形式中,在上侧接合面8c上设有凸起8g,在下侧接合面8d上设有槽8h。如图17(b)部分所示,在对法兰8e及8f两方加压使凸起8g的尖端8i及槽81h的底部8j接触的状态下,如图17(b)部分箭头所示那样,使上侧部分81相对于下侧部分82在接合面8c及8d上平行地振动。在这里,槽8f的宽度较凸起8g大出振动幅度的大小。于是,凸起8g的尖端8i及槽8h的底部8j因摩擦而接合在一起,其摩擦热使凸起8g的尖端8i的合成树脂熔融。在从凸起8g的尖端8i熔融给定高度的时候,停止振动。这时,熔融部分8L将凸起8g和槽8h的间隙埋没,而且,凸起8g的长度和槽8h的深度设定成使接合面8c及8d整体接触。于是,如图17(c)部分所示那样,熔融部分8L冷却并固化,结果,部分81及部分82相互接合在一起。
在这种状态下,由于熔融部分8L埋没了槽8h内的间隙,因而,熔融部分8L很难从接合面8c及8d之间溢出。另一方面,由于只有凸起8g近旁熔敷,因此,熔敷强度较图16所示的形式低。
在以往的密闭型电动压缩机中,利用上文所述的吸入侧消声器的熔敷方法,存在着下述的问题。
以往例子1的用于组装吸入侧消声器18的超声波熔敷以及以往例子2的用于组装吸入侧消声器8的振动熔敷的任何一种都是通过使接合面的接触部分振动而加热的。但是,通过合成树脂的注射模塑成形所形成的部分,一般来说都有翘度。翘度是注射压力或金属模的温度的不均匀性所产生的。一般情况下,这种翘度在以往例子1及以往例子2的任何一个面上都会发生,结果,在任何一个面上产生凹凸,当接合面上有凹凸发生时,接合面整体不能均匀地接触,结果,振动加热的程度在接合面全体上也是不一样的。因而,接合面整体的加热温度不一样,导致熔融部分的体积在接合面各部均不相同。结果,接合面整体的熔敷强度不均匀。这种熔敷强度不均匀,会使电动机等振动在吸入侧消声器的接合部分所产生的应力集中在熔敷强度弱的部分,在该处产生间隙。在大量的润滑油从该间隙侵入吸入侧消声器内并滞留在压缩室内的场合,压缩室内的润滑油传递多余的活塞的压力,有可能使吸入阀及排出阀都被损坏。除此之外,润滑油经过压缩机外部的冷冻循环而循环并停留在蒸发器侧,结果,会引起冷却不良现象发生。除此之外,电动机等的振动使接合部分的间隙扩大,这样导致了在形成吸入侧消声器的各部分之间产生错位的情况发生,或产生大的异常噪音的情况发生。
即使在上述熔敷强度弱的部分有应力集中,作为使应力集中达到不产生间隙的程度并提高熔敷强度的手段,有增大熔敷时施加在接合面上的推压力或延长振动时间的方法。这些方法中的任何一种方法都是以增加熔融树脂的体积来提高熔敷强度为目的的。但是,在这些方法中,都不可避免地会出现树脂熔融过剩的部分。在这一部分中,熔融树脂很容易从接合面向外溢出。该溢出的熔融部分冷却时形成所谓的“毛刺”。毛刺的碎片在压缩机的驱动中向下落到吸入侧消声器内、侵入压缩室内时,夹在活塞与气缸内壁之间,阻碍活塞的滑动,或者夹在吸入阀或排出阀中,有损于压缩室内的气密性。在这些情况的任何一种情况下,都会产生制冷剂气体的压力不能上升到给定高度的问题。
关于熔敷时接合面的加热温度,在振动熔敷时接合面的加热温度比超声波熔敷更均匀一些。这是由于超声波熔敷的接合面的振动在整个接合面上是不一样的,而振动熔敷是使接合面整体能均匀地振动的缘故。但是,既然是通过上述的振动加热的,即使是振动熔敷,接合面的凹凸也会使加热温度不均匀。
