有机电致发光元件及其制造方法和有机电致发光显示装置的制作方法

文档序号:6876188阅读:70来源:国知局
专利名称:有机电致发光元件及其制造方法和有机电致发光显示装置的制作方法
技术领域
本发明涉及有机电致发光(EL)元件的制造方法、有机EL元件和有机EL显示装置。
背景技术
有机EL元件是一种发光元件,其构成是由阴极和阳极夹持一层含有荧光性有机化合物的薄膜,通过向上述薄膜中注入电子和空穴(hole)并使它们复合而产生激子(exciton),利用这种激子失去活性时放出的光(荧光或磷光)而发光。
这种有机EL元件的特征是在10V以下的低电压就可以产生100~100000cd/m2左右高亮度的表面发光,而且通过选择不同种类的荧光物质,可以产生由蓝色至红色的不同颜色的光。
有机EL元件作为一种能够实现廉价的大面积全色显示元件的装置而引人注目(电子情报通信学会技术报告,第89卷,No.106,49页,1989年)。根据该报告,使用一种能够发出强荧光的有机发光材料作为发光层,可以发出蓝、绿、红的明亮的光。该报告认为,使用一种能以薄膜状发出强荧光,而且针孔缺陷少的有机色素,就能实现高亮度的全色显示。
另外,特开平5-78655号公报提出,将发光材料设计成一种由有机荷电材料和有机发光材料的混合物构成的有机发光层,即可以防止浓度猝灭,从而可以获得高亮度的全色元件,并且可以扩大发光材料的可选择范围。
另外,应用物理通信(Appl.Phys.Lett.),64(1994),P.815报导,使用聚乙烯咔唑(PVK)作为发光材料,向其中掺杂相当于3原色RGB的色素,即可以获得白色的发光。然而,在上述任一种情况下都没有示出一种实际的全色显示屏的构成及其制造方法。
为了实现全色的显示装置,使用上述有机发光材料的有机薄膜EL元件必须在其每一个象素中配置能够发出3原色光的各个有机发光层。可是,用于形成有机发光层的聚合物或其前体不能耐受在光刻法等图案形成工序中的条件,很难进行高精度的图案形成,这是存在的问题。
另外,在利用真空淀积法来形成数层有机层的情况下,需要花费较长的时间,因此不能说是一种高效的元件制造方法。

发明内容
本发明的目的是提供一种有机EL元件的制造方法、有机EL元件和有机EL显示装置,该方法可以简便地进行高精度的图案成形,而且可以简单地实现膜设计的最优化,以及该有机EL元件具有优良的发光性能。
为了达到上述目的,本发明中所述的有机EL元件的制造方法具有在透明基板上形成象素电极的工序,在上述象素电极上形成一种由有机化合物构成的至少1色发光层的图案形成工序,形成与上述象素电极对置的阴极的工序,其特征在于,上述发光层的形成按照喷墨方式进行。
上述的有机化合物优选是高分子有机化合物。在此情况下,所说的高分子有机化合物优选是空穴注入输送型材料。这样的上述高分子有机化合物优选是聚对亚苯亚乙烯(polyphenylene vinylene)及其衍生物,或者是具有它们之中任何一方的共聚物。
另外,在上述高分子有机化合物本身是有机发光材料但不是空穴注入输送型材料的情况下,可以向发光层中加入不同于发光材料的空穴注入输送型材料。
上述的发光层是3色的,在该3色的上述发光层之中,优选至少有2色按照喷墨方式来进行图案形成。上述的3色是红色、绿色和蓝色,其中,优选是红色发光层和绿色发光层各自按喷墨方式进行图案形成,在此情况下,上述蓝色发光层优选用真空淀积法来形成。另外,蓝色发光层优选由电子注入输送型材料构成,例如可以由羟基喹啉铝配合物构成。
在本发明的有机EL元件的制造方法中,优选是将至少1色的上述发光层与空穴注入输送层积叠起来,另外,优选在上述阴极上形成一层保护膜。
在本发明的有机EL元件的制造方法中,上述的透明基极优选是具有用于驱动各象素的薄膜晶体管。
另外,上述的象素电极优选是透明象素电极。
另外,本发明的有机EL元件的特征在于,它具有透明基板、设置在上述透明基板上的象素电极、由在上述象素电极上按喷墨方式形成图案的有机化合物构成的至少1色的发光层、在上述发光层上形成的阴极。
上述的有机化合物优选是高分子有机化合物,而上述高分子有机化合物优选是空穴注入输送型材料。
另外,上述高分子有机化合物优选是聚对亚苯亚乙烯及其衍生物,或者是具有在它们之中任何一方的共聚物。上述的发光层是3色的,在该3色的上述发光层之中,优选至少有2色按照喷墨方式来进行图案形成,上述的3色是红色、绿色和蓝色,其中,优选是红色发光层和绿色发光层各自按喷墨方式进行图案形成。在此情况下,更优选是上述蓝色发光层通过真空淀积法来形成。
上述的蓝色发光层优选是由电子注入输送型材料构成。作为这样的蓝色发光层,可以举出含有羟基喹啉铝配合物的材料。
另外,优选是将至少1色的上述发光层与空穴注入输送层积叠起来,并且优选是在上述阴极上形成一层保护膜。
另外,上述象素电极优选是透明象素电极。
本发明的有机EL显示装置的特征在于,它具有上述的有机EL元件。


图1是表示本发明有机EL元件制造方法的第1实施例的截面图。
图2是表示本发明有机EL元件制造方法的第2实施例的截面图。
