CVT及用于减轻其变速器总滑移的方法与流程

文档序号:12782045阅读:220来源:国知局
CVT及用于减轻其变速器总滑移的方法与流程

本公开涉及一种无级变速器(CVT)以及用于减轻其变速器总滑移的方法。



背景技术:

无级变速器(CVT)是一种能够在校准的速度比范围内实现无穷变化的动力传动装置。不同于使用一个或多个行星齿轮组以及多个旋转和制动摩擦离合器来建立离散齿轮状态的传统齿轮传动装置,CVT使用可变直径的带轮系统。带轮系统,通常被称为变速器组件,可以在校准的速度比范围内的任意点转换。

典型的变速器组件包括经由环形可旋转驱动元件(例如驱动链或带)互连的两个变速器带轮。环形可旋转驱动元件跨骑在由锥形带轮面限定的可变宽度的间隙内。变速器带轮中的一个经由曲轴、变矩器和输入齿轮组接收发动机转矩,并且因此用作主动/主带轮。另一个带轮经由附加齿轮组连接到CVT的输出轴,并因此用作从动/副带轮。根据配置,可以在变速器组件的输入侧或输出侧上使用一个或多个行星齿轮组。

为了改变CVT速度比,将夹紧力经由一个或多个带轮致动器施加到变速器带轮。夹紧力有效地将带轮半部挤压在一起,以改变带轮面之间的间隙的宽度。间隙尺寸的变化,即间距半径,导致可旋转驱动元件在间隙内跨骑得更高或更低。这进而改变了变速器带轮的有效直径并且改变了CVT的速度比。



技术实现要素:

本文公开了一种具有无级变速器(CVT)和被编程以减轻CVT的总滑移影响的控制器的系统。CVT包括环形可旋转驱动元件(例如驱动链或带)以及上述类型的变速器组件。在CVT的正常操作期间,控制器管理变速器带轮的夹紧力,以实现期望的速度或转矩比。然而,有时环形可旋转驱动元件可能相对于变速器带轮滑移。变速器表面被特别地加工以提供与环形可旋转驱动元件接合的摩擦表面。控制器被编程为自动执行相关联的控制方法的各步骤,以便减轻总变速器滑移的影响,并且从而防止在环形可旋转驱动元件和变速器带轮的接合表面处的磨损。

在示例性实施例中,CVT包括输入构件、输出构件、变速器组件、第一和第二速度传感器、以及控制器。变速器组件包括:主变速器带轮,其可操作用于经由输入构件接收输入转矩(例如,来自发动机);副变速器带轮,其可操作用于经由输出构件传递输出转矩;以及环形可旋转驱动元件,其与主变速器带轮和副变速器带轮摩擦接合。速度传感器可操作用于测量主变速器带轮和副变速器带轮的相应旋转速度。

该实施例中的控制器被编程为:利用所测量的旋转速度来检测环形可旋转驱动元件相对于主变速器带轮和副变速器带轮的总滑移,并且响应于所检测的滑移,请求输入转矩在校准的持续时间上减小校准量,直到所检测的总滑移水平达到校准的滑移水平。

在总滑移事件开始时,控制器通过将带轮上的夹紧力增加校准量(例如通过增加夹紧转矩偏移)来减小最大转矩比。然后,最大转矩比以预定速率平稳地返回到校准水平。

与上述控制动作同时,控制器暂时禁用CVT的基于反馈的比率控制,以允许实现这样的动作。

另外,可以在给定速度比下在总变速器滑移发生多次校准之后更新查找表。该动作旨在增加在发生总滑移附近的一组变速器速度比中的夹紧转矩偏移。然后,当变速器速度比再次处于受影响范围内时,在正常CVT操作期间施加夹紧转矩偏移。在特定速度比下的预定次数的总滑移事件之后,控制器可以从考虑范围中排除这样的速度比。故障代码可以记录在控制器的存储器中,指示特定速度比不可用或请求CVT的服务。

