形成环绕式栅极场效晶体管的方法与流程

文档序号:14594483发布日期:2018-06-05 03:33阅读:430来源:国知局

本揭露是关于三五族(Group III-V)半导体层,三五族半导体元件,例如环绕式栅极场效晶体管与其形成方法。更特别地,本揭露所描述的元件性质为三五族半导体层是直接成长在硅基材上以用在电子、光学、光电与磁性元件中。



背景技术:

在硅(Si)基材上整合三五族半导体为一个超过三十年的热门研究领域。许多已悉知的方法包含缓冲层的成长以调节硅基材与三五族半导体层之间的晶格失配、绝缘体上硅(Si-on-insulator;SOI)、磊晶转移方法、磊晶横向过成长、图案化的基材上的选择性磊晶以及深宽比捕获(aspect-ratio-trapping;ART)技术。然而,显著的缺陷、高成本且复杂的整合方案已经造成了大规模的商业冲击。



技术实现要素:

依据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管(gate-all-around field effect transistor:GAAFET)的方法,此方法包含:形成一浅沟槽隔离(shallow-trench-isolation;STI)在一硅基材中,浅沟槽隔离围绕硅基材的一硅区域;凹陷硅区域;在凹陷硅区域后,形成一化合物半导体层在凹陷的硅区域的一表面上;形成一三五族半导体层在化合物半导体层上;在形成三五族半导体层之后,凹陷浅沟槽隔离以暴露在三五族半导体层下的硅基材的一部分;移除化合物半导体层;以及在移除化合物半导体层之后,形成一栅极介电层与一金属栅极层环绕三五族半导体层。

附图说明

本揭露的态样可从以下的详细说明及随附的附图理解。值得在此注明的是,根据产业上的实际应用,各个特征并未按照比例绘制,事实上,各个特征的尺寸可以任意的放大或缩小,以利清楚地说明。

图1A和图1B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段的示例图;

图2绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段的示例性剖面图;

图3绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段的示例性剖面图;

图4A和图4B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段的示例性剖面图;图4A对应于沿图1B的X-X的剖面图,而图4B对应于沿图1B的Y-Y的剖面图;

图5A和图5B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段的示例性剖面图;图5A对应于沿图1B的X-X的剖面图,而图5B对应于沿图1B的Y-Y的剖面图;

图6A和图6B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图6A对应于沿图1B的X-X的剖面图,而图6B对应于沿图1B的Y-Y的剖面图;

图7A和图7B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图7A对应于沿图1B的X-X的剖面图,而图7B对应于沿图1B的Y-Y的剖面图;

图8A和图8B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图8A对应于沿图1B的X-X的剖面图,而图8B对应于沿图1B的Y-Y的剖面图;

图9A和图9B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图9A对应于沿图1B的X-X的剖面图,而图9B对应于沿图1B的Y-Y的剖面图;

图10A和图10B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图10A对应于沿图1B的X-X的剖面图,而图10B对应于沿图1B的Y-Y的剖面图;

图11A和图11B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图11A对应于沿图1B的X-X的剖面图,而图11B对应于沿图1B的Y-Y的剖面图;

图12A和图12B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图12A对应于沿图1B的X-X的剖面图,而图12B对应于沿图1B的Y-Y的剖面图;

图13A和图13B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图13A对应于沿图1B的X-X的剖面图,而图13B对应于沿图1B的Y-Y的剖面图;

图14A和图14B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图14A对应于沿图1B的X-X的剖面图,而图14B对应于沿图1B的Y-Y的剖面图;

图15A和图15B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图15A对应于沿图1B的X-X的剖面图,而图15B对应于沿图1B的Y-Y的剖面图;

图16A和图16B绘示根据本揭露的一实施方式形成的三五族半导体场效晶体管元件的各个阶段的一阶段示例性剖面图;图16A对应于沿图1B的X-X的剖面图,而图16B对应于沿图1B的Y-Y的剖面图;

图17绘示根据本揭露另一实施方式的三五族半导体场效晶体管元件的示例性剖面图;

图18绘示根据本揭露的一实施方式形成的三五族半导体层的示例性剖面图;