除此之外,振动熔敷还存在着下述问题。在振动熔敷过程中,振动数过高时,接合面全体不能均匀地振动。因此,在振动熔敷过程中,为了得到充分的加热温度,振动的振幅必须大到某种程度以上。由于这一原因,在振动熔敷中,接合面的振动方向的宽度不能小于某种程度的大小。例如,如图17(b)部分所示,接合面8d的槽8h的宽度与接合面8c的凸起8g相比必须大出振动的振幅。由于槽8h的宽度大,接合面8c及8d整体宽度就要变大,以保证接合部的强度。因而,法兰8e及8f必须大于熔敷时挤压所需要的宽度。如果法兰8e及8f变大,吸入侧消声器8就不可能紧凑地容纳在密闭容器1内。另外,由于槽8h及凸起8g的间隙变大,用于埋没该间隙所需要的熔融部分的量就要增多。由于这种原因,必须延长熔敷所需要的时间,而且,调节也很困难。即是说,如果熔融部分的量增多,很容易从槽8h溢出,另一方面,如果熔融部分的量减少,槽8h及凸起8g之间就会残留有间隙,结果降低了熔敷强度。
发明的公开本发明的目的是提供一种带有吸入侧消声器的压缩机,该吸入侧消声器能使热可塑性合成树脂的各部分的熔敷强度均匀,并且彼此稳定地接合而不产生毛刺地组装在一起。
本发明的密闭性电动压缩机具有将内部空间气密地封闭住的密闭容器;弹性地支持在该密闭容器内的电动机;通过上述电动机驱动,压缩制冷剂气体使其压力提高的压缩机构;以及包括a)由热可塑性合成树脂构成,通过感应加热熔敷使接合部相互接合在一起的数个部分;b)沿着上述部分之间的上述接合部埋入其内部的圈状导体,在压缩机构之前,使制冷剂气体先通过其内部的吸入侧消声器。
因此,本发明的吸入侧消声器通过用埋入接合部内的导体的感应加热熔敷,使构成部分彼此接合在一起。在用导体的感应加热中,导体整体温度一致,即使成形时的翘度在接合部产生凹凸时,接合部整体的温度依然是均匀的。因此,在接合部整体上熔融部分的体积是均匀的,结果,在整体上熔敷强度也是均匀的。从而使吸入侧消声器的接合部成为稳定的接合部。
本发明的吸入侧消声器可包括,在上述接合部中,一个上述部分设有凸起,另一个上述部分设有使上述凸起嵌合到其内部的槽,而且,还设置有配置在上述凸起的尖端部与上述槽之间的、通过熔敷固定的上述导体。
因此,熔敷时的熔融部分会留在槽中,埋没凸起与槽之间的间隙。结果,熔融部分不会从接合部向外溢出。
最好是,上述凸起与上述槽的宽度实质上相同。
因此,滞留在槽中的熔融部分不会从槽中向外溢出的间隙。消除了熔融部分变成毛刺的可能性。除此之外,缩小了要埋入熔融部分的凸起与槽的间隙的体积。由于这一原因,也缩短了熔敷所需要的时间,确保了熔敷。结果,在接合部全体上可确保一致的熔敷强度。
从与上述不同的另一观点出发,最好是,在本发明的吸入侧消声器中,上述接合部实质上处在高度不同的数个平面上。
根据这种结构,通过把接合部形状为曲面的复杂的部分彼此接合在一起,形成吸入侧消声器。结果,能得到具有消音效果更高的形状的吸入侧消声器。
在本发明的吸入侧消声器中,在一个合适的形式中,上述导体的纵断面的宽度及厚度实质上相同。
根据这种结构,缩小了导体的纵断面周围长度相对纵断面面积的比例。即是说,缩小了与导体接触的树脂的面积。由于这一原因,熔敷部分相对接合部比较小,因而,消除了熔敷时熔融部分从接合部向外溢出所形成的毛刺。另外,在把导体固定于上述凸起与槽之间的场合,可使熔敷所需要的凸起与槽的宽度变窄。因此,可避免为了得到充分的熔敷强度而把接合部的厚度作成超过需要的厚度。
在本发明的吸入侧消声器中,在一个合适的形式中,上述导体的纵断面的宽度实质上大于其厚度。
根据这种结构,由于导体的厚度比较小,在熔敷过程中,缩短了接合部的吸入侧消声器的各部分之间的距离。因此,缩短了熔敷所需要的时间,而且缩小熔融部分的体积,消除了熔敷时熔融部分从接合部向外溢出所形成的毛刺。
从再一观点出发,在一个合适的形式中,上述导体实质上为螺旋形状。
根据这种结构,在接合部中,熔融部分的体积相对于导体的体积来说比较大。因此,提高了熔敷强度。
从再一观点出发,在一个合适的形式中,上述导体包括具有垂直于长度方向的轴线的数个孔。