从下面结合附图的详细描述中,本公开的上述和其他特征和优点将显而易见。

附图说明

图1是具有无级变速器(CVT)的示例车辆的示意图,该无级变速器具有变速器组件和被编程以减轻变速器组件的总滑移事件的控制器。

图2是不同车辆参数的变化幅度的时间图,示出了变速器总滑移情况和由图1所示的控制器执行的控制动作。

图3是描述用于减轻图1所示的变速器组件的总滑移的方法的示例性实施例的流程图。

具体实施方式

参考附图,其中在所有附图中,相同的附图标记对应于相同或相似的部件,在图1中示意性地示出了车辆10。车辆10包括示为示例性内燃机(E)的转矩产生装置12,但是该转矩产生装置可以实施为电机或可操作用于产生输出转矩的其他装置。为了说明一致性,转矩产生装置12将在下文中被描述为发动机12,但不将范围限制于这种设计。

车辆10还包括无级变速器(CVT)14和控制器(C)50。如下面参考图2和图3进一步详细阐述的,控制器50被编程为计算CVT14的当前速度比,以检测CVT14的总滑移事件,并且经由控制动作减轻CVT14的这种总滑移事件的影响。CVT14实施为或包括具有主变速器带轮18和副变速器带轮20的变速器组件。带轮18和20具有可经由速度传感器SP和SS测量的相应的主带轮速度ωP和副带轮速度ωS,其中变速器带轮18和20响应于由控制器50传递的夹紧压力信号(箭头PC)。可替代地,传感器可处于其他位置和配置,只要可以获得带轮18和20的速度即可,例如可以测量并使用轮速取代副速度传感器SS。作为方法100的一部分,控制器50连续地或周期性地计算当前CVT速度比(SR),其中并且使用所计算的CVT速度比来检测CVT14的总滑移事件。本领域普通技术人员将认识到,速度比可以是倒转的,即,或者在本公开的范围内可以使用转矩比。

关于图1的示例性车辆10,发动机12包括曲轴13E。曲轴13E例如经由输入离合器或液力变矩器(未示出)连接到CVT14的输入构件13。CVT14的输出构件15最终将输出转矩(箭头TO)传递到一组驱动轮16。CVT14包括连接到曲轴13E并由其驱动的主变速器带轮18、连接到输出构件15的副变速器带轮20、以及连续旋转驱动元件22,即橡胶和/或金属的任何闭合/环形循环,例如链条或带,其适于将转矩从主变速器带轮18传递到副变速器带轮20。变速器带轮18和20连同驱动元件22一起构成CVT14的变速器组件。如本文所使用的,术语“总滑移事件”和“总变速器滑移”是指驱动元件22相对于带轮18和/或20的滑移。

主变速器带轮18和副变速器带轮20各自具有分别匹配的半部19和21,每个半部具有限定可变宽度间隙26的相应锥形面23和25。当发动机12以发动机速度(NE)为主带轮18提供动力时,位于可变宽度间隙26内的驱动元件22跨骑在锥形面23和25上,因此该发动机速度作为主带轮18的输入速度/主速度(ωP)。副带轮20以副速度(ωS)旋转。如上所述,两个带轮速度(ωP,ωS)可以经由传感器SP和SS测量并且报告给控制器50,例如作为在控制器区域网络或其他合适的信道上的信号。

可变宽度间隙26的宽度可以经由匹配半部19和/或21的移动而改变,以便改变CVT14的当前速度比。因此,车辆10包括相应的第一和第二变速器致动器28和30,如图1示意性地所示,每个变速器致动器响应于可经由对应的带轮压力传感器(SPP,SPS)测量的主夹紧压力和副夹紧压力(分别为箭头PP和PS),以改变相应的主带轮18和副带轮20的位置。每个变速器带轮18和20内可包括弹簧(未示出)。第一致动器28和第二致动器30的示例性实施例包括液压活塞/气缸系统,但是可以使用其它线性致动器,例如机电装置或气动活塞。