图3是表示本发明有机EL元件制造方法的第3实施例的截面图。
图4是表示本发明有机EL元件制造方法的第4实施例的截面图。
图5是表示本发明有机EL元件制造方法的第5实施例的截面图。
图6是表示本发明有机EL元件的一例的截面图。
图7是表示使用本发明有机EL元件的有机EL显示装置的一例的截面图。
图8是表示使用本发明有机EL元件的有源矩阵型有机EL显示装置的一例的附图。
图9是表示有源矩阵型有机EL显示装置的制造方法的一例的截面图。
图10是表示在制造本发明的有机EL元件时使用的喷墨用打印头的构成例的平面斜视图。
图11是表示在制造本发明的有机EL元件时使用的喷墨用打印头的喷嘴部分的截面图。
图12是表示本发明有机EL显示装置另一个实施例的附图。
图13是表示本发明有机EL显示装置的概略部分截面图。
图14是表示施加于电极上的电压驱动波形的一例的附图。
图15是表示本发明有机EL元件另一例的部分截面图。
具体实施例方式
以下根据附图所示的优选实施例详细地解释本发明有机EL元件的制造方法和有机EL元件。
图1表示本发明有机EL元件的制造方法的第1实施例。该图也是表示3色的全色有机EL元件的制造方法的附图。该图中示出了一种有机EL元件的制造方法,该方法具有在透明基板104上形成象素电极101、102、103的工序,在上述各象素电极上形成一种有机化合物构成的发光层106、107的图案形成工序,形成阴极113的工序,其特征在于,上述发光层的形成按照喷墨方式进行。
透明基板104作为支持体并同时具有作为光取出面的功能。因此,透明基板104可以根据透光性和热稳定性来选择。作为透明基板材料,例如可以举出玻璃基板、透明塑料板等,但从耐热性优良方面考虑,优选是玻璃基板。
首先,在透明基板104上形成象素电极101、102、103。作为形成方法,例如可以举出光刻法、真空淀积法、溅射法、高温溶胶法等,其中优选是光刻法。作为象素电极,优选是透明象素电极,作为构成透明象素电极的材料,可以举出氧化锡膜、ITO膜、氧化铟和氧化锌的复合氧化物膜等。
然后是形成隔壁(挡板)105,用来填满上述各透明象素电极之间的间隙。
采用这种方法,可以提高对比度,防止发光材料的混色,防止象素与象素之间的漏光等。
作为构成隔壁105的材料没有特别限定,只要是对EL材料的溶剂具有耐久性的材料即可,例如可以举出丙烯酸树脂、环氧树脂、感光性聚酰亚胺等的有机材料、液体玻璃等的无机材料等。另外,隔壁105也可以通过向上述材料中混入炭黑等来形成黑色挡光板。
作为该隔壁105的形成方法,例如可以举出光刻法等。
进而,在各象素电极上按预定图案形成有机发光层,有机发光层优选是设置3色的发光层,优选是其中的至少1色按喷墨方式形成。
按照图1的实施例,在象素电极101、102上分别按喷墨方式形成红色发光层106和绿色发光层107。
此处,所谓喷墨方式是指,由喷墨打印装置109的喷头110喷出一种由发光材料溶解或分散在溶剂中而形成的喷出液,从而形成在红色、绿色、蓝色这3种原色或其中间色中至少1种颜色的象素的过程而言。
按照所说的喷墨方式,可以简便地而且在短时间内形成精细的图案。另外,通过增减喷出量来调整膜厚或者通过调整墨汁的浓度,即可以容易而且自由地控制发光的均衡性和亮度等的照明度。
另外,当有机发光材料是下述的共轭高分子前体的情况下,可以在按喷墨方式喷出各种发光材料从而形成图案之后,通过加热或光照射等使上述前体成分共轭化(成膜)而形成发光层。
然后,如图1所示,在红色发光层106、绿色发光层107和象素电极103之上形成蓝色发光层108。按照该方法,不但可以形成红、绿、蓝的3原色,而且可以填平红色发光层106和绿色发光层107与隔壁105的垂直高差,从而使其平坦化。
作为形成上述蓝色发光层108的方法没有特殊限定,例如可以采用淀积法、湿法等一般成膜法,或者也可采用喷墨法来形成。
另外,蓝色发光层108可以由例如象羟基喹啉铝配合物那样的电子注入输送型材料构成。在此情况下促进了载流子的注入和输送,从而可以提高发光效率。进而,通过与由下述的空穴注入输送材料构成的薄层积叠在一起,可以使来自电极的电子和空穴平衡地注入并输送到发光层中,从而可以进一步地提高发光效率。
另外,在与空穴注入输送型材料等积叠的情况下,可以使空穴注入输送和电子注入输送分别由不同的材料来承担,因此可以分别对各种材料进行最适宜的设计。作为上述电子注入输送层的形成方法没有特殊限定,例如可以使用淀积法、湿法等一般的成膜法或者喷墨法。
另外,作为能够形成电子注入输送层的有机化合物,可以举出PBD、OXD-8等二唑衍生物、DSA、羟基喹啉铝配合物、Bebq、三唑衍生物、甲亚胺配合物、卟吩配合物、苯并二唑配合物等,其中,可以用其中的1种或2种以上的混合物,或者通过积叠来形成电子注入输送层。另外,也可以在上述有机化合物中掺杂入下述的荧光色素来形成电子注入输送层。另外,上述电子注入输送层也可以具有发光的功能。
按照本实施例,有机发光层中的2色按喷墨方式形成,另1色按其他方法形成,因此,即使是一种不太适合按喷墨方式形成的发光材料,也可以与某些适用于喷墨方式的其他有机发光材料组合来形成全色有机EL元件,因此可以加宽设计范围。