图19绘示根据本揭露的另一实施方式形成的三五族半导体层的示例性剖面图;

图20A绘示根据本揭露的实施方式形成的三五族半导体层的剖面图的透射电子显微镜(transmission electron microscope;TEM)图像;图20B绘示三五族半导体层的剖面图的轮廓;

图21至图23绘示根据本揭露另一实施方式形成的三五族半导体场效晶体管元件的各个阶段的示例性剖面图;

图24绘示根据本揭露的另一实施方式形成的三五族半导体层的示例性剖面图;

图25绘示根据本揭露的另一实施方式形成的三五族半导体层的示例性剖面图;

图26A绘示根据本揭露的实施方式形成的三五族半导体层的剖面图的透射电子显微镜(TEM)图像;图26B绘示三五族半导体层的剖面图的轮廓;

图27A和图27B绘示纳米线(nano-wire;NW)环绕式栅极场效晶体管的电性(Ids-Vds);以及

图28A和图28B绘示在三五族半导体层下形成的一空隙的示例性剖面图。

具体实施方式

以下提供本揭露的多种不同的实施方式或实施方式,以实现本揭露的不同技术特征。元件的实施方式和配置是如下所述以简化本揭露。当然,这些叙述仅为示例,而非用以限制本揭露。举例而言,第一特征是形成于第二特征上的叙述可包含第一特征与第二特征是直接接触的实施方式,亦可包含额外特征形成于第一与第二特征之间的实施方式,使得第一特征与第二特征可非直接接触。此外,本揭露可重复地使用元件符号于多个实施方式中。此重复是为了简洁,并非用以讨论各个实施方式及/或配置之间的关系。

另外,空间相对用语,如“下”、“下方”、“低”、“上”、“上方”等,是用以方便描述一元件或特征与其他元件或特征在附图中的相对关系。除了附图中所示的方位以外,这些空间相对用语亦可用来帮助理解元件在使用或操作时的不同方位。当元件被转向其他方位(例如旋转90度或其他方位)时,本文所使用的空间相对叙述亦可帮助理解。另外,术语“由...构成”可以表示“包含”或“由...组成”。可以改变以下操作的顺序。可以在后续操作期间或之后执行一个或多个附加操作,并且可以移除以下操作中的一个或多个。

如图1A与图1B所示,绝缘层,如浅沟槽隔离(shallow trench isolation;STI)15形成在基材10中。在一些实施方式中,基材10是硅(Si)基材,例如直径为150毫米、200毫米或300毫米。遮罩层形成在基材10上,遮罩层包含氧化硅层与氮化硅层。在遮罩层形成之后,遮罩层通过光微影与蚀刻过程被图案化。然后,通过使用图案化的遮罩层作为蚀刻遮罩,基板10进行沟槽蚀刻以形成沟槽。在一些实施方式中,沟槽的深度在约100纳米至约1微米的范围内。沟槽由绝缘(介电)材料15填充。诸如氧化硅,氧氮化硅或氮化硅的一层或多层绝缘材料可通过低压化学气相沉积(low pressure chemical vapor deposition;LPCVD)、等离子体化学气相沉积(plasma chemical vapor deposition)或可流动化学气相沉积(flowable chemical vapor deposition)所形成。绝缘材料层可以由一层或多层旋涂式玻璃(spin-on-glass;SOG)、一氧化硅(SiO)、氮氧化硅(SiON)、碳氮氧化硅(SiOCN)及/或氟掺杂硅酸盐玻璃(fluorine-doped silicate glass;FSG)所形成。在形成绝缘材料层之后,执行一平坦化操作如化学机械研磨(chemical mechanical polishing;CMP),或执行回蚀(etch-back)过程,用来去除绝缘材料层的上部以形成浅沟槽隔离15,如图1A。如图1B所示,在平面图中被浅沟槽隔离15包围或分离且未被蚀刻的基材为一硅区域20。由于硅区域具有一窄的宽度,所以硅区域20可以被称为硅鳍片。