第一变速器致动器28响应于主夹紧压力(箭头PP)的施加而作用在主变速器带轮18的匹配半部19中的可移动的一个半部上。同样,第二变速器致动器30响应于副夹紧压力(箭头PS)而作用在副变速器带轮20的匹配半部21中的可移动的一个半部上。管线压力(箭头PL)可以经由流体泵32提供给CVT14,其中流体泵32从储槽34抽吸流体33例如油,并且经由通道、软管、配件和其他合适的管道(未示出)使流体33循环到CVT14。在可能的实施例中,主夹紧压力和副夹紧压力(分别为箭头PP和PS)独立于管线压力(箭头PL)。然而,在其他实施例中,管线压力(箭头PL)可以等于副夹紧压力(PS)。

控制器50可以被配置为具有存储器(M)的一个或多个计算机设备。控制器50可以包括硬件元件,诸如处理器(P)、电路(包括但不限于定时器、振荡器、模-数电路、数-模电路、比例-积分-微分控制逻辑、数字信号处理器、以及任何必要的输入/输出设备)和其他信号调节和/或缓冲电路。存储器(M)可以包括诸如只读存储器(例如,磁性、固态/闪存和/或光学存储器)的有形非暂时性存储器,以及足够量的随机存取存储器、电可擦除可编程只读存储器等。在正常操作条件下,控制器50可以提供CVT14的基于反馈的比率控制,例如,利用比例-积分或比例-积分-微分控制逻辑。

如下所述,在CVT14的总滑移事件的情况中,控制器50可以选择性地禁用基于反馈的比率控制,直到总滑移达到校准的可接受水平。在车辆10的整体控制中,体现方法100的各步骤可以记录在存储器(M)中并由处理器(P)执行。

控制器50可以被编程为跟踪在给定CVT速度比下的总变速器滑移的发生次数,并且当滑移的发生次数超过校准的阈值发生次数时,执行关于CVT14的控制动作。

作为方法100的一部分,与第一变速器致动器28和第二变速器致动器30通信的控制器50接收一组控制输入信号(箭头CCI)。控制输入信号(箭头CCI)可以包括但不限于由一个或多个车轮或传动装置输出速度传感器S10报告、计算或测量的车辆速度N10,带轮速度(ωP,ωS)和驾驶员请求转矩(箭头TREQ)。如本领域中已知的,驾驶员请求转矩(箭头TREQ)通常由车辆10的驾驶员的动作(例如通经由前的节气阀请求、制动水平、档位状态等)来确定。作为方法100的一部分,控制器50可以例如通过将发动机转矩请求信号(箭头11)传输到发动机控制模块(ECM)150来请求减小来自发动机12的输出转矩。ECM150可以通过将发动机控制信号(箭头111)传输到发动机12来响应,以实现所请求的输出转矩的减小。类似地,发动机速度管理可以用于控制发动机速度,以实现带轮18和20之间的适当速度比。

参考图2和图3,方法100由控制器50执行,以减轻环形可旋转驱动元件22相对于变速器带轮18和20的滑移的影响,包括命令来自发动机12的特定转矩响应和CVT14的特定速度比,从而减少或防止CVT14的正常操作所需的摩擦表面的退化。方法100的各个步骤在图3中示出,而所有的参考参数或轨迹在图2的时间图中示出,图2示出了纵轴上的振幅(A)和横轴上的时间(t)。

在初始化之后,方法100在步骤S102开始。图1的控制器50检测CVT14的总变速器滑移事件。例如,控制器50接收主带轮速度和副带轮速度(箭头ωP,ωS),计算主带轮速度和副带轮速度(箭头ωP和ωS)中的实际速度和命令速度之间的速度差,并将所计算的速度差与校准阈值进行比较以确定是否存在变速器总滑移动。类似地,命令速度比和实际速度比之间的误差可用于确定滑移。当检测到变速器总滑移时,如图2中的t1和t2之间由轨迹FGS所示,可以激活位标志。当检测到变速器总滑移时,控制器50进行到步骤S104。