作为除了喷墨方式以外的发光层的形成方法,例如可以举出光刻法、真空淀积法、印刷法、转印法、浸涂法、旋转涂布法、浇铸法、毛细管法、辊涂法、棒涂法等。
最后形成阴极(对置电极)113,从而制成本发明的有机EL元件。作为阴极113,优选是金属薄膜电极,作为构成阴极的金属,例如可以举出Mg、Ag、Al、Li等。另外,除了这些材料之外,一些功函数较小的材料也可以使用,例如可以使用碱金属或Ca等碱土类金属以及含有这些金属的合金。这样的阴极113可以用淀积法和溅射法等来形成。
本发明的有机EL元件可以通过上述的工序来制造。也就是说,如图1所示,在设置于透明基板104上的象素电极101和102之上,各自以喷墨方式按图案形成由有机化合物构成的红色发光层106、绿色发光层107,进而在上述发光层106、107和象素电极103之上以真空淀积法形成蓝色发光层108。最后在其上面形成阴极113,从而完成了本发明的有机EL元件。
然后,如图6所示,在阴极413之上形成保护膜415。由于形成了保护膜415,因此可以防止阴极413和各发光层406、407、408的劣化、损伤和剥离等。
作为上述保护膜415的构成材料,可以举出环氧树脂、丙烯酸树脂、液体玻璃等。另外,作为保护膜415的形成方法,例如可以举出旋转涂布法、浇铸法、浸涂法、棒涂法、辊涂法、毛细管法等。
发光层优选由有机化合物构成,更优选由高分子有机化合物构成。通过形成由有机化合物构成的发光层,可以在低电压的条件下达到高亮度的表面发光。另外,由于发光材料可以在宽范围内选择,因此可以对EL发光元件进行合理的设计。
特别是高分子有机化合物的成膜性优良,而且,由高分子有机化合物构成的发光层具有极良好的耐久性。另外,这些高分子有机化合物具有可见光区域的带隙和较高的导电性,其中,共轭系高分子的这种倾向特别显著。
作为有机发光层材料,可以使用高分子有机化合物本身,或者使用可以通过加热而共轭化(成膜)的共轭高分子有机化合物的前体等。
在使用共轭化(成膜)之前的前体作为发光材料的情况下,作为喷墨的喷出液,其粘度等容易调整,可以进行精密的图案成形,而且可以容易地控制发光层的发光特性和涂膜的性状。
用于形成发光层的高分子有机化合物,优选是空穴注入输送型材料。这样可以促进载流子的注入和输送,从而提高发光效率。
作为能够形成发光层的有机化合物,例如可以举出PPV(聚(对亚苯亚乙烯))或其衍生物、PTV(聚(2,5-亚噻吩亚乙烯))等聚烷基亚噻吩、PFV(聚(2,5-亚呋喃亚乙烯))、聚对亚苯、聚烷基芴等聚亚芳基乙烯、吡唑啉二聚物、喹嗪(quinolidine)羧酸、高氯酸苯并吡喃盐、苯并吡喃喹嗪、红荧烯、菲咯啉铕配合物等,可以使用其中的1种或2种以上的混合物。
其中优选是属于共轭高分子有机化合物的PPV或其衍生物。PPV或其衍生物共轭化(成膜)之前的前体可溶于水或有机溶剂中,因此适合于以喷墨方式进行图案形成。另外,由于是高分子,因此可以获得一种光学上高质量的并且其耐久性优良的薄膜。另外,PPV或其衍生物具有强的荧光,并且它是一种导电性的高分子,它的双键上的π电子是在聚合物链上的非定域化电子,因此PPV薄膜具有空穴注入输送层的功能,可以获得一种高性能的有机EL元件。
另外,在使用高分子有机发光层材料的情况下,有机EL元件组合物也可以含有至少1种荧光色素。这样可以改变发光层的发光特性,例如可以有效地提高发光层的发光效率,或者作为改变光吸收极大波长(发光色)的有效手段。
也就是说,荧光色素不只是作为发光层材料使用,而且作为承担发光功能的色素材料使用。例如,通过PPV等那样的共轭系高分子有机化合物分子上的载流子再结合而生成的激子的能量,可以几乎完全地转移到荧光色素分子上。在此情况下,发出的光仅仅是由一种荧光量子效率高的荧光色素分子产生的,因此EL元件的电流量子效率也提高了。而且,通过向有机EL元件组合物中加入荧光色素,可以使得发光层发出的光谱同时成为荧光分子的光谱,因此可以有效地作为用于改变发光颜色的手段。
另外,此处所谓的电流量子效率是一个根据发光功能,用于考察发光性能的尺度,它可按下述公式来定义。
ηε=放出的光子的能量/输入的电能于是,通过掺杂荧光色素来改变光吸收的极大波长,可以使其发出例如红、蓝、绿的3种原色的光,其结果是可以获得一种全色的显示装置。
另外,通过掺杂荧光色素,可以大幅度地提高EL元件的发光效率。
作为适用于红色发光层中的荧光色素,可以使用属于激光色素的DCM或若丹明或若丹明的衍生物,以及苝等化合物。这些荧光色素是低分子量的,因此可溶于溶剂中,而且它们与PPV等的相溶性优良,而且容易形成一种均匀而且稳定的发光层。作为若丹明衍生物荧光色素,例如可以举出若丹明B、若丹明B碱、若丹明6G、若丹明101高氯酸盐等,这些色素也可以是2种以上的混合物。
另外,作为适用于绿色发光层中的荧光色素,可以举出喹吖酮、红荧烯、DCJT以及它们的衍生物。这些荧光色素与上述红色荧光色素同样地是低分子量的,因此可溶于溶剂中,另外,它们与PPV的相溶性良好,因此容易形成发光层。
