半导体装置的制作方法

文档序号:12370296阅读:183来源:国知局
半导体装置的制作方法

本发明涉及一种半导体装置。



背景技术:

当前,例如,如日本特开2007-5368号公报所公开,对IGBT或功率MOSFET等电力用半导体装置正在进行研究开发。该公报涉及的半导体装置是在由硅等形成的半导体衬底之上依次层叠AlSi层、Ni层以及焊料层而形成的。为了设置焊料层而需要焊料浸润性良好的Ni层。出于进行镀Ni的目的而设置有AlSi等Al类的层,具体地在该公报的例如0007段等处提及了Al类的层的必要性。

专利文献1:日本特开2007-5368号公报

对电力进行处理的功率半导体元件的与其动作相伴的发热量多,在半导体层表面所层叠的电极会因为发热而热膨胀。如果伴随温度变化而向电极以及半导体层的层叠构造施加应力,则有可能会在半导体层表面或电极产生裂纹。如上述现有技术那样层叠有线膨胀系数相互不同的不同种金属而成的电极,也会伴随热膨胀而向各层之间施加应力,但在上述公报中未对与这种热应力相伴的裂纹的问题进行讨论。现有的半导体装置存在应该从热应力的观点出发进行改善的问题。



技术实现要素:

本发明就是为了解决上述这样的课题而提出的,其目的在于提供一种半导体装置,该半导体装置对在半导体层产生与热应力相伴的裂纹这一情况进行了抑制。

第1技术方案涉及的半导体装置具有:半导体层;第1电极层,其设置在所述半导体层的表面,由第1导电性材料形成;第2电极层, 其层叠在所述第1电极层,由第2导电性材料形成,该第2导电性材料具有与所述第1导电性材料不同的线膨胀系数、且与所述第1导电性材料相比机械强度较低;以及第3电极层,其层叠在所述第2电极层,由第3导电性材料形成,该第3导电性材料具有与所述第1导电性材料不同的线膨胀系数、且焊料浸润性与所述第1导电性材料相比较高。

第2技术方案涉及的半导体装置具有:半导体层;第1电极层,其层叠在所述半导体层的表面,由AlCu或AlSiCu形成;以及第2电极层,其层叠在所述第1电极层,由Cu形成。

发明的效果

根据上述第1技术方案涉及的半导体装置,通过将由机械强度低的材料形成的第2电极层重叠于第1电极层,从而能够抑制在产生热应力时在第1电极层产生裂纹的情况。由此,能够抑制裂纹经由第1电极层传递至半导体层。

根据上述第2技术方案涉及的半导体装置,通过在半导体层之上设置由机械强度低的材料形成的第2电极层,从而能够抑制在产生热应力时在第1电极层产生裂纹的情况。由此,能够抑制裂纹经由第1电极层传递至半导体层。

