地质样品中铂钯的固相萃取分析方法与流程

文档序号:15460857发布日期:2018-09-18 18:06阅读:286来源:国知局

本发明属于贵金属分析测试技术领域,具体涉及一种地质样品中铂钯的固相萃取分析方法。



背景技术:

铂钯同属铂族元素,其准确测定一直是分析化学中的难点。一方面是铂钯在地壳中含量极低,分布不均匀,基体干扰严重;另一方面铂钯彼此之间化学性质相似且相互伴生,因此准确测定非常困难。通过对铂钯样品进行前处理,以分离干扰组分和富集被测物质,是解决这一问题的关键。

地质样品中铂钯的分离富集方法主要有火试金(铅试金、镍硫试金、锑试金、铋试金等)、液液萃取、沉淀和共沉淀、固相萃取等。其中:

(1)火试金的应用最为经典,优点是取样量大,能够保证样品的代表性,目前国家和行业标准中铂钯分析方法均有火试金法(GB/T 17418.6-2010、DZ/T 0279.31-2016等)。然而缺点也很明显,试剂用量大,空白值偏高,环境污染,分析成本高。

(2)液-液萃取存在有机溶剂污染环境,手工操作繁琐,难以实现自动化等弊端。

(3)沉淀和共沉淀(常用沉淀剂碲、硫脲等)同样存在操作繁琐费时等问题。

(4)相比之下,固相萃取可以克服上述不利影响,它是由液-固萃取和柱液相色谱技术发展而来,利用固相萃取材料选择性地吸附液体样品中的目标分析物,然后通过分离达到富集分析物的目的,最终降低了样品基体干扰,提高分析灵敏度。氧化石墨烯因具有超大比表面积,稳定的结构,表面含大量活性基团等特点而被常用作固相萃取吸附材料,但是其本身的选择性较差,需对其进行功能化改性,来提高对铂钯的吸附效率和选择性。文献(Sharma S., J. Environ. Chem. Eng., 2016,4:4287-4298)采用四辛基溴化铵对氧化石墨烯进行非共价键功能化,制备成复合吸附材料用于废工业催化剂中钯的选择性富集。但是非共价键主要是通过π-π键、氢键、离子键、静电等相互作用,作用力较弱,不稳定。



技术实现要素:

本发明为克服传统铂钯分离富集操作繁琐、污染环境、成本高等问题,提供了地质样品中铂钯的固相萃取分析方法,是通过对氧化石墨烯进行共价键化学改性,首次将8-氨基喹啉通过偶联反应接枝到氧化石墨烯上,通过自制固相萃取装置,实现对地质样品中铂钯的定量富集和基体的快速分离,结合水浴密闭消解样品,等离子体光谱/质谱测定,建立起地质样品铂钯分析的新方法。本发明拓展了石墨烯的应用范围,发挥了氧化石墨烯的优势性能,提高了铂钯的固相萃取效率和选择性。

本发明的技术方案如下:

地质样品中铂钯的固相萃取分析方法,具体步骤如下:

(一)功能化氧化石墨烯制备:

称取2.0~3.0 g氧化石墨烯和2.0~3.0 g 偶联脱水试剂于250 mL三口烧瓶中,加50~60mL 溶剂溶解;另取0.6 ~0.7 g 8-氨基喹啉和50~60 mL的相同溶剂,将8-氨基喹啉溶解于50~60 mL的溶剂中,溶解后转入所述三口烧瓶中,再加热搅拌回流10~12h;最后过滤,用相同溶剂洗涤5~6次,然后在100~105℃的温度条件下干燥3~4h,即得8-氨基喹啉功能化的氧化石墨烯材料;

(二)固相萃取柱制备:

称取步骤(一)制得的0.5~1.0 g 8-氨基喹啉功能化的氧化石墨烯,分3~4次装入玻璃漏斗中段,用玻璃棒小心压实,两端用玻璃棉或脱脂棉堵塞形成萃取柱,漏斗上面放入一张滤纸;分别用去离子水和0.001~0.0001mol/L的盐酸溶液交替冲洗萃取柱,最后再用0.001~0.0001mol/L的盐酸溶液平衡备用;

(三)地质样品分解:

准确称取10g样品于方形瓷舟中,置于马弗炉中从低温升至650~700℃,保温1~1.5h,取出冷却;然后转移至250~300mL的溶样瓶中,用少许水润湿溶样瓶内的样品,再加入30~45mL盐酸,10~15mL双氧水和4~5g氟化氢铵固体,摇匀放置15~20min;旋紧溶样瓶的盖子,放于封闭水浴锅中,溶解2~2.5h,取出冷却;打开溶样瓶的盖子,于低温电热板上(100~110℃)加热直至除去过氧化氢和硅,取下冷却;再补加1~1.5mL盐酸,加去离子水至溶样瓶50mL刻度线处,摇匀静置得到上清液备用;