作为适用于蓝色发光层的荧光色素,可以举出二苯乙烯基联苯及其衍生物。这些荧光色素也与上述红色荧光色素一样是在水溶液中可溶的,而且与PPV的相溶性良好,因此容易形成发光层。
另外,其他作为适用于蓝色发光层中的荧光色素,可以举出香豆素以及香豆素-1、香豆素-6、香豆素-7、香豆素120、香豆素138、香豆素152、香豆素153、香豆素311、香豆素314、香豆素334、香豆素337、香豆素343等的香豆素衍生物。
另外,其他作为适用于蓝色发光层中的发光材料,可以举出四苯基丁二烯(TPB)或TPB衍生物、DPVBi等。这些发光材料也与上述的红色荧光色素等一样是低分子量的,因此可溶于溶剂中,而且,它们与PPV等的相溶性良好,因此容易形成发光层。
以上的荧光色素和发光材料可以使用其中的1种或2种以上的混合物。
在本发明的有机EL元件的制造方法中使用的喷墨用喷头的结构示于图10和图11中。
在该喷墨用喷头10具有例如不锈钢制的喷嘴板11和振动板13时,这两者通过隔离元件(储存板)15而接合起来。
在喷嘴板11与振动板13之间,由隔离元件15形成多个空间19和储液槽21。各空间19和储液槽21的内部充满本发明的组合物,各空间19与贮液槽21通过供给口23而相互连通。
另外,在喷嘴板11上设置一个用于将来自空间19的组合物以射流状喷出的喷嘴孔25。另一方面,在振动板13上形成一个用于将组合物供入储液槽21中的孔27。
另外,与振动板13向着空间19的表面相对一侧的表面上,与上述空间19的位置相对应地粘接有压电元件29。
该压电元件29处于一对电极31之间,一旦通入电流,压电元件29就向外侧突出挠曲,同时,与压电元件29接合在一起的振动板13也成为整体向外侧挠曲。如此就增大了空间19的容积。因此,与空间19内增大的那部分容积相当的组合物就通过供给口23由储液槽21流入空间19中。
然后,一旦撤除通入压电元件29的电流,该压电元件29和振动板13就立即恢复其原来的状态。这时空间19也恢复至原来的容积,因此使得空间19内部的组合物的压力上升,从而导致组合物由喷嘴孔25向基板喷出。
另外,在喷嘴孔25的周边部位设置有疏水层26,以便防止组合物的飞行途径弯曲和喷孔堵塞。
也就是说,在喷嘴孔25的周边部位,如图11所示那样设置有例如由Ni-四氟乙烯共析的电镀层构成的疏水层26。
作用这样的喷头,通过按预定图案喷出与红、蓝、绿3原色相对应的组合物来形成各有机发光层,这样就形成了象素。
在本发明的有机EL元件的制造方法中,作为适用于喷墨方式的有机发光材料组合物,可以使用具有以下特性的组合物。
用于喷出上述组合物的喷嘴设置在喷墨用喷头上,因此,该组合物相对于构成上述喷嘴的喷嘴面251的材料的接触角优选为30°~170°,更优选为35°~65°。由于该组合物具有上述范围的接触角,因此可以抑制该组合物飞行途径的弯曲,从而能够形成精密的图案。
也就是说,当该接触角不足30℃时,组合物相对于喷嘴面构成材料的润湿性增大,因此在喷出该组合物时,该组合物有时会非对称地附着在喷嘴孔的周围。在此情况下,附着在喷嘴孔的组合物与被喷出的组合物相互之间存在引力作用,由于该组合物在喷出时受到不均匀的作用力,因此发生了不能达到目标位置的所谓飞行弯曲,并且飞行弯曲的频度也增高。另外,如果超过170°,则组合物与喷嘴孔之间的相互作用极小,在喷嘴先端处的弯月形状不稳定,因此对组合物喷出量和喷出定时的控制变得困难。
此处所谓飞行弯曲是指,组合物由上述喷嘴喷出时,组合物液滴的命中位置相对于目标位置发生50μm以上的偏移而言。另外,所谓飞行弯曲的频度是指组合物液滴开始以7200Hz的频率喷出时至发生上述飞行弯曲时的时间。飞行弯曲主要是由于喷嘴孔的润湿性不均匀或者由于组合物固体成分的附着而引起喷嘴孔堵塞等而发生的,这一现象可以通过清洗喷头的方法来消除。这种飞行弯曲的频度越高,就必须对喷头进行越频繁的清洗,因此这样一种会使飞行弯曲频度增高的组合物可以说是一种导致按喷墨方式的EL元件的制造效率降低的组合物。就实用水平而言,飞行弯曲的频度必须在1000秒以上。
由于可以防止这样的飞行弯曲,因此可以形成高精细的图案,并且可以高精度地进行。
另外,上述组合物的粘度优选为1cp~20cp,更优选为2cp~4cp。在组合物的粘度不足1cp时,上述前体和荧光色素在所说材料中的含量过小,从而使得形成的发光层不能充分地发挥发光能力。另一方面,在超过20cp时,组合物不能顺利地从喷嘴孔喷出,如果不采取扩大喷嘴孔径等变更装置规格的措施,则难以进行图案成形。另外,在粘度过大时,组合物中的固体成分容易析出,从而使得喷嘴孔被堵塞的发生频度增高。
另外,上述组合物的表面张力优选为20dyne/cm~70dyne/cm,更优选为25dyne/cm~40dyne/cm。通过使表面张力处于上述范围内,就能与上述接触角的情况一样地抑制飞行弯曲,并将飞行弯曲的频度抑制到较低程度。如果表面张力不足20dyne/cm,则组合物对喷嘴构成材料的润湿性增大,从而会与上述接触角的情况一样地产生飞行弯曲,并且使飞行弯曲的频度增高。另外,如果表面张力超过70dyne/cm,则在喷嘴先端处的弯月形状不稳定,因此对组合物喷出量和喷出定时的控制变得困难。