附图说明

图1是表示本发明的实施方式1涉及的功率半导体模块的示意性的俯视图。

图2是表示本发明的实施方式1涉及的功率半导体模块的示意性的剖视图。

图3是表示本发明的实施方式1涉及的半导体装置的示意性的俯视图。

图4是表示本发明的实施方式1涉及的半导体装置的示意性的剖视图。

图5是表示本发明的实施方式1涉及的其他半导体装置的示意 性的俯视图。

图6是表示本发明的实施方式1涉及的其他半导体装置的示意性的剖视图。

图7是表示本发明的实施方式1的变形例涉及的半导体装置的示意性的剖视图。

图8是表示本发明的实施方式1的变形例涉及的半导体装置的示意性的剖视图。

图9是表示本发明的实施方式2涉及的半导体装置的示意性的俯视图。

图10是表示本发明的实施方式2涉及的半导体装置的示意性的剖视图。

图11是表示本发明的实施方式2涉及的其他半导体装置的示意性的俯视图。

图12是表示本发明的实施方式2涉及的其他半导体装置的示意性的剖视图。

图13是表示本发明的实施方式2的变形例涉及的半导体装置的示意性的剖视图。

图14是表示本发明的实施方式的其他变形例涉及的其他半导体装置的示意性的剖视图。

图15是表示本发明的实施方式的其他变形例涉及的其他半导体装置的示意性的剖视图。

图16是表示本发明的实施方式的其他变形例涉及的其他半导体装置的示意性的剖视图。

图17是表示本发明的实施方式的其他变形例涉及的其他半导体装置的示意性的剖视图。

图18是表示本发明的实施方式的其他变形例涉及的其他半导体装置的示意性的剖视图。

标号的说明

10功率半导体模块,12、14引线框,16导线,20散热板, 21电极图案,22绝缘层,23金属板,30焊料,40模塑树脂,100、150、160、180、200、250、260、300、400、450、500、550半导体装置,102、152、302半导体芯片,103、155漂移层,104沟槽栅极电极,105、405栅极绝缘膜,106发射极层,107电荷积蓄层,108基极层,109栅极氧化膜,110缓冲层,111集电极层,112保护环,113沟道截断环,120、161、220、261发射极电极,121、221第1电极层,122、222第2电极层,123第3电极层,124、224阻挡金属层,130焊料层,140集电极电极,142栅极电极焊盘,151、181、251阳极电极,153阴极层,154阳极层,156阴极电极,310漏极层,404、504栅极电极,406源极层,408体层,411漏极层,420源极电极,440漏极电极,511、513p型半导体层,512、514n型半导体层

具体实施方式

实施方式1

图1是表示本发明的实施方式1涉及的功率半导体模块10的示意性的俯视图。图1是透视模塑树脂40而对功率半导体模块10的内部构造进行了图示的图。图2是表示功率半导体模块10的示意性的剖视图。图2是沿图1的A-A线的功率半导体模块10的剖视图。

功率半导体模块10具有:散热板20;半导体装置100以及半导体装置150,它们设置在散热板20之上;引线框12,其焊接在半导体装置100以及半导体装置150之上;引线框14,其通过导线16与半导体装置100的栅极电极焊盘142连接;以及模塑树脂40,其以使引线框12、14的端部露出的状态覆盖上述结构。在实施方式1中,作为一个例子,半导体装置100为IGBT(Insulated Gate Bipolar Transistor),半导体装置150为二极管。作为一个例子,散热板20是在金属板23之上设置了绝缘层22以及电极图案21的部件,电极图案21与半导体装置100、150进行焊接。另外,虽然在图1以及图2中进行了省略,但也可以是半导体装置100的背面(集电极)与电极图案21连接,进一步地设置由导线等与该电极图案21进行连接的 其他引线框。在图1以及图2中示意地示出的功率半导体模块10的构造是一个例子,半导体装置100、150的个数以及电连接、引线框的位置以及个数等能够变形为各种众所周知的装置形态。实施方式1涉及的功率半导体模块10是利用模塑树脂40进行包覆的所谓传递模塑封装构造,但本发明不限于此,也可以是下述功率半导体模块,即:将半导体装置100、150与绝缘电路基板等一起收容于树脂质壳体内,设置有凸出至壳体外的端子等。半导体装置100、150与引线框12之间经由焊料层130相接合,半导体装置100、150与散热板20之间经由焊料30相接合。

图3是表示本发明的实施方式1涉及的半导体装置100的示意性的俯视图。图4是表示半导体装置100的示意性的剖视图,表示沿图3的B-B线将半导体装置100切断后的切断面。半导体装置100是具有沟槽栅极电极104的IGBT。半导体装置100具有:半导体芯片102;栅极电极焊盘142以及发射极电极120,它们设置在半导体芯片102的表面;以及集电极电极140,其设置在半导体芯片102的背面。在实施方式1中,作为一个例子,对构成半导体芯片102的半导体衬底材料为碳化硅(SiC)的情况进行说明,但也可以如后述那样使用硅(Si)或者除了SiC以外的其他宽带隙半导体。