如图1B所示,硅区域20具有通道区域20C、源极区域20S与漏极区域20D。在一些实施方式中,通道区域20C的宽度W1在约5纳米至约50纳米的范围内,在其他实施方式中,通道区域20C的宽度W1在约10纳米至约20纳米的范围内。在一些实施方式中,通道区域20C的长度L1在约50纳米至约200纳米的范围内,在其他实施方式中,通道区域20C的长度L1在约70纳米至约120纳米的范围内。源极区域20S与漏极区域20D的宽度W2大于等于宽度W1。通道方向对应于与X方向(与Z方向)交叉的Y方向。

在形成浅沟槽隔离15与硅区域20之后,如图2所示,硅区域20沿着Z方向向下凹陷(蚀刻)。在一些实施方式中,可以通过使用四甲基氢氧化铵(tetra methyl ammonium hydroxide;TMAH)来选择性地蚀刻硅区域20。在四甲基氢氧化铵蚀刻之后,由于硅晶体对四甲基氢氧化铵蚀刻的非等向性性质,当使用(100)硅基材时,凹陷硅区域20的底部具有一V形表面。在一些实施方式中,蚀刻量D1在约20纳米至约150纳米的范围内。在其他实施方式中,可以通过使用盐酸(HCl)溶液来选择性地蚀刻硅区域20。在此情况下,硅区域20的蚀刻表面具有实质上平坦的表面。

在硅区域20被凹陷之后,化合物半导体层30形成在凹陷硅区域20的表面上,如图3所示。在一些实施方式中,化合物半导体层30由例如三五族化合物半导体所形成。在一实施方式中,化合物半导体层30是磷化铟(InP)。

化合物半导体层30可以通过使用金属有机化学气相沉积(metal organic chemical vapor deposition;MOCVD)、分子束磊晶(molecular beam epitaxy;MBE)或原子层沉积(atomic layer deposition;ALD)选择性磊晶地形成在凹陷的硅区域20上。如图3所示,化合物半导体层30成长到高于浅沟槽隔离15的上表面的高度以从浅沟槽隔离15突出。在一些实施方式中,突出量H1在约1纳米至约30纳米的范围内。在一些实施方式中,化合物半导体层30在浅沟槽隔离15的上表面上横向成长。如图3所示,化合物半导体层30在剖面中具有三角形顶部形状,三角形顶部形状的两侧对应于化合物半导体层的(111)面。在其他实施方式中,化合物半导体层30成长在浅沟槽隔离15的上表面的高度处或下方,即H1≤0纳米。在一些实施方式中,-10纳米≤H1≤0纳米。

如图4A与图4B所示,在化合物半导体层30成长之后,三五族半导体层50形成在化合物半导体层30上。在一实施方式中,三五族半导体层50是砷化铟层。砷化铟层可以通过金属有机化学气相沉积、分子束磊晶或原子层沉积选择性地磊晶形成在化合物半导体层30上。在一些实施方式中,三五族半导体层50的厚度H2在约2纳米至约30纳米的范围内。

在一些实施方式中,三五族半导体层50在浅沟槽隔离15的上表面上横向成长。三五族半导体层50可以具有对称的“回力镖(boomerang)”形状。

如图5A所示,在三五族半导体层50形成之后,减少浅沟槽隔离15的高度(凹陷浅沟槽隔离15)以暴露三五族半导体层50下方的化合物半导体层30的一部分。浅沟槽隔离15可以通过干式及/或湿式蚀刻部分地被去除。在浅沟槽隔离15的高度减小之后,三五族半导体层50的上表面距离浅沟槽隔离15的表面的距离为高度D2,在一些实施方式中高度D2在约5纳米至约30纳米的范围内,并且在其它实施方案中,高度D2在约10纳米至约20纳米的范围内。

如图6A与图6B所示,在浅沟槽隔离15被凹陷之后,形成虚拟栅极介电层55与虚拟栅极电极层60。此外,由例如氧化硅,氮化硅或氮氧化硅所形成的硬遮罩层62形成在虚拟栅极电极层60上。虚拟栅极介电层55由例如氧化硅所形成,且虚拟栅极电极层60由例如多晶硅所形成。虚拟栅极介电层55、虚拟栅极电极60与硬遮罩层62可以通过适宜的膜形成的方法例如化学气相沉积所形成。在一些实施方式中,虚拟栅极介电层55的厚度在约2纳米至约20纳米的范围内,且沉积的虚拟栅极电极层60的厚度在约150纳米至约500纳米的范围内。在一些实施方式中,沉积的硬遮罩层62的厚度在约50纳米至约200纳米的范围内。在一些实施方式中,在沉积多晶硅层60之后,执行平坦化操作,例如化学机械研磨与回蚀操作。在平坦化操作之后,在一些实施方式中,多晶硅层60的厚度在约80纳米至约120纳米的范围内。