另外,作为适用于本发明有机EL元件的制造方法的有机发光材料组合物,只要能够满足上述的接触角、粘度和表面张力中至少一个数值范围即可,优选是能够满足上述参数中2个以上任意组合的特性条件的组合物,更优选是能够满足所有特性的组合物。
图2示出本发明有机EL元件的制造方法的实施例2。
在本实施例中,与实施例1同样地在透明基材204上形成象素电极201、202、203和隔壁205,然后按喷墨方式形成红色发光层206、绿色发光层207。
与上述实施例1不同之处在于,在象素电极203上形成空穴注入输送层208,然后再在该层上面积叠蓝色发光层210。通过如此积叠空穴注入输送层208,促进了如上所述来自电极的空穴的注入和输送,从而可以提高发光效率。
这样,在本发明的有机EL元件的制造方法中,优选是将至少1色的发光层与空穴注入输送层积叠起来。如此就能提高发光效率,并且可以进一步提高薄膜元件本身的稳定性。
另外,在积叠的发光层与空穴注入输送层的界面附近,两层中各自所含材料的一部分也可以存在相互向他层一侧渗透和扩散的状态。
空穴注入输送层208优选是不发光的层。这样就能使蓝色发光层210在象素电极203之上成为发光部,从而能够比较容易地制得全色的有机EL元件。
上述空穴注入输送层208的形成方法没有特别限定,例如可以按喷墨方式来形成。这样就可以按照精度优良的预定图案来配置该空穴注入输送层208。
作为空穴输送层208的构成材料,例如可以举出TPD等的芳香族二胺类化合物、MTDATA、喹吖酮、bisstil蒽衍生物、PVK(聚乙烯咔唑)、酞菁铜等酞菁类配合物、卟吩类化合物、NPD、TAD、聚苯胺等,其中优选为PVK。通过使用PVK,可以形成不发光的空穴注入输送层。
进而,与上述实施例1同样地形成蓝色发光层210和阴极211,这样即可以获得本发明的有机EL元件。蓝色发光层210、阴极211的构成材料和形成方法与上述实施例相同。
图3示出本发明有机EL元件制造方法的实施例3。
在本实施例中,与实施例1同样地在透明基材304上设置象素电极301、302、303和隔壁305,然后按喷墨方式设置红色发光层306和绿色发光层307。
然后在红色发光层306、绿色发光层307和象素电极303上方的全部面积上形成空穴注入输送层308。如上所述,通过将空穴注入输送层308与发光层306和307积叠起来,可以促进空穴的注入和输送,从而能够提高发光效率。
另外,根据与上述相同的理由,作为空穴注入输送层308,优选设置不发光的层。
对上述空穴注入输送层308的形成方法没有特别限定,例如可以举出喷墨方式、真空淀积法、浸涂法、旋转涂布法、浇铸法、毛细管法、辊涂法、棒涂法等。在本实施例中可以通过真空淀积法来形成。另外,作为空穴注入输送层的构成材料,可以使用与上述实施例2相同的材料。
然后在空穴注入输送层308之上形成蓝色发光层309和阴极311,这样即能获得本发明的有机EL元件。阴极311的构成材料和形成方法与上述实施例相同。
图4示出本发明有机EL元件制造方法的实施例4。
在本实施例中,与实施例1同样地在透明基材804之上形成象素电极801、802、803和隔壁805,然后在象素电极801、802、803之上各自以喷墨方式按图案形成发光层806、806和808。这样就可以容易而且简便地对例如各发光层材料的喷出量、喷出次数和形成图案进行调节,并且能容易地对各发光层的发光特性、膜厚等膜的性状进行控制。
然后在各发光层806、807、808之上形成电子注入输送层811。电子注入输送层811可以使来自阴极的电子容易地注入,另外,由于发光部分远离阴极,因此可以防止电极消光,并能与阴极形成较好的接触。作为电子注入输送层811,可以使用未经掺杂的羟基喹啉铝配合物。上述的电子注入输送层811可以通过真空淀积法来形成。
另外,对电子注入输送层811的形成方法没有限定,例如它可以是喷墨法、真空淀积法、浸涂法、旋转涂布法、浇铸法、毛细管法、辊涂法、棒涂法等。
进而在其上面形成阴极813,从而获得了本发明的有机EL元件。阴极813的构成材料和形成方法与上述实施例相同。
图5示出本发明有机EL元件制造方法的实施例5。
在本实施例中,首先与实施例1同样地在透明基材804上设置象素电极801、802和803。再在其上方的全部面积上用旋转涂敷法形成一层例如由PVK构成的空穴注入输送层815。这样不需经过图案成形就能全部涂敷空穴注入输送层815并使其成膜,因此可以提高制造效率。
另外,对空穴注入输送层815的形成方法没有限定,例如它可以是喷墨法、真空淀积法、浸涂法、旋转涂布法、浇铸法、毛细管法、辊涂法、棒涂法等。
另外,根据与上述同样的理由,空穴注入输送层815优选是不发光的层。
然后在空穴注入输送层815之上形成发光层806、807和808。其中至少有1色的发光层优选使用喷墨印刷装置809,按照喷墨法来形成图案。