根据这种结构,与没有孔的导体的熔敷相比较,不但增大了孔内部的体积,也增大了熔融部分的体积,而且还扩大了与接合面平行的熔融部分的断面面积,因而,提高了熔敷强度。
本发明的新的特征全部记载在所附权利要求的范围中,但是,与构成及内容双方有关的本发明,其它目的及特征,通过阅读与附图一起的下文的详细说明,会更好的理解和评价。
附图的简单说明图1是本发明实施例1的吸入侧消声器8的分解透视图。
图2是构成实施例1的吸入侧消声器8的上侧部分81和下侧部分82的接合部附近的放大纵断面图。
图3是简要地表示对实施例1的吸入侧消声器8进行感应加热熔敷的装置的分解透视图。
图4是表示对实施例1的吸入侧消声器8进行感应加热熔敷时的接合部附近的放大纵断面图。
图5是本发明实施例2的吸入侧消声器8的分解透视图。
图6是构成实施例2的吸入侧消声器8的上侧部分81和下侧部分82的接合部附近的放大纵断面图。
图7是表示对实施例2的吸入侧消声器8进行感应加热熔敷时的接合部附近的放大纵断面图。
图8是以往例子1的密闭型电动压缩机内部的断面平面图。
图9是以往例子1的吸入侧消声器18的透视图。
图10是以往例子1的吸入侧消声器18的分解透视图。
图11是构成以往例子1的吸入侧消声器18的接合部附近的放大纵断面图。在这里,(a)部分、(b)部分以及(c)部分分别表示超声波熔敷前、熔敷过程中以及熔敷后的各个时候的接合部附近的结构。
图12是同时表示以往例子2以及本发明实施例1的密闭型电动压缩机内部的断面平面图。
图13是图12折线ⅩⅢ-ⅩⅢ位置的实施例1的密闭型电动压缩机主要部分的纵断面图。
图14是同时表示以往例子2以及本发明实施例1的吸入侧消声器8的透视图。
图15是表示以往例子2的吸入侧消声器8的分解透视图。
图16是表示构成一种形式的以往例子2的吸入侧消声器8的上侧部分81及下侧部分82的接合部附近的放大纵断面图,在这里,(a)部分及(b)部分分别表示振动熔敷前以及振动熔敷后的各个时候的接合部附近的结构。
图17是表示构成另一种形式的以往例子2的吸入侧消声器8的上侧部分81及下侧部分82的接合部附近的放大纵断面图,在这里,(a)部分及(b)部分分别表示振动熔敷前以及振动熔敷后的各个时候的接合部附近的结构。
附图的一部分或全部通过以图示为目的的简要表述来描述,在图中所示的要素并不一定真实地描写了实际的相对大小或位置。
实施发明的最佳形式下文说明本发明压缩机的最佳实施例。
实施例1图12是表示实施例1的压缩机内部的断面平面图。如图所示,本发明的实施例1与以往例子2的外观完全相同。图13是图12的折线ⅩⅢ-ⅩⅢ的实施例1的压缩机的纵断面图。但是,阀板6及缸盖7的一部分在断面图中未示出,而是以侧面表示。
密闭容器1大致为圆筒状,其直径与高度的大小基本相同,任何一方大约为15~20cm的程度。密闭容器1的上面及下面是封闭的,使其内部空间为气密结构。密闭容器1的内部容纳有压缩机构2、电动机3以及吸入侧消声器8。
电动机3由弹簧14弹性地支持在置于密闭容器1内部的底部的3个支架13上。3个支架13中的两个在图12中示出,其余1个在图13中示出。通过这种弹性支持,由弹簧14吸收电动机3驱动时的振动,使这种振动很难传递给密闭容器1。因此,减少了电动机3振动所产生的噪音。电动机3设置成使其轴15基本与密闭容器1的轴线平行。电动机3通过绝缘线16、丝锥17以及端子11与外部电源电连接在一起。