半导体芯片102具有:由SiC构成的n-型的漂移层103;n+型的电荷积蓄层107,其层叠在漂移层103的上方;p型基极层108,其层叠在电荷积蓄层107的上方;由多晶硅构成的沟槽栅极电极104,其以夹着栅极绝缘膜105的状态贯通p型基极层108以及电荷积蓄层107而到达漂移层103;n+型的发射极层106,其以夹着栅极绝缘膜105的状态设置在沟槽栅极电极104的两侧;以及栅极氧化膜109,其设置在沟槽栅极电极104的上方。以覆盖栅极氧化膜109以及发射极层106的方式设置有发射极电极120。半导体芯片102在其背面侧具有:n+型的缓冲层110,其层叠在漂移层103的下方;以及p+型的集电极层111,其设置在缓冲层110的下方。在集电极层111的背面设置有集电极电极140。

在半导体芯片102的、形成有沟槽栅极电极104以及发射极层 106等的区域(即单元区域)的外侧设置有保护环112。在保护环112的更外侧设置有沟道截断环113。沟道截断环113以及保护环112与发射极层106相绝缘。设置在半导体芯片102的背面的集电极电极140覆盖半导体芯片102的背面的几乎整个面。发射极电极120在半导体芯片102的俯视观察时与集电极电极140相比形成得小一圈。

此外,在本实施方式中作为优选的方式之一而设置有电荷积蓄层107,但也可以是没有电荷积蓄层107的IGBT。

发射极电极120具有第1电极层121、第2电极层122以及第3电极层123。第1电极层121、第2电极层122以及第3电极层123依次层叠在发射极层106之上。在第3电极层123还层叠有焊料层130。如图2所示,第3电极层123经由该焊料层130焊接至引线框12。如图3的俯视图所示,在半导体芯片102的俯视观察时,保护环112以包围第1电极层121的方式进行设置。并且,在实施方式1中,作为优选的方式,在半导体芯片102的俯视观察时,以第2电极层122的周缘包围第3电极层123的周缘的方式,将第2电极层122设置为达到至第3电极层123的外侧。第1电极层121以及第2电极层122形成在保护环112的内侧,第3电极层123以及焊料层130与第2电极层122相比形成得小一圈。

此外,在图4记载的发射极电极120的剖视图中,各电极层的厚度等不对实际的层厚的大小关系以及尺寸比进行限定。这一点在以下所示的其他半导体装置的剖视图中也是同样的。

第1电极层121在半导体芯片102的表面对发射极层106以及栅极氧化膜109进行覆盖。第1电极层121由第1导电性材料形成,该第1导电性材料具有与构成半导体芯片102的半导体不同的线膨胀系数。在实施方式1中,形成第1电极层121的第1导电性材料以AlSi为主要成分。第2电极层122层叠在第1电极层121,由第2导电性材料形成。第2导电性材料具有与第1导电性材料不同的线膨胀系数,且与第1导电性材料相比机械强度较低。第3电极层123层叠在第2电极层122,由第3导电性材料形成。第3导电性材料具有与第1导电性材料不同的线膨胀系数,且焊料浸润性与第1电极层121 相比较高。作为焊料浸润性高的金属,Ni等是代表性的金属,在实施方式1中第3导电性材料也是以Ni为主要成分的层,即为纯Ni或者Ni合金的层。

在这里,将构成第1电极层121的第1导电性材料的机械强度为了方便起见而记载为“强度St1”,将构成第2电极层122的第2导电性材料的机械强度为了方便起见而记载为“强度St2”,将构成第3电极层123的第3导电性材料的机械强度为了方便起见而记载为“强度St3”,将构成焊料层130的焊接材料的机械强度为了方便起见而记载为“强度St4”。在实施方式1中以至少St1>St2这样的关系成立的方式选定各层的导电性材料。也可以以St1>St2>St3这样的关系成立的方式选定材料,或者也可以以St1>St3>St2这样的关系成立的方式选定材料。并且,也可以为St1、St3以及St4>St2的关系,即,在强度St1~St4之中使强度St2的机械强度最低。由于设置有机械强度低的第2电极层122,因此在发生了热冲击的情况下该热冲击会集中于第2电极层122。通过由第2电极层122承受冲击,从而即使在产生了裂纹时也能够利用第2电极层122进行阻止。其结果,能够防止裂纹加深至位于第1电极层121的下层的IGBT单元区域。另外,也能够保护第1电极层121避免受裂纹损害。