进而在发光层上形成阴极813,从而获得了本发明的有机EL元件。阴极813的构成材料和形成方法与上述实施例相同。
另外,在本实施例的制造方法中不设置隔壁,但是只要按照本发明的有机EL元件的制造方法,就可以高精度地分别进行R、G、B的涂敷,从而可以提高制造效率。但是也可以与上述实施例同样地设置隔壁以分别形成各象素。
本发明的有机EL元件虽然可以按如上所述的方法来制造,但是并不限定于这些方法,例如它也可以具有如下构成。
图15是表示本发明的有机EL元件另一个实例的部分截面图。
本实施例的有机EL元件是在透明基板61上顺次地积叠反射层62、透明导电性膜(ITO膜)63、空穴注入输送层64、有机发光层65、金属层66、透明导电性膜(ITO膜)67而构成。下面对各层的材料和形成方法进行说明,但是与上述各实施例相同的事项则省略其说明,仅仅说明它们的不同之处。
本实施例的有机EL元件直接地在透明基板61上设置一层由Al等的金属薄膜构成的反射层62。
另外,作为阴极而积叠在发光层65之上的金属层66十分薄(10~50A左右),因此它具有透光性,可以透过由发光层65发出的有颜色的光。另一方面,由于它十分薄,所以其电阻值高,导电性不够好,不能充分发挥作为阴极的功能,所以在金属层66上积叠一层透明的导电性膜(ITO膜)67。另外,这样的金属层66如果由例如Al-Li合金等构成,在此情况下可以采用淀积法或溅射法等来形成。
由于具有这样的构成,所以由电极注入的电流在发光层65中转换成的光就按照图中箭头所示的方向透过。因此,不需通过透明基板61就可以将光取出,从而可以获得更高亮度的显示。
图7表示本发明的有机EL显示装置的一个实例。
在本实施例中,在玻璃板501上通过光刻成象法形成一种Al制的总线(栅极线)511,然后在其上面形成图中没有示出的薄膜晶体管,进而形成504等的ITO透明象素电极。然后与实施例1同样地按喷墨方式形成发光层502(红)、503(绿),进而按真空淀积法形成蓝色发光层505。然后用真空淀积法形成阴极506,这样就制成了与上述实施例1同样的有机EL元件。
之后将保护基材507通过周边密封件509而固定地贴合在透明基板501上。
然后,将该显示装置放在氩气等惰性气体的气氛中,通过封孔513导入惰性气体512,最后用封孔材料508将封孔513密封。由于密封入惰性气体512,因此可以防止有机EL元件受到水分等来自外部的污染物和环境变化的影响,从而能够保持有机E L显示装置的发光性能。封孔材料508优选由不能透过惰性气体512的材料构成。
银胶510具有能使阴极506与栅极线511在所说元件上实现接触的功能。
栅极线511是薄膜晶体管(TFT)的开-关执行单元,起一种控制的作用,该TFT设置在每一个显示象素上,以便对显示象素作出选择。在写入时,使一行栅极线511的电位成为选择的水平,从而使该行的TFT成为导通状态。这时,只要由各列电源电极配线(图中未示出)向对应的象素供给图象信号电压,该图象信号电压就会通过TFT到达象素电极,于是向象素充电或使贮存在象素内的电荷放电,直至达到该信号电压的水平为止。
图8示出使用本发明有机EL元件的有源矩阵型有机EL显示装置的一个实例。该实施例的有机EL显示装置按矩阵形配置,而且各自具有由R、G、B的发光部形成的许多发光象素构成的图象显示配置。
如该图所示,在基板(图中未示出)上形成许多按相互正交排列的信号线(信号电极)601和栅极线(栅极)602,在每一象素中皆具有与信号线601和栅极线602相连接的薄膜晶体管(TFT)604,该TFT604与连接在其上面的由有机EL元件形成的发光层605、606积叠在一起。另外,在有机发光层中,至少有1色的发光层按喷墨方式形成。
图9是表示本发明有源矩阵型有机EL显示装置的截面图。
首先在透明基板904上形成预定的薄膜晶体管915和图中没有示出的栅极线、信号线等。然后在具有该薄膜晶体管915等预定功能元件的各象素电极(ITO)901、902、903之上形成覆盖着每一个象素电极的空穴注入输送层911。作为空穴注入输送型材料,可以使用与上述实施例同样的物质。另外,空穴注入输送层911的形成方法没有特别限定,它可以按上述任一种方法形成。
进而按图案形成各发光层906(红)、907(绿)、908(蓝)。发光层的形成,可以使用喷墨打印装置910按照喷墨方式来形成其中至少1色的发光层。
最后形成反射电极913,从而制得本发明的有机EL显示装置。作为反射电极913,例如可以形成一种厚度为0.1~0.2μm左右的Mg-Ag电极等。
在本发明的有源矩阵型有机EL显示装置的上述实施例中,虽然是使用薄膜晶体管作为开关元件,但对此没有限定,也可以使用其他种类的开关元件、二极管,例如MIM等开关元件。另外也可以采用无源驱动、静态驱动(静止图象、局部显示)等。
另外,一个象素不限于只用一个开关元件,对于一个象素可以配备多个开关元件。