(四)铂钯固相萃取过程:

分取25~30mL步骤(三)中的上清液于50 mL的小烧杯,用稀氨水调节pH为3~4,缓慢倒入步骤(二)的玻璃漏斗中,用4~5mL pH 3~4的盐酸溶液洗涤烧杯,一并转入玻璃漏斗中。用10%~15%的热氟化氢铵溶液和pH 3~4的盐酸溶液洗涤萃取柱2~3次,再用少量去离子水洗涤萃取柱2次,最后用热的0.5%盐酸(V/V)~0.8%硫脲(m/V)混合溶液5~10 mL洗脱柱上分析物,得到铂钯离子;

(五)仪器测定:

根据富集后铂钯离子含量的高低分别选择适合不同检测限的仪器来测定。对于富集后含量在μg/g及以上的样品,采用ICP-OES测定,富集后含量在μg/g以下的样品,采用ICP-MS测定。

所选仪器ICP-OES型号为PerkinElmer 8300,分析线为Pt(265.945),Pd(340.458);ICP-MS 型号为PerkinElmer NexION 350s,分析同位素为106Pd,195Pt, 采用115In和185Re双内标校正。

所述偶联脱水试剂采用DCC(二环己基碳二亚胺)。因为DCC具有反应条件温和,易于控制,成本低的特点。

所述溶剂采用DMF(N,N-二甲基甲酰胺)。因为DMF性能稳定,溶解性好,沸点低,毒性低,成本低。

本发明的特点如下:

1、通过氧化石墨烯表面的羧基和8-氨基喹啉上的氨基形成酰胺键而牢固连接一起,制备功能化氧化石墨烯;经多次试验该制备方法简单快速,反应温和,所选试剂便宜,回收率高。

2、采用水浴锅封闭溶样,在封闭条件下,酸蒸气浓度和压力不断增加,提高了对样品的分解能力;采用盐酸-双氧水-氟化氢铵复合溶样体系,方法基于盐酸和过氧化氢作用,产生极强氧化性的新生态氯,氟化氢铵除硅,将铂钯溶解完全。

3、功能化氧化石墨烯主要通过8-氨基喹啉对铂钯进行选择性萃取,8-氨基喹啉为“氮氮”型同种配位原子的功能配体,对过渡金属元素(如钯、铜、铂、钴、镍等)均有配位选择性,这些过渡金属元素又常常伴生在一起,因此pH对元素间的分离至关重要。

4、根据吸附动力学原理,目标富集物在流过萃取柱中速度越大,停留时间越短,则回收率会降低。

5、功能化氧化石墨烯对Pt和Pd 的吸附容量饱和度高。

总体而言,本发明提供的铂钯固相萃取分析方法中,8-氨基喹啉功能化的氧化石墨烯复合材料制备方法简单可控,设备简易,无需特殊试剂,在一般试验室就可方便地完成;制备成固相萃取吸附材料对铂钯有较好的选择性和萃取效率,整个固相萃取过程时间短,吸附速度快(约5min),水浴溶样清洁环保高效,固相萃取装置简单。

附图说明

图1为本发明的流程示意图。

图2为本发明的功能化氧化石墨烯制备路线图

图3为本发明所使用的固相萃取装置的结构示意图。

图4为本发明所使用的水浴锅装置的结构示意图。

图5为本发明的pH对回收率的影响曲线图。

具体实施方式

本发明涉及的地质样品中铂钯的固相萃取分析方法,分析流程见图1,包括如下步骤:

(一)功能化氧化石墨烯制备;

(二)固相萃取柱制备;

(三)地质样品分解;

(四)铂钯固相萃取过程;

(五)仪器测定。

实施例1

根据所述步骤结合具体取值,具体如下:

(一)功能化氧化石墨烯制备:

称取2.0 g氧化石墨烯和3.0 g DCC于250 mL三口烧瓶中,加60mLDMF溶解;另取0.7 g 8-氨基喹啉和60 mL的DMF,将8-氨基喹啉溶解于60 mL的溶剂中,溶解后转入所述三口烧瓶中,再加热搅拌回流12h;最后过滤,用DMF洗涤5~6次,然后在105℃的温度条件下干燥3h,即得8-氨基喹啉功能化的氧化石墨烯材料;该制备方法是采用DCC为偶联脱水试剂,DMF为溶剂,于回流中行羧胺脱水缩合反应,具体合成路线和机理见图2所示。

(二)固相萃取柱制备:

称取步骤(一)制得的1.0 g 8-氨基喹啉功能化的氧化石墨烯,分3~4次装入玻璃漏斗中段,用玻璃棒小心压实,两端用玻璃棉或脱脂棉堵塞形成萃取柱,漏斗上面放入一张滤纸;分别用去离子水和0.0001mol/L的盐酸溶液交替冲洗萃取柱,最后再用0.0001mol/L的盐酸溶液平衡备用,具体装置见图3所示。