如果对“机械强度”进行说明,则在将2个不同的材料进行了比较时,基本上设为在多个材料之中拉伸强度(N/mm2)较高的材料的机械强度较高。在拉伸强度相同但其他数值(屈服强度或者硬度)不同的情况下,能够进一步将硬度以及屈服强度(N/mm2)作为指标。关于硬度(坚硬程度),有各种各样的硬度试验,虽然存在布氏硬度、维氏硬度、洛氏硬度或者肖氏硬度等,但无论采用哪种硬度,只要将在同一试验中测量到的值相互进行比较而判断大小关系即可。对于屈服强度,也可以比较各材料的例如0.2%屈服强度的数值而进行判断。如果多个材料之间拉伸强度相同,则设为硬度高的材料的机械强度高。并且,如果多个材料之间拉伸强度以及硬度相同,则设为屈服强度高的材料的机械强度高。由此,能够以拉伸强度>硬度>屈服强度这样的优先顺序决定机械强度的大小关系。此外,由于针对金属材料 的机械强度公开有通过块体(bulk)而测量出的典型数值,因此也可以将那些块体强度值作为参考而对材料的机械强度进行比较。

如果以上述进行了说明的“机械强度”的大小关系作为前提进一步具体地进行说明,则第1导电性材料可以为AlSi,与之相对,第2导电性材料既可以为纯铝、也可以为与第1导电性材料相比机械强度较低的铝合金。并且该第1导电性材料也可以为Si的比例高于1%的AlSi。即,第1电极层121是向Al中添加Si、且Si的比例高于1%的AlSi。能够防止因热冲击而产生的裂纹所导致的器件的破坏,具有通过第1电极层121的屈服强度增加,从而可靠性进一步增加的效果。作为具体的数值范围,例如可以使用Si的比例为1~2%的AlSi。另外,作为其他变形,也可以使第1导电性材料为Si的比例大于1%且包含Cu的AlSiCu,与之相对,也可以使第2导电性材料为纯铝或者铝合金。作为具体的数值范围,例如可以使用Si的比例为1~2%的AlSiCu。能够防止因热冲击而产生的裂纹所导致的器件的破坏,具有通过第1电极层121的屈服强度增加,从而可靠性进一步增加的效果。关于作为第2导电性材料而使用的纯铝,可以使用由例如成分大于或等于99%的Al所构成的各种材料,也可以使用大于或等于99.9%的所谓高纯度铝。此外,作为其他变形,也可以使第1导电性材料以及第2导电性材料均为AlSi,将第1电极层121以及第2电极层122设为层叠了多个AlSi层的构造。在这种情况下,能够与第1导电性材料的Si比例相比,减少第2导电性材料的Si比例,而使第2电极层122的机械强度低于第1电极层121。

提供一种半导体装置100,该半导体装置100能够防止在发生了热冲击的情况下的器件的破坏、实现长寿命化以及高可靠性。另外,即使在高温工作等从热学角度来说更苛刻的环境下使用功率半导体模块10,也能够通过搭载半导体装置100而得到高可靠性。

图5是表示本发明的实施方式1涉及的其他半导体装置150的示意性的俯视图。图6是表示半导体装置150的示意性的剖视图。半导体装置150是二极管,具有结构与图3以及图4的半导体装置100不同的半导体芯片152。半导体装置150具有半导体芯片152、阴极 电极156以及阳极电极151。阳极电极151具有与发射极电极120同样的形状以及层叠构造,阴极电极156具有与集电极电极140相同的形状以及材料。半导体芯片152具有:由n-型的SiC构成的漂移层155;作为p+层的阳极层154,其设置在漂移层155的表面;以及作为n+层的阴极层153,其设置在漂移层155的背面。在阳极层154的周围,与半导体装置100同样地设置有保护环112以及沟道截断环113。在阳极层154层叠有阳极电极151。阳极电极151与发射极电极120同样地是依次层叠有第1电极层121、第2电极层122以及第3电极层123的结构,为了区别于发射极电极120而标注了不同的标号。