如图7A与图7B所示,在形成虚拟栅极介电层与虚拟栅极电极层之后,将这些虚拟层图案化以形成虚拟栅极结构。在一些实施方式中,虚拟栅极电极60的宽度W3在约10纳米至约200纳米的范围内,并且在其他实施方式中,宽度W3在约20纳米至约100纳米的范围内。可以通过使用图案化的硬遮罩层作为蚀刻遮罩来图案化多晶硅制成的虚拟栅极电极层。

如图8A与图8B所示,在虚拟栅极结构形成之后,侧壁间隔物65沿着X方向形成在虚拟栅极结构的两个侧面上。侧壁间隔物65由氧化硅及/或氮化硅所形成,侧壁间隔物65可以通过化学气相沉积或原子层沉积所形成。

如图9A与图9B所示,在形成侧壁间隔物之后,在三五族半导体层50的源极/漏极区域上执行离子注入70,其使用硅(Si)、An、碳(C)、锡(Sn)、硒(Se)及/或硫(S)作为掺杂剂。在一些实施方式中,不执行离子注入70并形成凸起的源极/漏极结构。接着,参考图10A与图10B,形成第一层间介电层(interlayer dielectric;ILD)75。第一层间介电层75包含二氧化硅(SiO2)、碳氧化硅(SiOC)、碳氮氧化硅(SiOCN)或碳氮化硅(SiCN)或其它低k材料或多孔材料的一层或多层。在平坦化操作之后,如图11A与图11B所示,去除虚拟栅极电极60与虚拟栅极介电层55以形成一栅极空间80。

接下来,通过栅极空间80,三五族半导体层50下面的化合物半导体层30被凹进,从而形成一空间85,如图12A与图12B所示。可以通过使用盐酸(HCl)溶液的湿蚀刻来蚀刻化合物半导体层30。在一些实施方式中,化合物半导体层30被完全去除,然而在其他实施方式中,化合物半导体层的一部分被保留。

在一些实施方式中,空间85的深度D3在约50纳米至约500纳米的范围内。在一些实施方式中,沿着通道方向的空间85的宽度W4大于栅极空间80的宽度,此栅极空间80的宽度大致等于虚拟栅极电极的宽度W3,且W4在从大约25纳米到大约2000纳米的范围内。

如图13A与图13B所示,在空间85形成之后,栅极介电层90形成在三五族半导体层50周围。栅极介电层90可以通过化学气相沉积或原子层沉积所形成,并且栅极介电层90也形成在浅沟槽隔离15与凹陷硅区域20的表面上。栅极介电层90包含介电常数高于10的高k介电材料,例如铪(Hf)、钇(Y)、钽(Ta)、钛(Ti)、铝(Al)与锆(Zr)的一种或多种氧化物。在一些实施方式中,使用氧化锆(HfO2)。

图14A与图14B所示,在形成栅极介电层90之后,形成栅极电极95。开口80与开口85由有一个或多个导电材料层所填充,以形成栅极电极95。导电材料包含铝(Al)、铜(Cu)、钨(W)、钴(Co)、钛(Ti)、Ta(钽)、氮化钛(TiN)、钛铝(TiAl)、碳化钛铝(TiAlC)、氮化钛铝(TiAlN)、氮化钽(TaN)、硅化镍(NiSi)、硅化钴(CoSi)与其他导电材料的一种或多种。导电材料首先通过化学气相沉积,原子层沉积或包含溅射的物理气相沉积(PVD)所沉积。在沉积导电材料之后,执行诸如化学机械研磨的平坦化操作以去除沉积的导电材料的上部。在一些实施方式中,如图14A与图14B所示,在空间85中形成空隙85B。

