制备半导体衬底的方法

文档序号:7231568阅读:100来源:国知局

专利名称::制备半导体衬底的方法
技术领域
:本发明涉及一种制备半导体衬底的方法,更确切地说涉及一种在埋置氧化物膜厚度较薄状态下通过层压方法制备半导体衬底的方法.
背景技术
:最近,具有其中硅层或所谓的SOI层形成在氣化物膜上的SOI结构的半导体衬底作为高性能LSI晶片用于电子设备,原因在于它们能够适应设备加速并且耗能低,具有优异的耐压、耐环境等性能.关于半导体衬底的制备方法,公知的有所谓的SIMOX方法和被称为层压方法的方法,在前一方法中硅片注入高浓度氣离子,然后在较高温度下进行热处理以在其内部形成氣化物膜.在所述层压方法中,氧化物膜在下述至少一个晶片上形成用于形成SOI层的活性层晶片和用于支撑衬底的晶片,使所述两种晶片通过氧化物膜彼此层压,然后使活性层晶片薄化以产生其中SOI层形成在作为绝缘层的埋置氧化物膜上的半导体衬底.此外,层压方法可分类为研磨抛光法、PACE(等离子辅助化学蚀刻)法、离子注入剥落方法(又称为SmartCut(注册商标)法)、ELTRAN法等.其中,基于获得的活性层结晶性良好、活性层厚度均匀性良好和表面平整度良好等优点,离子注入剥落方法常常被采用。通过所述层压方法制备半导体衬底的制备步骤示于困1.具体是,预先提供用于活性层的晶片l和用于支撑衬底的晶片2(步骤(a)),在所述两种晶片(在示例实施方案中的活性层晶片1)中的至少一种晶片上形成氧化物膜3(步骤(b)),然后将氦离子(或惰性气体离子)注入用于活性层的晶片1以在活性层晶片1内部形成离子注入层4(步骤(c)).之后,通过氧化物膜3将活性层晶片1注入离子的一面层压到支撑衬底晶片2上(步猓(d)),并且进行剥落热处理以使活性层晶片1在离子注入层处作为分离面(剥落面)局部剥落(步槺(e)),然后再次进行氣化处理以除去在活性层表面形成的损坏层(步驟(f)),然后通过除去所形成的氧化物腹的步猓(g)进行平坦化处理以产生其中硅层36形成在埋置氣化物膜5上的半导体衬底7.近期,需要制备在高度集成半导体设备方面具有较高质量的SOI晶片.为此,对于使埋置氣化物膜厚度更薄,例如,直到厚度约20nm,或不利用氧化物膜直接彼此层压硅片以制备层压晶片的需求日益增多.当层压晶片通过使埋置的氧化物膜变薄或不形成氣化物膜通过离子注入剥落方法制备时,活性层晶片和支承衬底晶片通过使形成在任意晶片上的氧化物膜变薄或不形成氧化物膜彼此层压.但是,在制备具有较薄氧化物膜晶片的过程中,其中包括埋里氣化物膜没有形成的情况,当剝落热处理在层压后实施,在支承衬底晶片与氣化物膜之间产生气泡,或气泡的产生由氣化物腹延伸到活性层。也就是说,在通过层压方法制备半导体衬底的传统过程中,缺陷如气泡或空穴可在层压界面产生.特别是,随着两个半导体村底之间存在的埋置氣化物膜厚度变薄,这些空穴或气泡缺陷存在更频繁发生的趋势,这在具有较薄氣化物膜或无氣化物膜的层压半导体衬底制备中发展为一个严重问趙.关于空穴或气泡随着两个半导体晶片之间存在的埋置氣化物膜厚度变薄而频繁产生的应对措施,JP-A-2004-259970建议提高用于活性层的晶片厚度以提高活性层的厚度,借此提高活性层的硬度.但是,即使在活性层厚度较厚情况下,如果埋置氣化物膜的厚度较薄,气泡或空穴自然产生.还有,当活性层的薄化得到加强时,为了提高硬度,活性层的厚度在中间步骤被增厚,这样在后续的薄化处理中占有大量劳力并且导致质量恶化.确切地说,当活性层厚度在中间步骤较厚时,需要通过热氣化处理+除去氣化物膜或通过研磨或抛光处理进行活性层薄化以获得期望的活性层最终厚度.在后一种情况下,由于处理量(氣化量、蚀刻量、研磨或抛光量)增加,活性层厚度均匀性下降.