压缩机构2如图13所示,由气缸4、活塞5以及曲轴部12构成,通过螺栓20等固定在电动机3下部的轴承19等上。曲轴部12与电动机3的轴15的下端铸造成一体。活塞5借助于通过曲轴部12传递的电动机3的旋转力,沿水平方向在气缸4内往复滑动。用于使活塞5滑动的气缸4内的空间由活塞5的尖端和阀板6封闭着,形成制冷剂气体用的压缩室21。虽然图13未示出,但是,在阀板6上设置有用于向压缩室21吸入制冷剂气体的吸入阀和用于从压缩室21排出制冷剂气体的排出阀。在压缩室21的外侧,隔着阀板6设有气缸盖7。在气缸盖7上连接有排出管10,将制冷剂气体从气缸盖7的内部向密闭容器1的外部排出。
另一方面,吸入侧消声器8的排出口8b连接在压缩室的外侧22。在吸入侧消声器8的内部设有从排出口8b连接到吸入口8a的空腔。吸入口8a与吸入管9的开口端9a连接。吸入管9把制冷剂气体从密闭容器1外向内部吸入。
吸入侧消声器8的吸入口8a与吸入管9的开口端9a的连接部分以使制冷剂气体从这一部分向密闭容器1内仅以给定量泄漏的方式连接着。这样,在吸入侧消声器8的内外基本上不会产生制冷剂气体的压力差。于是,可消除内外制冷剂气体的压力差使吸入侧消声器8变形的现象。与此同时,由于吸入时吸入侧消声器8内的制冷剂气体的压力不会比压缩室21内的压力低,因此,可以把足够量的制冷剂气体吸入压缩室21内。
根据以上的构成,实施例1的压缩机可按照下述方式提高制冷剂气体的压力,并把高压制冷剂气体向外部的冷冻循环供给。
电动机3起动时,曲轴部12使活塞5在气缸4内滑动。随着这种滑动的进行,气缸4的压缩室21内的空间周期地变化。在压缩室21内的空间增加期间,压缩室21内的制冷剂气体的压力降低。这时,通过压缩室21外侧22与压缩室21内的压力差打开吸入阀,将通过排出口8b排出的制冷剂气体从吸入侧消声器8内吸入。另一方面,在压缩室21内的空间减少期间,压缩室21内的制冷剂气体的压力上升。这时,气缸盖7内与压缩室21内的压力差使排出阀打开,将压缩室21内的高压制冷剂气体向气缸盖7内排出。气缸盖7内的高压制冷剂气体通过排出管10(图12)向密闭容器1外面的冷冻循环的高压侧排出。高压制冷剂气体在冷冻循环内压力降低,从冷冻循环的低压侧流动的制冷剂气体通过吸入管9,从其开口端9a通过吸入口8进入吸入侧消声器8内。通过周期地反复进行以上动作,实施例1的压缩机将高压制冷剂气体连续供给冷冻循环。
密闭容器1将内部空间与外部切断。由此,使电动机3、压缩机构2及向压缩室21吸入时的制冷剂气体等发出的噪音很难漏到外部。另外,密闭容器1防止经过电动机3及压缩机构2各部循环的润滑油飞溅到外部,同时,把润滑油保留在内部空间的底部,使润滑油不会漏到外部。
保留在密闭容器1内部的底部的润滑油23从安装在曲轴部12下面的给油管24按下述方式向上吸引。给油管24是弯曲的,使其尖端24a配置在轴15的中心轴上。由此,当曲轴部12旋转时,给油管24内的润滑油23在离心力的作用下向上吸入到曲轴部12内。向上吸入的润滑油的一部分从曲轴部12的小孔12a通过表面槽12b以及用于连接活塞5和曲轴12的连杆25内部的空间25a向活塞5供给。另外,从给油管24吸上来的润滑油自曲轴部12的内部向轴15内流动,从轴15的小孔15a通过表面槽15b向轴15供给。
吸入侧消声器8的作用是衰减向压缩室21内吸入的高速制冷剂气体流所产生的噪音。从吸入口8a向吸入侧消声器8内流入的制冷剂气体沿着吸入侧消声器8内部的空腔流动,并从排出口8b通过压缩室21的外侧22吸入压缩室21内。要设计吸入侧消声器8内的空腔的形状,使得在这一过程中的制冷剂气体流的速度充分地降低。例如,虽然图12及图13未示出,但是,在吸入侧消声器8中设有内壁,通过该内壁把内部空腔隔成几个室。在这种情况下,制冷剂气体流逐个经过吸入侧消声器8内的室蛇形地流动并前进,使流速降低。结果,降低了制冷剂气体流在吸入侧消声器8的排出口8b或压缩室21的外侧22附近所产生的噪音量。