在图3的步骤S104,控制器50激活控制逻辑状态,其中图1的控制器50被许可执行本文所述的各种滑移减轻控制动作。步骤S104可能需要在控制器50的逻辑中设置指示这样的许可的状态,诸如相应的位标志。控制器50可暂时禁用CVT14的基于反馈的比率控制,直到当总滑移最终达到如下所述的校准的可接受水平时完成方法100。当滑移控制有效时,方法100进行到步骤S106。

在步骤S106,控制器50经由与图1的ECM150通信以及发动机控制信号的传输(箭头111)以管理方式请求来自发动机12的降低水平的输出转矩。这限制了传递到变速器组件中的转矩量。降低水平的发动机转矩可以持续校准的最小时间量,直到变速器总滑移被充分控制。该动作在图2中被描绘为轨迹TE,其在t1处减小(双向箭头A),并且一旦总滑移条件已经清除就在t2之后持续校准的持续时间(双向箭头C)。因此,在t3时,允许发动机转矩(轨迹TE)经持续时间(双向箭头D)以校准速率(即,A/D)增大到在时间t4达到的其起始水平。方法100然后可以进行到步骤S108。

步骤S108包括将主变速器带轮和副变速器带轮的夹紧力增加校准量的夹紧转矩偏移。也就是说,在图2的t1处的总滑移事件开始时,控制器50降低CVT14的最大转矩比(轨迹TCR),如双向箭头B所示,即所需的夹紧力除以当前命令的夹紧力。最大转矩比(轨迹TCR)可以通过将夹紧力增加校准量(即夹紧转矩偏移)而减小,如图2的轨迹PC所示,对应于图1的箭头PC,并且在滑移事件已经清除之后,将新的夹紧力(轨迹PC)保持校准持续时间(双向箭头E),在该点(t5)处,最大转矩比(轨迹TCR)经校准持续时间t5至t6(双向箭头F)平稳地返回到其正常校准水平,小于校准转矩偏移(双向箭头G)。步骤S108的目的是降低在相同CVT速度比下滑移再次发生的可能性。然后,方法100进行到步骤S110。

在步骤S110,如果未通过执行步骤S106和S108来清除总滑移条件,则控制器50可以临时禁用当前CVT速度比的选择。然后,方法100进行到步骤S112。

在步骤S112,控制器50可以针对命令的CVT速度比增加存储器(M)中的滑移计数器。也就是说,控制器50跟踪CVT14的每个速度比或一组速度比处的总滑移事件的发生次数,例如在由CVT速度比索引的查找表中,使得对于每个CVT速度比,控制器50可以快速地确定环形可旋转驱动元件22已经滑移到最小阈值允许滑移水平以上多少次。然后,方法100进行到步骤S114。

步骤S114包括确定步骤S112的滑移计数器是否达到阈值计数。如果是,则方法100进行到步骤S116。否则,方法100完成并且重新开始步骤S102。

步骤S116包括更新跨多个点火循环所保持的夹紧转矩偏移表。步骤S116的结果是以与变速器总滑移事件的数量成比例的方式增加一组变速器速度比内的夹紧转矩偏移。也就是说,步骤S116的目的是在特定CVT速度比下每次发生滑移时,使待施加的夹紧转矩偏移增加校准量。此后,每当命令速度比时,在正常操作期间,从更新的表施加新的夹紧转矩偏移,即提供校准附加量的夹紧转矩。方法100随时间迭代地或自适应地继续。随着在转矩比下每次连续发生总滑移,夹紧转矩偏移就增加。也就是说,在给定转矩比或速度比下的第二次发生滑移时,控制器50使用比第一次发生更大的偏移,第三次发生接收比第二次发生更大的偏移,等等。方法100完成并且重新开始步骤S102。

虽然已经详细描述了用于执行本公开的最佳方式,但是本公开所涉及领域的技术人员将认识到,用于实践本公开的各种替代设计和实施例在所附权利要求的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1