发明内容因此,本发明的目的在于提供一种甚至在具有的氧化物膜厚度比传统氣化物膜薄的层压晶片制备中抑制缺陷如空穴或气泡出现的方法.本发明人对在层压晶片制备中氣化物膜较薄情况下频繁产生缺陷如空穴和气泡的原因进行了广泛研究并获得以下知识,即,空穴或气泡的产生基于下述亊实注入活性层的氛离子在剥落热处理中扩散进入层压界面形成氮气,后者减弱了活性层晶片与用于支撑衬底的晶片之间的结合强度.如果形成在活性层晶片上氣化物膜较厚,由于氢离子注入的注入能量变大,从而导致了下述现象氩离子使氣由氣化物膜栽射并因此将氧注入活性层,当用于活性层的晶片层压到用于支撑衬底的晶片并且进行剝落热处理时,新近发现注入活性层的氧捕获氩离子以抑制氣离子扩散进入层压界面并因此抑制缺陷如空穴或气泡产生.而且,还发现当适当剂量的氣被注入活性层时,用于活性层的晶片变硬,这样还有助于抑制空穴或气泡出现.与之对比,当为了减小埋置氣化物膜厚度使形成在活性层晶片上氣化物膜变薄时,或者当要形成的氣化物膜厚度在困1的步槺(b)变薄时,在后续步驟(c)由氪离子注入溅射且注入活性层的氧浓度变小,因而在剥落热处理中不能控制氢扩散而且产生缺陷如空穴或气泡.基于上述发现,本发明人对于,甚至在氣化物膜厚度变小情况下,能够将适当刑量氣注入活性层的方法进行了各种研究,首先,本发明人在实验中对于上述氣的各种因素对抑制氩扩散的作用提出等式(I):ND-NHO+NIO+NID........(I)其中Nd:产生抑制氛扩散作用的因素总量,NHO:通过氢离子注入引入活性层的氣,NIO:通过不同于氦的离子注入引入活性层的氣,NID:通过不同于氢的离子注入引入活性层的缺陷.基于上述等式(I),本发明人设定了各种愔况并且寻求在氣化物膜厚度变薄情况下遊免缺陷的最佳条件.首先,当氩离子以注入能50keV与刑量6xl06原子/cm2按照传统方式注入具有常规厚度150nm氣化物膜的活性层晶片时,由二次离子质谦(SIMS)数据获知无缺陷的良好产物为NHO=4.2x10"原子/cm2.另外,由于不同于氩的离子没有注入,Nho-0和NhjsO,所以NdX2x10"原子/112是充分的.其次,认为在改变氣化物膜厚度情况下,所述的获得良好产物的条件仅通过氢离子注入得到满足.当所述条件为NHO-DH(氩刑量)x"M(氧化物膜厚度)xK恥(系数)........(II),由Nho=4.2x10"原子/cm2,DH=6x1016原子/cm2和tbox=150nm,得到KHO-4.2x10"/{(6"0")x(150xl0'7)}-4.67x102(/era),由上述等式(II),DH(氢剂量)与tb。"氣化物膜厚度)之间的关系为DH=A'=NHO/Kho,通过DH和tb。x调整的关系的结果示于困2.在该困中,当所述关系超过氢离子刑量上限时,出现自我剥落;而当低于下限时,剥落不因热处理而产生,因此假定氩刑量在上限和下限之间.根据上述关系,如果打算使氧化物膜薄到不超过50nm,如闺2所示,仅通过氬离子注入难以满足ND.因此,为了满足No,已经发现有必要注入不同于氯的其它离子弥补氢离子注入不能满足的部分,结果,完成了本发明.换句话说,本发明可概迷如下(1)一种制备半导体衬底的方法,其包括下述步骤在形成硅层的活性层晶片上形成厚度不超过50nm的氣化物膜,将氢离子注入活性层晶片以形成氢离子注入层,注入不同于氮的其它离子直到自氩离子注入表面側计算的深度比氬离子注入层浅的位置,通过氣化物膜将活性层晶片层压到支承衬底的晶片上,然后使活性层晶片在氦离子注入层处剥落(笫一发明).