吸入侧消声器8如下文所述,其作用是将混入吸入侧消声器8内部的制冷剂气体中的雾状润滑油分离,并且防止该润滑油吸入压缩室内。制冷剂气体通过吸入口8a吸入吸入侧消声器8内时,与在密闭容器1内的空间变成雾状并悬浮的润滑油一起被吸入。雾状润滑油在原来状态下吸入压缩室内时,会粘附在吸入阀或排出阀上,降低其功能。而且,当润滑油通过排出管10向冷冻循环内部排出时,粘附在冷冻循环内的各种部位,也会降低冷冻能力。然而,如上文所述,由于吸入侧消声器8内部的空腔由内壁隔成数个室,制冷剂气体流经过各室蛇形地流动并前进。一般来说,由于这时混入制冷剂气体的润滑油较制冷剂气体重,因此,润滑油会与该内壁产生冲击,很容易粘附在该位置。这样,粘附在内壁上的润滑油朝下方流落到吸入侧消声器8的内部,从吸入侧消声器8底部的小孔(图中未示)向密闭容器1内部的底部排出。
一般来说,吸入侧消声器8由成形性好、热传导率低的热可塑性合成树脂例如聚对苯二甲酸丁二醇酯(PBT)形成。图14是吸入侧消声器8的透视图,图1是其分解透视图。如图1所示,吸入侧消声器8由两个部分81与82以及夹在两个部分之间的导体101(铁圈)构成。部分81及82分别通过把PBT注射模塑成形而形成,并且大致作成宽约60mm,厚约25mm,高约70mm的长方体,导体101最好用铁或不锈钢构成,其形状与上侧部分81的接合面8c及下侧部分82的接合面8d的形状基本相同,由此,成为宽度较窄的薄板状的圈。但是,所谓的圈是指实质上没有端部的封闭形状,例如环、多边形等。接合面8c及8d的宽度约为7mm,而导体101的宽度约为1~2mm,厚度约为0.2~0.4mm。从图14及图1可以明显地看出,部分81及82通过把导体101夹在各自的接合面8c及8d之间而相互接合着。
图2是表示部分81及82接合部附近的放大纵断面图。在设置于部分81及82接合部的熔敷部8k的内部埋入导体101。在这里,熔敷部是指熔敷时熔融树脂凝固所形成的部分。
这样的接合部通过如下方式的感应加热熔敷形成。
图3是简要表示出对吸入侧消声器8进行感应加热熔敷的装置的分解透视图。图4是表示对吸入侧消声器8进行感应加热熔敷时的接合部附近形式的放大纵断面图。
上侧挤压部件51在其下面51b的中央部设有凹部51a。凹部51a的大小作成使吸入侧消声器8的上侧部分81的外面81a与凹部51a的内表面基本无间隙地接触的程度。因此,当上侧部分81插入凹部51a之内时,如图4所示,下面51b在凹部51a的外侧与上侧法兰8e接触。
下侧挤压部件52在其上面52b的中央部设有凹部52a。凹部52a的大小作成使吸入侧消声器8的下侧部分82的外面82a与凹部52a的内表面基本无间隙地接触的程度。因此,当下侧部分82插入凹部52a之内时,如图4所示,上面52b在凹部52a的外侧与下侧法兰8f接触。
如图4所示,在上侧挤压部件51的下面51b与上侧法兰8e接触、下侧挤压部件52的上面52b与下侧法兰8f接触的状态下,沿着图4箭头所示方向对上侧挤压部件51及下侧挤压部件52加压,以缩小彼此的间隔。由此,使一般注射模塑成形时的翘度所产生的接合面8c及8d上的凹凸发生变形,使接合面8c及8d与导体101的两个面无间隙地接触。在实施例1中,一般来说,由于接合面8c及8d上的凹凸大约为0.5~1mm,因此使用使其产生变形的约5~10[N](约50~100kgf)的挤压力。该挤压力的值与以往的振动熔敷时也大约为10[N](约100kgf)的挤压力相比较小。在以往的振动熔敷中,必须使接合面8c及8d整体无间隙地接触,而利用感应加热熔敷,可使接合面8c及8d与导体101的表面无间隙地充分接触。即是说,由于减少了接触面积,因此,感应加热熔敷的挤压力小于振动熔敷的挤压力。而且挤压力最好施加在法兰8e与8f上。借助于挤压力可避免部分81及82的接合部以外的部分发生变形。在实施例1中,法兰8e与8f的宽度大约为3mm,厚度大约为2~4mm。