图12示出对于一个象素配备有多个开关元件的有机EL显示装置的实例。在此情况下,开关薄膜晶体管142根据扫描电极131的电位,将信号电极132的电位传达给电流薄膜晶体管143,该电流薄膜晶体管143对于公共电极133和象素电极141的导通起一种控制作用。
下面根据附图解释使用本发明有机EL元件的无源矩阵(单纯矩阵)型有机EL显示装置的一个实例。
图13是本发明的有机EL显示装置的概略部分放大截面图。
如图所示,在本实施例的有机EL显示装置中,在制造有机EL元件时,薄长方形的扫描电极53和信号电极54通过有机EL元件52而相互正交配置。
这样的无源矩阵型的驱动可按下述方式进行,也就是以脉冲方式顺次地选择扫描电极53,在选择该扫描电极53时,同时选择与各象素相对应的信号电极54并向其施加电压。这样的选择可以由控制器55来控制。
应予说明,在无源驱动型的情况下,阴极(cathode)必须形成图案,以便将各条线分隔开。例如,在本发明的第3实施例中,在形成厚度为0.2μm左右的薄阴极时,该阴极被隔壁分隔开,这样就自然地成为已形成图案的状态。
阴极可以按照例如掩模淀积法、激光切割法来进行图案形成。
图14中示出了向扫描电极13和信号电极14施加电压的电压驱动波形的一个实例。在该图所示的驱动波形中,向选择出的象素施加足以使其发光的电压Vs。另外,根据与浓淡度相符合的脉冲幅度波形,可以控制象素的显示浓度。另一方面,对于未被选择的象素则施加在发光阈值电压以下的电压Vn。
在图14中,Tf表示操作时间。在此情况下,按占空比为1/100进行驱动。另外,由上述实施例4的有机EL元件构成的有机EL显示装置的蓝色发光层808所发出的光,当驱动电压为20V时,其亮度为100cd/m2。
(实施例)[有机EL元件的制造](实施例1)如图1所示,在玻璃基板104上按光刻法形成ITO透明象素电极101、102和103,从而形成100μm间距和0.1μm厚的图案。
然后掩埋ITO透明象素电极之间的空隙,再用光刻法形成一种兼有遮光和防止墨水流失两种作用的隔壁105。该隔壁105的宽为20μm,厚为2.0μm。
进而,利用喷墨印刷装置109的喷头110喷出表1和表2中示出的红色、绿色的各种发光材料以形成图案,然后在氮气气氛中于150℃的温度下加热处理4小时,借此使组合物中的前体聚合成高分子,从而形成各发光层106(红)和107(绿)。
然后利用一种添加有苝的缩合芳香族化合物作为掺杂剂的羟基喹啉铝进行真空淀积,借此形成一层0.1μm的电子注入输送层型的蓝色发光层108。
最后用淀积法形成一层厚度为0.8μm的Mg-Ag电极113作为阴极,从而制成了有机EL元件。
(实施例2)
与实施例1同样,按图2所示在玻璃基板204上形成ITO透明象素电极201、202和203,然后掩埋ITO透明象素电极之间的空隙,进而形成兼有遮光和防止墨水流失两种作用的感光性聚酰亚胺的阻挡墙(隔壁)205。
进而与实施例1同样地使用一台喷墨印刷装置209,按图案涂敷表1和表2中所示的红色、绿色的各种发光材料,然后在氮气气氛中和150℃的温度下加热处理4小时,借此使组合物中的前体聚合成高分子,从而形成各发光层206(红)和207(绿)。
然后使用上述的喷墨印刷装置209,在透明象素电极203上按图案形成一层由聚乙烯咔唑(PVK)构成的空穴注入输送层。接着在其上面涂敷一层吡唑啉二聚物,从而形成了蓝色发光层210。
最后用淀积法形成一层厚度为0.8μm的Al-Li电极211作为阴极,从而制成了有机EL元件。
(实施例3)首先与实施例1同样,按图4所示在玻璃基板804上形成ITO透明象素电极801、802、803和隔壁805。
然后向表1和表2所示的发光材料中混入有机空穴注入输送型材料,使用一台喷墨打印装置809形成各发光层806(红)、807(绿)和808(蓝)。
然后使用一种未经掺杂的羟基喹啉铝配合物进行真空淀积,形成了一层厚度为0.1μm的电子注入输送层811。
最后用淀积法形成一层厚度为0.2μm的AL-Li电极813,从而制成了有机EL元件。
(实施例4)与实施例1同样,按图3所示在玻璃基板304上形成各个ITO透明象素电极301、302、303和隔壁305。
然后与实施例1同样地使用一台喷墨印刷装置310,按图案涂敷表1和表2中所示的红色、绿色的各种发光材料,然后在氮气气氛中和150℃的温度下加热处理4小时,借此使组合物中的前体聚合成高分子,从而形成各发光层306(红)和307(绿)。
然后在发光层306、307和透明象素电极303之上的全部面积上用涂敷法形成一层由聚乙烯咔唑(PVK)构成的空穴注入输送层308。
接着在空穴注入输送层308上用真空淀积法形成一层由联苯乙烯衍生物构成的蓝色发光层309。
最后用淀积法形成一层厚度为0.8m的Al-Li电极311作为阴极,从而制成了有机EL元件。这时,如上所述,阴极311被隔壁305自然地分隔开并被其绝缘,从而使各象素电极301、302、303共同构成图案状态。
(实施例5)首先与实施例1同样,按图4所示在玻璃基板804上形成ITO透明象素电极801、802、803和隔壁805。