(2)—种制备半导体衬底的方法,其包括下述步骤在形成硅层的活性层晶片上形成厚度不超过50nm的氣化物膜,注入不同于氩的其它离子到活性层晶片中直到比活性层晶片剥落区域浅的位置,将氩离子注入剥落区域以形成氢离子注入层,通过氣化物膜将活性层晶片层压到支承衬底的晶片上,然后使活性层晶片在氦离子注入层处剥落(第二发明).(3)—种如上述(1)或(2)项所述的制备半导体衬底的方法,其中在层压活性层晶片与支承衬底晶片之前进行等离子处理.依照本发明,由硅晶片彼此直接通过厚度比传统氣化物膜薄的氣化物膜或不形成氧化物膜形成的半导体衬底可以在不导致空穴或气泡缺陷的稳定质量下制备,困l是说明通过传统层压方法制备半导体衬底的步稞流程闺;困2为说明获得良好产物的氪刑量与氧化物膜厚度范闺的关系闺;困3是说明依照本发明制备半导体衬底的步骤流程图;困4是说明每种元素的原子质量与元素注入中反冲(recoiled)氣原子与每种元素离子比之间关系的曲线困;困5是说明氩离子和氧离子充分注入刑量的曲线闺;和图6是说明依照本发明制备半导体衬底的步壤的流程图,具体实施例方式本发明在于当半导体衬底由硅晶片彼此直接通过厚度比传统氣化物膜薄的氣化物膜或不形成氣化物膜形成时,除为了使活性层晶片剝落的氨离子之外,注入不同于氢的其它离子以从氣化物膜溅射必要量的氣并将其注入活性层,为此将对具体方法单独解释.在依照困3所示的笫一发明的方法中,预先提供活性层晶片1和用于支承衬底的晶片2(步骤(a)).在活性层晶片l上形成氣化物膜3(步骤(b)),然后将氳离子注入活性层晶片1以在活性层晶片1内部形成离子注入层4(步骤(c)),之后,将不同于氢的其它离子如氣离子或氩离子注入直到自氯离子注入表面側计算的深度比氮离子注入层4浅的位置(步骤(d).当氧离子或氩离子的注入与氢离子注入一起进行时,这些离子从氣化物膜中溅射氣并将抑制空穴或气泡缺陷需要的氣注入活性层,然后,通过氣化物膜3将活性层晶片l从离子注入側层压到支承衬底晶片2上(步稞(e)),并且施加剥落热处理以使活性层晶片l在离子注入层4处作为分离面(剥落面)局部剥落(步骤(f)),然后再次进行氣化处理(步骤(g)),除去氣化物膜4(步骤(h))并且进行平坦化处理(步骤(i))以产生其中硅层6形成在埋置氧化物膜5上的半导体衬底7.关于平坦化处理,适合在Ar或狂2气氛下在高于1100TC的温度下进行.在上述方法中,除在先前步稞注入氢离子,不同于氩的离子特别在步骤(d)注入,以便使在步稞(f)剥落热处理中氩进入层压界面的扩散受到在这些步樣充分溅射的氣抑制从而抑制空穴或气泡出现,借此获得具有薄厚度的氣化物膜的半导体衬底.下面将详细解释,除注入氦离子以利用这些离子从氧化物膜栽射氣之外,通过氣离子或氩离子注入抑制活性层中空穴或气泡缺陷需要的氣的条件.为了通过注入不同于氩的离子使上述等式(I)定义的ND满足ND",2xlO"原子/cm2,有必要用NIO(通过不同于氣的其它元素引入活性层的氣)和Nro(通过不同于氢的离子注入引入活性层的缺陷)弥朴Nho(通过氯离子注入引入活性层的氧)的不足.通常注入晶片的元素有B、P和As.表l显示了通过如此元素离子注入的反冲现象引入的氣剂量.围4显示了依照每种元素的原子质量与元素注入中反冲的氧原子与元素离子之比(反冲比)关系安排的结果.反冲现象指,当所迷元素离子注入通过氧化物膜,氧原子由于注入的离子由氣化物胰减射穿透进入Si晶体的现象.由闺4的结果,某种元素的反冲比Rz可以用下迷等式(HI)表示Rz-0.0007xqz1325......(HI)其中qz是原子质量.