如上文所述,一边对上侧挤压部件51及下侧挤压部件52加压,一边把交流电流施加到线圈53上,线圈53设置在上侧挤压部件51的下面51b与下侧挤压部件52的上面52b之间,围绕导体101的周围卷绕着。于是,产生垂直贯穿围绕线圈53的面、即围绕导体101的面的交流磁场。由此产生经过导体101循环的感应电流。该感应电流在导体101内产生焦尔热,使导体101及其周围的部分81及82的温度上升。当温度超过形成部分81及82的热可塑性树脂PBT的熔点时,导体101周围的树脂熔融,当熔融部分8k埋没图2所示的导体101、接合面8c及8d的间隙的时候,切断线圈53的交流电流。于是,熔融部分8k冷却并凝固,形成熔敷部。这样,把导体101、接合面8c及8d成为一体地固定在一起。
在该实施例1中,交流电流的频率约为200kHz,交流电流的有效值约为0.3[A],交流电压的有效值约为1[kV],消耗的电功率约为450[W],施加的时间约为2~4[sec]。最好是,导体101加热的温度约为220~230℃。切断交流电流后,原封不动地保持约40[sec]的程度,使熔敷部8k充分地固定着。于是,在实施例1中,熔敷部8k的体积设计成从接合面8c及8d之间不向外溢出的程度的量,即是说,从熔敷前的接合面8c及8d沿上下方向分别调节约0.3mm的范围。
在实施例1中,导体101的形状是薄板的圈。其断面形状可以是椭圆或多边形等。另外,导体101的表面与接合面8c及8d接触的部分上也可以设置凹凸。除此之外,导体101的形状也可以作成宽度与厚度之比基本相同的程度。采用上述任何一种形状,在感应加热熔敷时,熔融树脂无间隙地覆盖住导体101的表面,因此,能得到充分的熔敷强度。
实施例2在实施例2中,与实施例1相比,只有吸入侧消声器8的接合部分的形状不同。其它结构与实施例1完全相同,其说明省略。
图5是实施例2的吸入侧消声器8的分解透视图。如图5所示,吸入侧消声器8由两个部分81与82以及夹在两个部分之间的导体102构成。部分81及82分别通过把PBT注射模塑成形而形成,并且大致作成宽约60mm,厚约25mm,高约70mm的长方体。沿着上侧部分81的接合面8c的中央形成有凸起8g,另一方面,沿着下侧部分82的接合面8d的中央形成有槽8h。凸起8g与槽8h的纵断面形状为尺寸基本相同的矩形。在实施例2中,凸起8g的纵断面的宽约为1mm,高约为1.7mm,槽8h的纵断面的宽度约为1mm,深约为2mm。导体102最好用铁或不锈钢构成,导体102是周长与上侧部分81的接合面8c及下侧部分82的接合面8d基本相同的圈,其断面形状直径约0.7mm的圆。导体102的纵断面面积与实施例1的导体101的纵断面面积基本相同。
图6是部分81及82接合部附近的放大纵断面图。在上侧接合面8c的凸起8g与下侧接合面8d的槽8h之间设有熔敷部8k。把导体102埋入熔敷部8k的内部。凸起8g与槽8h无间隙地密封接触并嵌合在一起。
这样的熔敷部8k与实施例1同样,通过图3所示的装置中的感应加热熔敷形成。其详细过程与实施例1完全相同,因此,省略其说明。