图7是表示本发明的实施方式1的变形例涉及的半导体装置160的示意性的剖视图。除了发射极电极120被置换为发射极电极161这点外,具有与半导体装置100同样的结构。发射极电极161构成为,将阻挡金属层124插入至发射极电极120。阻挡金属层124插入在第1电极层121与第2电极层122之间,由机械强度至少高于第2导电性材料的导电性材料构成。具体地说,阻挡金属层124的材料为Ti(钛)或者Ti合金。为了防止在第2电极层122产生的裂纹向第1电极层121伸展,阻挡金属层124使用了机械强度高的材料。由此,阻挡金属层124实现作为阻挡金属的功能,并且防止在第2电极层122产生的裂纹向第1电极层121以及其下层的IGBT单元区域伸展。

图8是表示本发明的实施方式1的变形例涉及的半导体装置180的示意性的剖视图。除了阳极电极151被置换为阳极电极181这点外,具有与半导体装置150同样的结构。阳极电极181构成为,在阳极电极151的第1电极层121与第2电极层122之间插入了阻挡金属层124。

对半导体装置100以及功率半导体模块10的制造方法的一个例子进行说明。在该例中使用溅射法形成电极。首先,准备进行了下述处理等的半导体芯片102,即:利用杂质注入而形成阱层、形成沟槽、形成栅极绝缘膜以及利用多晶硅填埋而形成沟槽栅极。将半导体芯片102配置在溅射装置的腔室内,将希望成膜的金属材料用作靶材,利 用溅射形成发射极电极120。第1电极层121的制膜例如使用AlSi靶材,第2电极层122的制膜例如使用纯铝靶材,且第3电极层123的制膜例如使用Ni靶材,以上述方式适当准备各靶材并切换地进行使用即可。在对各电极层的材料以及组成进行变更的情况下,改变靶材即可。对于半导体装置150的制造方法,同样地,准备半导体芯片152并利用溅射形成阳极电极151即可。另外,在图7以及图8所示的变形例中,为了形成阻挡金属层124还准备Ti等的靶材,利用该靶材在第1电极层121的形成工序与第2电极层122的形成工序之间进行溅射即可。对栅极电极焊盘142、集电极电极140以及阴极电极156的制造方法不特别地进行限定,但也可以同样地利用溅射形成。在形成了电极之后,将半导体装置100、150经由焊料30安装至散热板20,并且利用焊料层130将半导体装置100、150与引线框12进行接合。半导体装置100的栅极电极焊盘142与引线框14利用导线16进行连接,由模塑树脂40进行包覆。

在实施方式1中,为了不使保护环112与发射极电极120因焊料浸润扩展而发生短路,将第3电极层123形成得比第2电极层122小一圈,限定了焊料浸润的区域。在利用焊料将引线框12接合的情况下,与背面侧的集电极电极140相比应力容易集中在表面侧的发射极电极120。其结果,与背面电极相比,由热冲击引起的裂纹容易在表面电极成为问题。但是,对于这点,在实施方式1中通过设置有第2电极层122而实施了裂纹对策。

实施方式2

实施方式2涉及的功率半导体模块除了将半导体装置100、150分别置换为半导体装置200、250这点外,具有与实施方式1涉及的功率半导体模块10相同的形状以及构造。因此,在以下的说明中对与实施方式1相同或相当的结构标注相同的标号而进行说明,并且以与实施方式1的不同点为中心进行说明,共通事项则简化或省略说明。

图9是表示本发明的实施方式2涉及的半导体装置200的示意性的俯视图。图10是表示半导体装置200的示意性的剖视图。图10 表示沿图9的C-C线将半导体装置200切断后的剖面。实施方式2涉及的半导体装置200除了将发射极电极120置换为发射极电极220这点外,具有与实施方式1涉及的半导体装置100相同的结构。因此,在以下的说明中对与实施方式1相同或相当的结构标注相同的标号而进行说明,并且以与实施方式1的不同点为中心进行说明,共通事项则简化或省略说明。