进而使用一台喷墨印刷装置809喷出表1和表2中所示的高分子有机发光材料,按图案涂敷各色发光材料,然后在氮气气氛中和150℃的温度下加热处理4小时,借此使组合物中的前体聚合成高分子,从而形成能发出红色、绿色和蓝色的各发光层806(红)、807(绿)和808(蓝)。
然后使用一种未经掺杂的羟基喹啉铝配合物进行真空淀积,形成了一层厚度为0.1μm的电子注入输送层811。
最后用淀积法形成一层厚度为0.8μm的Al-Li电极812作为阴极,从而制成了有机EL元件。
2.对发光层的发光性能和膜性能的评价对于在上述实施例1~5中制得的有机EL元件的发光层的发光性能和膜性能按下述方法进行评价。
①发光开始电压向元件施加预定的电压,把观测到1cd/m2的发光亮度时的施加电压定义为发光开始电压[Vth]。
②发光寿命以稳定化处理后的初期亮度作为100%,按标准波形施加一定的电流使其连续发光,测定其亮度的变化,以其亮度开始低于初期亮度的50%时的时间定义为发光寿命。
应予说明,驱动条件是室温40℃;湿度23%;电流值20mA/cm2。
③发光亮度在电流值为20mA/cm2时测得的亮度。
④吸收极大波长测定各发光层的吸收极大波长。
⑤成膜稳定性将发光层在200℃下加热60分钟之后,用显微镜观察发光层的裂纹或变形等缺陷发生的情况。
评价按照如下方式进行。
◎···非常良好○···良好×···不良所获结果示于表3和表4中。
如表3和表4所示,在实施例1~5的任一个实施例中,各发光层的发光性能和发光层的膜性能均优良。特别是在发光层由高分子有机化合物构成的情况下,在各发光层中完全观察不到缺陷,这说明形成了非常良好的薄膜。
以上根据图示的各实施例解释了本发明的有机EL元件用组合物和有机EL元件的制造方法,但本发明不受这些实施例的限定,例如,也可以安排在各层之间形成任意功能性中间层的工序。另外,对于为了改变发光性能而添加的荧光色素也没有限制。
另外,也可以在各层之间形成一层例如由1,2,4一三唑衍生物(TAZ)构成的层作为缓冲层,这样可以进一步地提高发光亮度和发光寿命等。
另外,在本发明的有机EL元件的制造方法中,为了使EL材料易于粘附,可以具有对树脂保护膜、象素电极和底层的表面进行等离子体处理、UV处理、偶合等表面处理的工序。另外,本发明的有机EL元件的制造方法也可以应用于无机EL元件的制造方法中。
另外,本发明的有机EL显示装置可以应用于局部显示或全面同时发光的静止图象显示,例如图画、文字、名牌等低信息量的领域,或者,也可作为具有点、线、面形状的光源使用。
如上所述,按照本发明有机EL元件的制造方法,通过在较宽范围内选择发光材料,可以对EL发光元件进行合理的设计。例如,通过将发光材料与荧光色素进行组合等,可以获得各种显示光。
另外,通过使用有机发光材料,可以展开有关高亮度和长寿命的各种各样的EL元件的设计。
另外,通过按喷墨方式依照图案形成和排列至少1色的有机发光层、空穴注入输送层和电子注入输送层,可以任意而且精密地设定发光元件的大小或图案。
在使用一种能够通过加热固化来使其共轭化(成膜)的前体作为发光材料的情况下,可以使粘度等条件设定的自由度增大,能够容易地调整适合作为喷墨用喷出液的条件。
另外,按照本发明的有机EL元件的制造方法,可以任意地调整膜厚、点数等条件,因此可以容易地控制发光层的发光性能。
另外,按照喷墨方式,可以使喷头在透明基板上自由地移动,因此,对基板的大小没有限制,可以形成任意大小的元件。另外,由于可以将只限于必要量的材料配置在指定的部位,因此可以最大程度地避免产生废液等的废物。从而可以廉价地制造大画面的全色显示装置。
表1

表2

表3

表4

权利要求
1.一种制造有机电致发光元件的方法,包括下列步骤在衬底之上形成多个像素电极,所述多个像素电极包括第一像素电极、第二像素电极和第三像素电极;在所述第一像素电极之上形成红色发光层;在所述第二像素电极之上形成绿色发光层;在所述第三像素电极、所述红色发光层和所述绿色发光层之上形成蓝色发光层;在所述蓝色发光层之上形成反电极。
2.如权利要求1所述的制造有机电致发光元件的方法,其特征在于,通过喷墨法执行形成所述红色发光层和所述绿色发光层的步骤。
3.如权利要求1所述的制造有机电致发光元件的方法,其特征在于,通过真空淀积法执行形成所述蓝色发光层的步骤。
全文摘要
本发明提供一种制造有机电致发光元件的方法,包括下列步骤在衬底之上形成多个像素电极,其中包括第一像素电极、第二像素电极和第三像素电极;在第一像素电极之上形成红色发光层;在所述第二像素电极之上形成绿色发光层;在所述第三像素电极、所述红色发光层和所述绿色发光层之上形成蓝色发光层;在所述蓝色发光层之上形成反电极。
文档编号H01L21/82GK1897295SQ20061010165
公开日2007年1月17日 申请日期1997年11月25日 优先权日1996年11月25日
发明者宫下悟, 木口浩史, 下田达也, 神户贞男 申请人:精工爱普生株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1