表l:氣化物膜厚度lnm,离子刑量1.00x10"原子/cm<table>tableseeoriginaldocumentpage8</column></row><table>氩、氣和氩各自的反冲比依照等式(ni)确定如下:氩RH-0'0007(qH-l)氧Ro=0.0277(q0=16)氩RAr=0.0934(qAr=40)当氩离子在氮离子以剂量6xl0"原子/cn^和注入能50keV注入之后注入时,确定氩离子的注入刑量与氧化物膜的厚度之间的关系以使等式(I)定义的No满足ND>4,2x10"原子/cm2.首先,等式(I)在氩离子注入中表达如下ND=NHO+NAr0+NArD........(I)当NHo、NaK)和NArD为NHO=DH(氩刑量)xU氧化物膜厚度)xKHO(系数)........(II),(其中DH=6x10"原子/cm2和kHO-4.76x102(/cm))NAr0=DAr(氩刑量)>ctb。"氣化物膜厚度)xKAr0(系数)(其中kAro=RAr/RHxK恥=0.0934/0.0007x4.67x102=6,23x10")和NArD=DAr,上述等式(I)为ND=NHo+NAr0+NArD-DHxtb0IxKHo+DArxtb01xKAr。+DAr=4.2xl0"原子/cm2,由此氣离子的注入刑量为DAr-(4.2x10"-6.0x1016xtboxx4.67x102)/(tbMx6.23x104+1),同样地,当氧离子在氩离子以刑量6xl0"原子/cii^和注入能50keV注入之后注入时,确定氣离子的注入刑量与氧化物膜的厚度之间的关系以使等式(I)定义的ND满足ND".2x10"原子/cra2.首先,等式(I)在氧离子注入中表达如下ND-NHO+N00+NOD........(I)当NHo、Noo和NoD为NHO-Du(氩剂量)xtbo,(氣化物膜厚度)xKHO(系数)........(II),(其中DH=6x10"原子/cm2和kHO=4.76x102(/cm))N00=Do(氧剂量)xtb肌(氧化物膜厚度)xK00(系数)(其中k00=R0/RHxK恥-0,0277/0.0007x4.67x1012-1.85x10")和N0D=D0,上述等式(I)为ND-Nho+Noo+Nod=DhxtbMxKHo+D0xtboxxK。o+Do=4,2x10"原子/cm2,由此氣离子的注入刑量为Do-(4.2x1014-6.0x1016xtb似x4.67x102)/(tbx1.85x104+1),闺5中显示了通过氧化物膜厚度调整上述氩离子和氣离子的充分剂量的结果.虽然通过氩离子或氣离子注入在活性层引入了缺陷,但是如果注入剂量过大,活性层的结晶度受到破坏,不能获得良好的活性层.基于这样的观点,困5中存在着氩离子和氣离子注入剂量的上限,实验确定,在氩离子情况下上限为lxlO"原子/cm2,在氧离子情9况下上限为2x10"原子/cm2.在依照图6所示的笫二发明方法中,预先提供活性层晶片1和用于支承衬底的晶片2(步骤(a)),首先,在活性层晶片l上形成氣化物膜3(步壤(b)),并且将不同于氢的其它离子如氣离子或氣离子注入活性层晶片1直到比活性层晶片1剥落区域浅的位置(步緣(c)).之后,将氬离子注入剥落区以形成氨离子注入层4(步骤(d)),由于在氩离子注入之外进行了氣离子或氩离子的注入,氣通过这些离子从氣化物膜溅射以将抑制空穴或气泡缺陷需要的氧注入活性层.