在实施方式1中,发射极电极120为包含第1~3电极层121~123的3层构造,材料如上述所示,例如使用AlSi、纯Al以及Ni。如果线膨胀系数相互不同的多层相重叠,则会因为各材料的热膨胀率的差而产生应力,容易产生裂纹。因此,在实施方式2涉及的半导体装置200中,设置有2层构造的发射极电极220,而非3层构造。发射极电极220构成为,层叠了由AlCu所构成的第1电极层221以及由Cu所构成的第2电极层222。应该层叠焊料层130的第2电极层222使用了能够焊接的Cu。此外,第2电极层222与在实施方式1中的第3电极层123同样地,与设置在下侧的其他电极层相比形成得小一圈。因此,如图9所示,第1电极层221的外周部从焊料层130的边缘向外伸出一圈。

在这里,将构成第1电极层221的导电性材料的机械强度记载为St21,将构成第2电极层222的导电性材料的机械强度记载为St22,将构成焊料层130的材料的机械强度记载为St4。这种情况下,以至少成为St21>St22的方式,对构成第1电极层221的AlCu的组成进行了调整。此外,在很多情况下,由于焊料的机械强度与Cu等相比较低,因此St21>St22>St4的关系大多成立。此外,对于制造方法,将AlCu以及Cu分别用作靶材而与实施方式1同样地进行溅射即可,因此省略说明。

第1电极层221的材料也可以为Cu的比例高于1%的AlCu,也可以使Cu比例的范围为例如1%~2%等。第1电极层221的材料也可以为AlSiCu而并非AlCu,具体地说,也可以为Si的比例高于1%的AlSiCu,还可以使Si比例的范围为例如1%~2%等。

图11是表示本发明的实施方式2的变形例涉及的半导体装置 250的示意性的俯视图。图12是表示半导体装置250的示意性的剖视图。半导体装置250为二极管,将实施方式1涉及的半导体装置150的阳极电极151置换为阳极电极251。阳极电极251与上述的发射极电极220同样地,具有层叠了第1电极层221以及第2电极层222的构造。

作为上述的实施方式2中的发射极电极220以及阳极电极251的变形例,也可以在第1电极层221与第2电极层222之间,还具有由机械强度高于第2电极层222的材料构成的阻挡金属层224。阻挡金属层224的材料也可以为Ta(钽)或者Ta合金。图13是表示本发明的实施方式的其他变形例涉及的半导体装置260的示意性的剖视图。半导体装置260除了具有被插入了阻挡金属层224的发射极电极261这点外,具有与上述的半导体装置200同样的结构。

作为另一个变形例,也可以在上述的实施方式2中的发射极电极220以及阳极电极251的基础上,在第1电极层221与第2电极层222之间,还具有未图示的“其他电极层”。其他电极层的材料具有与第1电极层221的材料不同的线膨胀系数,使用与第1电极层221相比机械强度较低的材料。第1电极层221以及其他电极层也可以由AlCu或者AlSiCu之中相同组成的材料形成,在这种情况下也可以使其他电极层的材料包含的Cu的比例与第1电极层221相比较少。如此,在将其他电极层的机械强度设为St23的情况下,既可以使St21>St23这样的关系成立,也可以使St21>St22>St23这样的关系成立。

此外,在上述的实施方式1以及实施方式2中,作为本发明涉及的半导体装置的实施方式,例示了二极管以及具有沟槽栅极电极104的IGBT。但是本发明也能够应用于除此之外的半导体器件。

图14是表示本发明的实施方式的其他变形例涉及的半导体装置300的示意性的剖视图。半导体装置300是MOSFET(Metal-Oxide-Semiconductor Field-Effect Transister)。由于俯视观察时的构造与实施方式1的图3等相同,因此省略俯视图。半导体装置300与半导体装置100的不同点在于,在半导体芯片302与半导体 芯片102形成的元件构造不同。半导体芯片302除了不包含集电极层111以及电荷积蓄层107这点、和取代缓冲层110而包含有漏极层310这点外,基本上具有与半导体芯片102同样的结构。仿照IGBT的要素与MOSFET的要素之间的通常的对应关系,将IGBT中的发射极层106、发射极电极120以及集电极电极140,在MOSFET中改称为“源极层106”、“源极电极120”以及“漏极电极140”。也可以不将栅极绝缘膜105设为氧化膜,在实施了该变形的情况下半导体装置300被称为MISFET。并且,也能够应用实施方式1、2所述的各种变形。