图7是表示对吸入侧消声器8进行感应加热熔敷时的接合部附近的形式的放大纵断面图。与实施例1同样,使上侧挤压部件51的下面51b与上侧法兰8e接触,并使下侧挤压部件52的上面52b与下侧法兰8f接触。在这种接触状态下,以隔着彼此的间隔的方式,沿着图7箭头所示方向对上侧挤压部件51及下侧挤压部件52加压。在上侧接合面8c的凸起8g的尖端8i与下侧接合面8d的槽8h的底部8j之间夹住导体102。按照上述方式对上侧挤压部件51及下侧挤压部件52加压时,凸起8g的尖端8i及槽8h的底部8j分别产生变形,基本上与导体102的表面无间隙地接触着。在实施例2中,采用约5~10[N](约50~100kgf)的挤压力。与实施例1同样,该挤压力的值与以往的振动熔敷时的挤压力值相比较小。而且,与以往的振动熔敷相比较,采用实施例2的感应加热熔敷,无间隙接触的面积可减少到为导体102表面面积的程度。与实施例1同样,挤压力最好施加在法兰8e与8f上。借助于该挤压力可避免部分81及82的接合部以外的部分发生变形。在实施例2中,法兰8e与8f的宽度大约为3mm,厚度大约为2~4mm。
如上文所述,在对上侧挤压部件51及下侧挤压部件52加压的状态下,把交流电流施加到线圈53上,线圈53设置在上侧挤压部件51的下面51b与下侧挤压部件52的上面52b之间,围绕导体102的周围卷绕着。于是,与实施例1同样,产生经过导体102循环的感应电流。该感应电流在导体102内产生焦尔热,使导体102、与之接触的凸起8g的尖端8i以及槽8h的底部8j的温度上升。当温度超过形成凸起8g的尖端8i以及槽8h的底部8j的热可塑性树脂PBT的熔点时,导体102周围的树脂熔融。当熔融部分8k埋没图6所示的导体102、凸起8g及槽8h的间隙的时候,切断线圈53的交流电流。于是,熔融部分8k冷却并凝固,形成熔敷部。这样,把导体102、凸起8g及槽8h成为一体地固定在一起。
在该实施例2中,交流电流的频率约为200kHz,交流电流的有效值约为0.3[A],交流电压的有效值约为1[kV],消耗的电功率约为450[W],施加的时间约为2~4[sec]。最好是,导体102加热的温度约为220~230℃。切断交流电流后,原封不动地保持约40[sec]的程度,使熔敷部8k充分地固定着。这些值与实施例1同样,实施例2的导体102的纵断面面积与实施例1的导体101基本相等。于是,在实施例2中,把熔敷部8k的大小调节成从接合面8c及8d之间不向外溢出的程度。特别是,在实施例2中,凸起8g及槽8h宽度基本相同,在无间隙的状态下嵌合在一起,因而,不会产生熔敷时融化的树脂漏出去的间隙。熔融部分8k从熔敷前的凸起8g的尖端8i及槽8h的底部8j沿上下方向分别约0.3mm的范围分布。
在实施例2中,导体102是具有圆形纵断面的导线的圈。但是,除此之外,其纵断面形状也可以是椭圆或多边形等。另外,导体102的表面与凸起8g的尖端8i及槽8h的底部8j接触的部分上也可以设置凹凸。除此之外,导体102的形状也可以作成实施例1的导体101那样的薄板状。采用上述任何一种形状,在感应加热熔敷时,熔融树脂无间隙地覆盖住导体102的表面,因此,能得到充分的熔敷强度。
此外,即使实施例1的导体101和实施例2的导体102均为卷成线圈状的螺旋形,也可以作成在圈的位置设有相对于圈的周向保持垂直轴线的孔的形状。孔的轴线方向可以是上下方向,也可以是水平方向,或者是相对于上下或水平任何一个方向倾斜的方向。如果采用这些形状,由于增大了接合面之间的熔融部分的体积,因而提高了熔敷强度。但是,由于导体的形状复杂,会降低感应加热的效率,而且,要熔融的树脂的体积比较大,熔融的时间会拖长。
实施例1及实施例2的任何一个接合面都处在同一平面内。除此之外,接合面也可以是曲面,对于整体高度不同的数个平面上复杂形状的情况,感应加热熔敷也是有效的。因此,根据本发明可以得到接合面具有以往振动熔敷不能接合的复杂形状的吸入侧消声器。
上文虽然在最佳形式中,以某种详细的程度描述了本发明,但是,这些最佳形式所揭示的内容,其构成细节是可以改变的,在不脱离本发明权利要求的保护范围及本发明精神的前提下,可以对各要素的组合或顺序进行改变或变更。