然后,通过氧化物膜3将活性层晶片l从离子注入側层压到支承衬底的晶片2上(步骤(e)),并且施加剥落热处理以使活性层晶片1在注入层4处作为分离面(剥落面)局部剥落(步骤(f)),然后再次进行氣化处理(步稞(g)),除去氧化物膜(步稞(h))并且进行平坦化处理(步碟(i))以产生其中硅层6形成在埋置氣化物膜5上的半导体衬底7.在上述方法中,除在随后步骤注入氬离子之外,不同于氛的离子特别在步骤(c)注入,以便使在步骤(f)剝落热处理中氮进入层压界面的扩散受到在这些步骤充分溅射的氣抑制从而抑制空穴或气泡出现,借此获得具有薄厚度的氧化物膜的半导体衬底.即使在困6方法中,优选在闺5所示的优选范闺内进行氩离子或氧离子注入.在闺3和6所述的任意一种方法中,优逸在层压活性层晶片1与支承衬底晶片2之前进行等离子处理以增强层压界面的粘合强度,由于等离子处理具有活化层压界面并且除去粘附在表面的有机物质的作用,层压界面的粘合强度得到改善以产生减少空穴或气泡的作用.此外,等离子处理的条件没有特别限制,但是通常在氣气、氮气、氢或类似气氛下处理晶片数十秒就可获得类似效果.对比例1依照困1所示的方法,通过下述步稞制备层压半导体衬底在活性层晶片表面形成厚度150nm的氧化物膜,注入氢离子以出现达到自活性层晶片表面深度500nm位置的注入刑量峰(离子注入层),然后将活性层晶片层压到支承衬底的晶片上并且进行剥落热处理以使处于氩离子注入峰区域(离子注入层)的活性层晶片剥落,之后进行氣化处理,除去氧化物膜并且进行平坦化处理,对比例2依照困1所示的方法,通过下述步骤制备层压半导体衬底在活性层晶片表面形成厚度20nm的氧化物膜,注入氩离子以出现达到自活性层晶片表面深度500nm位置的注入剂量峰(离子注入层),将活性层晶片层压到支承衬底的晶片上并进行剥落热处理以使处于氩离子注入峰区域(离子注入层)的活性层晶片剥落,之后进行氣化处理,除去氧化物膜并且进行平坦化处理,对比例3依照图1所示的方法,通过下述步骤制备层压半导体衬底在活性层晶片表面形成厚度20nm的氧化物膜,注入氬离子以出现达到自活性层晶片表面深度500nm位置的注入剂量峰(离子注入层),然后对活性层晶片和支承衬底晶片的表面进行氣等离子处理并且将活性层晶片层压到支承衬底的晶片上,进行剥落热处理以使处于氩离子注入峰区域(离子注入层)的活性层晶片剥落,之后进行氧化处理,除去氧化物膜并且进行平坦化处理.本发明实施例l(笫一发明)依照图3所示的方法,通过下述步骤制备层压半导体衬底在活性层晶片表面形成厚度20nm的氣化物膜,注入氦离子以出现达到自活性层晶片表面深度500nm的位置的注入刑重峰(离子注入层),进一步注入氣离子以出现达到自活性层晶片表面深度50nm位置的注入剂量峰,然后在注入两种离子后将活性层晶片从其离子注入側层压到支承衬底的晶片上,并且进行剥落热处理以使处于氩离子注入峰区域(离子注入层)的活性层晶片剥落,之后进行氣化处理,除去氣化物膜并且进行平坦化处理.本发明实施例2(第一发明)依照闺3所示的方法,通过下述步骤制备层压半导体衬底在活性层晶片表面形成厚度20nm的氣化物膜,注入氢离子以出现达到自活性层晶片表面深度500nm位置的注入剂量峰(离子注入层),进一步注入氩离子以出现达到自活性层晶片表面深度50nm位置的注入剂量峰,然后在注入两种离子后将活性层晶片从其离子注入側层压到支承ii衬底的晶片上,并且进行剥落热处理以使处于氣离子注入峰区域(离子注入层)的活性层晶片剝落,之后进行氧化处理,除去氣化物膜并且进行平坦化处理.