图15是表示本发明的实施方式的其他变形例涉及的半导体装置400的示意性的剖视图。半导体装置400是具有平面栅极而非沟槽栅极的MOSFET。平面栅极由栅极绝缘膜405以及栅极电极404构成。半导体装置400具有n型的漂移层103、n+型的漏极层411以及漏极电极440。如图15所示,半导体装置400具有多个n+型的源极层406、多个p型的体层408以及多个源极电极420,它们设置在平面栅极的两侧。源极电极420与实施方式1的发射极电极120等同样地具有第1~3电极层121~123。由于可以认为俯视观察时的构造与实施方式1的图3等相同,因此省略俯视图。图16是表示本发明的实施方式的其他变形例涉及的半导体装置450的示意性的剖视图。半导体装置450是将半导体装置400中的源极电极420置换为源极电极451的装置。源极电极451具有与实施方式2涉及的发射极电极220同样的构造。此外,也可以使栅极绝缘膜105使用氧化膜以外的绝缘膜而变形为MISFET。另外,通过在半导体装置400中将集电极层111追加在漏极电极440与漏极层411之间,从而也能够变形为IGBT。并且,针对源极电极420、451,也能够应用实施方式1、2所述的各种变形。

图17是表示本发明的实施方式的其他变形例涉及的半导体装置500的示意性的剖视图。半导体装置500为晶闸管。半导体装置500具有由SiC等形成的p型半导体层511、n型半导体层512、p型半导体层513、以及n型半导体层514。在这些半导体层的表面和背面分别设置有阳极电极151以及阴极电极156,并且栅极电极504与p型 半导体层513相连接。阳极电极151的构造与实施方式1中的阳极电极151相同。作为图16所示的半导体装置500的变形例,也可以通过将阳极电极151置换为实施方式2涉及的阳极电极251,从而提供图18所示的半导体装置550。并且,针对阳极电极151、251,也能够应用实施方式1、2所述的各种变形。

近年,与硅(Si)相比带隙较大的半导体(所谓宽带隙半导体)已被应用于半导体器件。在实施方式1、实施方式2以及上述的其他变形例中,将半导体材料设为宽带隙半导体的一种即SiC,但本发明不限于此。也可以为SiC以外的宽带隙半导体,具体地说也可以是氮化镓类材料(GaN)或者金刚石。与Si半导体器件相比,宽带隙半导体器件由于能够进行高温工作,因此在更严格的高温条件下被使用的可能性高。如上所述,与Si相比更需要针对由热冲击引起的裂纹的裂纹对策,因此在使用宽带隙半导体的情况下,上述的各实施方式涉及的裂纹对策更加有效。另外,作为半导体材料当然也能够使用Si而非宽带隙半导体。

此外,在上述进行了说明的各实施方式以及其变形例涉及的半导体装置100~500中,也能够在各层采用与上述例示的导电型相反的导电型。此外,也可以将与发射极电极120、220、阳极电极151、251以及它们的变形例同样的构造,应用于集电极电极140以及阴极电极156。另外,在上述的实施方式1、2涉及的功率半导体模块10中,使半导体装置100、200的发射极电极120、220与半导体装置150、250的阳极电极151、251为同样的层叠构造(即各层为相同材料),其中,半导体装置100、200是IGBT,半导体装置150、250是二极管。但是本发明不限于此。例如,也可以将实施方式1的半导体装置100与实施方式2的半导体装置250组合而构成功率半导体模块10,也可以将实施方式2的半导体装置200与实施方式1的半导体装置150组合而构成功率半导体模块10,也可以在功率半导体模块10具有的多个半导体装置使用相互不同的电极材料。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1