(三)地质样品分解:

准确称取10g土壤样品(GBW07288)于方形瓷舟中,置于马弗炉中从低温升至650~700℃,保温1~1.5h,取出冷却;然后转移至250~300mL的溶样瓶中,用少许水润湿溶样瓶内的样品,再加入30~45mL盐酸,10~15mL双氧水和4~5g氟化氢铵固体,摇匀放置15~20min;旋紧溶样瓶的盖子,放于封闭水浴锅中,其中水浴锅的结构如图4所示,溶解2~2.5h,取出冷却;打开溶样瓶的盖子,于低温电热板上(100~110℃)加热直至除去过氧化氢和硅,取下冷却;再补加1.5mL盐酸,加去离子水至溶样瓶50mL刻度线处,摇匀静置得到上清液备用。

(四)铂钯固相萃取过程:

分取25mL步骤(三)中的上清液于50 mL的小烧杯,用稀氨水调节pH为3~4,缓慢倒入步骤(二)的玻璃漏斗中,用4mL pH 3~4的盐酸溶液洗涤烧杯,一并转入玻璃漏斗中。用10%~15%的热氟化氢铵溶液和pH 3~4的盐酸溶液洗涤萃取柱2~3次,再用少量去离子水洗涤萃取柱2次,最后用热的0.5%盐酸(V/V)~0.8%硫脲(m/V)混合溶液5mL洗脱柱上分析物,得到铂钯离子。

(五)仪器测定:

根据富集后铂钯离子含量的高低分别选择适合不同检测限的仪器来测定,测定结果见表1。

实施例2

根据所述步骤结合具体取值,具体如下:

(一)功能化氧化石墨烯制备:

称取2.0 g氧化石墨烯和2.0 g DCC于250 mL三口烧瓶中,加50mL DMF溶解;另取0.6 g 8-氨基喹啉溶解于50 mL的DMF中,一并转入三口烧瓶,加热搅拌回流10h。过滤,用DMF洗涤5~6次,然后在100℃干燥4h,即得8-氨基喹啉功能化的氧化石墨烯材料;该制备方法是采用DCC为偶联脱水试剂,DMF为溶剂,于回流中行羧胺脱水缩合反应,具体合成路线和机理见图2所示。

(二)固相萃取柱制备:

称取步骤(一)制得的0.5 g 8-氨基喹啉功能化的氧化石墨烯,分3~4次装入玻璃漏斗中段,用玻璃棒小心压实,两端用玻璃棉或脱脂棉堵塞形成萃取柱,漏斗上面放入一张滤纸;分别用去离子水和0.001mol/L的盐酸溶液交替冲洗萃取柱,最后再用0.001mol/L的盐酸溶液平衡备用,具体装置见图3所示。

(三)地质样品分解:

准确称取10g水系沉积物样品(GBW07289)于方形瓷舟中,置于马弗炉中从低温升至650~700℃,保温1~1.5h,取出冷却;然后转移至250~300mL的塑料溶样瓶中,用少许水润湿溶样瓶内的样品,加入30~45mL盐酸,10~15mL双氧水和4~5g氟化氢铵固体,摇匀放置15~20min;旋紧溶样瓶的盖子,放于封闭水浴锅中,其中水浴锅的结构如图4所示,溶解2~2.5h,取出冷却;打开溶样瓶的盖子,于低温电热板上(100~110℃)加热直至除去过氧化氢和硅,取下冷却;再补加1mL盐酸,加去离子水至溶样瓶50mL刻度线处,摇匀静置得到上清液备用。

(四)铂钯固相萃取过程:

分取30mL步骤(三)中的上清液于50 mL的小烧杯,用稀氨水调节pH为3~4,缓慢倒入步骤(二)的玻璃漏斗中,用5mL pH 3~4的盐酸溶液洗涤烧杯,一并转入玻璃漏斗中。用10%~15%的热氟化氢铵溶液和pH 3~4的盐酸溶液洗涤萃取柱2~3次,再用少量去离子水洗涤萃取柱2次,最后用热的0.5%盐酸(V/V)~0.8%硫脲(m/V)混合溶液10 mL洗脱柱上分析物,得到铂钯离子。

(五)仪器测定:

根据富集后铂钯离子含量的高低分别选择适合不同检测限的仪器来测定,测定结果见表1。

实施例3

根据所述步骤结合具体取值,具体如下:

(一)功能化氧化石墨烯制备:

称取3.0 g氧化石墨烯和2.0 g DCC于250 mL三口烧瓶中,加50mLDMF溶解;另取0.7 g 8-氨基喹啉和60 mL的DMF,将8-氨基喹啉溶解于60 mL的溶剂中,溶解后转入所述三口烧瓶中,再加热搅拌回流10~12h;最后过滤,用DMF洗涤5~6次,然后在105℃的温度条件下干燥3~4h,即得8-氨基喹啉功能化的氧化石墨烯材料;该制备方法是采用DCC为偶联脱水试剂,DMF为溶剂,于回流中行羧胺脱水缩合反应,具体合成路线和机理见图2所示。

(二)固相萃取柱制备:

称取步骤(一)制得的0.5 g 8-氨基喹啉功能化的氧化石墨烯,分3~4次装入玻璃漏斗中段,用玻璃棒小心压实,两端用玻璃棉或脱脂棉堵塞形成萃取柱,漏斗上面放入一张滤纸;分别用去离子水和0.001mol/L的盐酸溶液交替冲洗萃取柱,最后再用0.001mol/L的盐酸溶液平衡备用,具体装置见图3所示。

(三)地质样品分解:

准确称取10g矿石样品(GBW07290)于方形瓷舟中,置于马弗炉中从低温升至650~700℃,保温1~1.5h,取出冷却;然后转移至250~300mL的溶样瓶中,用少许水润湿溶样瓶内的样品,再加入30~45mL盐酸,10~15mL双氧水和4~5g氟化氢铵固体,摇匀放置15~20min;旋紧溶样瓶的盖子,放于封闭水浴锅中,其中水浴锅的结构如图4所示,溶解2~2.5h,取出冷却;打开溶样瓶的盖子,于低温电热板上(100~110℃)加热直至除去过氧化氢和硅,取下冷却;再补加1.5mL盐酸,加去离子水至溶样瓶50mL刻度线处,摇匀静置得到上清液备用。

(四)铂钯固相萃取过程:

分取25mL步骤(三)中的上清液于50 mL的小烧杯,用稀氨水调节pH为3~4,缓慢倒入步骤(二)的玻璃漏斗中,用4mL pH 3~4的盐酸溶液洗涤烧杯,一并转入玻璃漏斗中。用10%~15%的热氟化氢铵溶液和pH 3~4的盐酸溶液洗涤萃取柱2~3次,再用少量去离子水洗涤萃取柱2次,最后用热的0.5%盐酸(V/V)~0.8%硫脲(m/V)混合溶液10mL洗脱柱上分析物,得到铂钯离子。

(五)仪器测定:

根据富集后铂钯离子含量的高低分别选择适合不同检测限的仪器来测定,测定结果见表1。

实施例4

实施例4与实施例3大致相同,不同之处在于本实施例选用的地质样品为矿石(GBW07293)。测定结果见表1。

上述实施例中,实验结果表明,在pH 3~4范围内,铂钯可定量富集,而铜钴镍在此酸度范围内均不被富集,如图5所示。同时经过试验,铂钯浓度均为20 ng/mL时,以不同流速(1~15 mL/min)过柱,结果表明流速在1~10 mL/min回收率均能达95%以上。功能化氧化石墨烯对Pt和Pd 的吸附容量饱和度分别可达3.5 mg/g 和4.7 mg/g。

在仪器测定过程中,对于富集后含量在μg/g及以上的样品,采用ICP-OES测定,富集后含量在μg/g以下的样品,采用ICP-MS测定。所选仪器ICP-OES型号为PerkinElmer 8300,分析线为Pt(265.945),Pd(340.458);ICP-MS 型号为PerkinElmer NexION 350s,分析同位素为106Pd,195Pt, 采用115In和185Re双内标校正。

下面根据上述方法的基本流程,具体的实施选取:

氧化石墨烯,选用苏州碳丰石墨烯科技有限公司,DCC全称为二环己基碳二亚胺,DMF全称为N,N-二甲基甲酰胺,8-氨基喹啉,无机酸及固体分析试剂均为分析纯。

地质样品,按照 DZ/T 0130.2-2006的规程制样,样品粒度为0.075 mm。

选取的四种地球化学国家一级标准物质样品GBW07288,GBW07289,GBW07290,GBW07293,按照上述发明内容进行操作,均重复测定3次,所测得分析结果见表1,测定值与认定值基本一致,用于说明本方法有较好的实用性,能够满足地质样品中铂钯的准确测定。

表 1 铂钯的测定值和认定值比较(ng/g)

注:测定值(平均值±标准偏差,n=3),认定值(标准物质认定证书提供)。

本领域的技术人员应当理解,凡是对本发明公开内容(以上所述仅为本发明较佳实施案例而已,并不用以限制本发明为求简明而未一一描述的内容)中技术方案和附图内容进行修改、等同替换、改进等,而未脱离本发明公开内容的宗旨和范围,均应涵盖在本发明的权利要求范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1