本发明实施例3(笫二发明)依照困6所示的方法,通过下述步稞制备层压半导体衬底在活性层晶片表面形成厚度20nm的氧化物膜,注入氧离子以出现达到自活性层晶片表面深度50nm位置的注入剂量峰,进一步注入氩离子以出现达到自活性层晶片表面深度500nm位置的注入刑量峰(离子注入层),然后在注入两种离子后将活性层晶片从其离子注入側层压到支承衬底的晶片上,并且进行剥落热处理以使处于氢离子注入峰区域(离子注入层)的活性层晶片剥落,之后进行氣化处理,除去氣化物膜并且进行平坦化处理.本发明实施例4(笫二发明)依照图6所示的方法,通过下述步骤制备层压半导体衬底在活性层晶片表面形成厚度20nm的氧化物膜,注入氩离子以出现达到自活性层晶片表面深度SOnm位置的注入剂重峰,进一步注入氣离子以出现达到自活性层晶片表面深度500nm位置的注入刑量峰(离子注入层),然后在注入两种离子后将活性层晶片从其离子注入側层压到支承衬底的晶片上,并且进行剥落热处理以使处于氢离子注入峰区域(离子注入层)的活性层晶片剥落,之后进行氧化处理,除去氧化物膜并且进行平坦化处理,本发明实施例5-8在这些实施例中,分别重复与本发明实施例l-4相同的步骤,但是在层压活性层晶片与支承衬底晶片之前对活性层晶片和支承衬底晶片表面进行氧等离子处理.而且,等离子处理在下述条件下进行在用氣气置换的反应室内部变成真空状态后所述晶片保持20秒.关于由此获得的半导体衬底,缺陷数量通过在高强聚光灯或荧光灯下计算缺陷数目視测量,结果示于表2,正如表2所看到的,即使在埋置氧化物膜较薄或氣化物膜不存在的条件下,缺陷的出现在本发明半导体衬底中得到了抑制.而且,优选先注入不同于氩的其它离子,因为当先注入氯离子时,存在于晶片表面的有机物质存在固定于晶片上的倾向以致担心出现气泡,更优选地,在注入不同于氩的离子后,清洁晶片然后注入氢离子.表2<table>tableseeoriginaldocumentpage13</column></row><table>权利要求1.一种制备半导体衬底的方法,其包括下述步稞在形成硅层的活性层晶片上形成厚度不超过50nm的氣化物膜,将氮离子注入活性层晶片以形成氛离子注入层,注入不同于氩的其它离子直到自氦离子注入側的深度比氩离子注入层浅的位置,通过氧化物膜将活性层晶片层压到支承衬底的晶片上,然后使活性层晶片在氨离子注入层处剝落(笫一发明).2.—种制备半导体衬底的方法,其包括下述步骤在形成硅层的活性层晶片上形成厚度不超过50nm的氣化物膜,注入不同于氢的其它离子到活性层晶片中直到比活性层晶片的剥落区域浅的位置,将氮离子注入剝落区域以形成氢离子注入层,通过氣化物膜将活性层晶片层压到支承衬底的晶片上,然后使活性层晶片在氢离子注入层处剥落(笫二发明).3.—种如权利要求1或2所述的制备半导体衬底的方法,其中在层压活性层晶片与支承衬底晶片之前进行等离子处理.全文摘要本发明提供一种制备半导体衬底的方法,其涉及甚至在氧化物膜厚度比传统氧化物膜薄的层压晶片中抑制缺陷如空穴或气泡出现的方法,其中将氢离子注入具有的氧化物膜厚度不超过50nm的活性层晶片以形成氢离子注入层,注入不同于氢的其它离子直到自氢离子注入表面侧计算的深度比氢离子注入层浅的位置,并且通过氧化物膜将活性层晶片层压到支承衬底的晶片上,然后使活性层晶片在氢离子注入层处剥落。文档编号H01L21/02GK101312125SQ200710104569公开日2008年11月26日申请日期2007年5月25日优先权日2006年5月25日发明者村上贤史,森本信之,西畑秀树,远藤昭彦申请人:胜高股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1