工业上应用的可能性根据本发明,由于提高了接合部的熔敷强度,因此,能够使密闭型电动压缩机的吸入侧消声器的质量稳定、可靠。因此,本发明具有工业上的应用性。
权利要求
1.密闭型电动压缩机的吸入侧消声器,该密闭型电动压缩机包括将内部空间气密地封闭住的密闭容器;弹性地支持在该密闭容器内的电动机;通过上述电动机驱动,压缩制冷剂气体使其压力提高的压缩机构;以及在压缩机构之前,使制冷剂气体先通过其内部的吸入侧消声器,该密闭型电动压缩机的吸入侧消声器具有a)由热可塑性合成树脂构成,通过感应加热熔敷使接合部相互接合在一起的数个部分;b)沿着上述部分之间的上述接合部埋入其内部的圈状导体。
2.根据权利要求1所记载的吸入侧消声器,在上述接合部中,一个上述部分设有凸起,另一个上述部分设有使上述凸起嵌合到其内部的槽,而且,还设置有配置在上述凸起前端部与上述槽之间的、通过熔敷固定的上述导体。
3.根据权利要求2所记载的吸入侧消声器,上述凸起与上述槽的宽度实质上是相同的。
4.根据权利要求1所记载的吸入侧消声器,上述接合部实质上处在高度不同的数个平面上。
5.根据权利要求1~4中任一项所记载的吸入侧消声器,上述导体的纵断面的宽度及厚度实质上是相同的。
6.根据权利要求1~4中任一项所记载的吸入侧消声器,上述导体的纵断面的宽度实质上是大于其厚度。
7.根据权利要求1~4中任一项所记载的吸入侧消声器,上述导体实质上是螺旋形状。
8.根据权利要求1~4中任一项所记载的吸入侧消声器,上述导体包括具有垂直于长度方向的轴线的数个孔。
9.密闭型电动压缩机,具有将内部空间气密地封闭住的密闭容器;弹性地支持在该密闭容器内的电动机;通过上述电动机驱动,压缩制冷剂气体使其压力提高的压缩机构;以及包括a)由热可塑性合成树脂构成,通过感应加热熔敷使接合部相互接合在一起的数个部分;b)沿着上述部分之间的上述接合部埋入其内部的圈状导体;在压缩机构之前,使制冷剂气体先通过其内部的吸入侧消声器。
10.根据权利要求9所记载的密闭型电动压缩机,上述吸入侧消声器具有,在上述接合部中,一个上述部分设有凸起,另一个上述部分设有使上述凸起嵌合到其内部的槽,而且,还设置有配置在上述凸起的尖端部与上述槽之间的、通过熔敷固定的上述导体。
11.根据权利要求9所记载的密闭型电动压缩机,上述吸入侧消声器为,上述凸起与上述槽的宽度基本相同。
12.根据权利要求9所记载的密闭型电动压缩机,上述吸入侧消声器为,上述接合部实质上处在高度不同的数个平面上。
13.根据权利要求9~12中任一项所记载的密闭型电动压缩机,上述导体的纵断面的宽度及厚度实质上相同。
14.根据权利要求9~12中任一项所记载的密闭型电动压缩机,上述导体的纵断面的宽度实质上大于其厚度。
15.根据权利要求9~12中任一项所记载的密闭型电动压缩机,上述导体实质上为螺旋形状。
16.根据权利要求9~12中任一项所记载的密闭型电动压缩机,上述导体包括具有垂直于长度方向的轴线的数个孔。
全文摘要
本发明提供一种吸入侧消声器及具有这种吸入侧消声器的密闭型电动压缩机,吸入侧消声器通过感应加热熔敷,使热可塑性合成树脂注射模塑成形所形成的各构成部分彼此接合在一起。由此,与以往设有超声波熔敷及振动熔敷的接合部的吸入侧消声器相比,其优点是,可使接合部整体的熔敷强度均匀性良好,并且减少了毛刺。
文档编号F16B5/08GK1300346SQ00800584
公开日2001年6月20日 申请日期2000年4月10日 优先权日1999年4月15日
发明者井出照正 申请人:松下冷机株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1