更进一步,形成第二层间介电层100,形成接触孔并用导电材料填充接触孔,从而形成源极/漏极接触105。因此如图15A与图15B所示,得到使用三五族半导体层50的环绕式栅极场效晶体管。第二层间介电层100包含二氧化硅(SiO2)、碳氧化硅(SiOC)、碳氮氧化硅(SiOCN)或碳氮化硅(SiCN)或其它低k材料或多孔材料的一层或多层。用于源极/漏极接触的导电材料包含铝(Al)、铜(Cu)、钨(W)、钴(Co)、钛(Ti)、Ta(钽)、氮化钛(TiN)、钛铝(TiAl)、碳化钛铝(TiAlC)、氮化钛铝(TiAlN)、氮化钽(TaN)、硅化镍(NiSi)、硅化钴(CoSi)与其他导电材料的一种或多种。

在一些实施方式中,如图16A与图16B所示,空间85完全由导电材料95填充,且没有空隙形成。在一些实施方式中,如图17所示,去除三五族半导体层50的源极/漏极区域,并形成凸起的源极/漏极结构40。凸起的源极/漏极结构40包含半导体晶体材料并且向通道提供适当的应力。在一些实施方式中,在不去除三五族半导体层50的源极/漏极区域的情况下形成凸起源极/漏极结构40,从而形成多层源极/漏极结构。

图18绘示根据本揭露的一实施方式所形成的三五族半导体层的示例性剖面图。如图18所示,三五族半导体层50具有依序连接的第一至第九刻面F1-F9。第一、第四与第七刻面F1、F4与F7彼此平行。第三与第八刻面F3与F8彼此平行。每个由相邻的两个刻面所形成的角可以是圆角。在一实施方式中,三五族半导体层50具有如图18所示的对称剖面图。

由第一刻面F1与第二刻面F2在三五族半导体层50内所形成的第一角度a1大于90度,由第二刻面F2与第三面F3在第三五族半导体层50内所形成的第二角度a2大于90度,由第三刻面F3与第四刻面F4在三五族半导体层50内部所形成的第三角度a3实质上为90度,由第四刻面F5与第五刻面F5在三五族半导体层50内所形成的第五角度a5大于90度,由第五刻面F5与第六刻面F6在三五族半导体层50内所形成的第五角度a5大于180度,由第六刻面F6与第七刻面F7在三五族半导体层50内所形成的第六角度a6大于90度,由第七刻面F7与第八刻面F8在第三五族半导体层50内所形成的第七角度a7实质上为90度,由第八刻面F8与第九刻面F9在三五族半导体层50内所形成的第八角度a8大于90度,且由第九刻面F9与第一刻面F1在三五族半导体层50内所形成的角度a9大于90度。这里,“实质上90度”意味着90度±4.5度。在一些实施方式中,由平行于第一刻面F1的一线与第九刻面F9所形成的角度b1(较小的角度)在大约30度至大约60度的范围内。在一些实施方式中,由平行于第一刻面F1的一线与第六刻面F6所形成的角度b2(较小的角度)在大约30度至大约60度的范围内。在一些实施方式中,角度a5在约240度至约300度的范围内。

第一角度a1与第九角度a9彼此实质上相等,并且在一些实施方式中,第一角度a1与第九角度a9在从约120度到约150度的范围内。第二角度a2与第八角度a8彼此实质上相等,并且在一些实施方式中,第二角度a2与第八角度a8在从约120度至约150度的范围内。第四角度a4与第六角度a6彼此实质上相等,并且在一些实施方式中,第四角度a4与第六角度a6在从大约120度到大约150度的范围内。在一些实施方式中,第四角度a4与第六角度a6大于第二角度a2与第八角度a8。

在一实施方式中,第一、第四与第七刻面F1、F4与F7对应于砷化铟(三五族半导体层50)的(001)平面,第二与第九刻面F2与F9对应于砷化铟的(111)平面,第三与第八刻面F3与F8对应于砷化铟的(110)平面。在这种情况下,角度a1、角度a2、角度a8与角度a9为约125度。在一些实施方式中,第五与第六刻面F5与F6对应于砷化铟的(311)平面。

在一些实施方式中,刻面F1的宽度W11在大约0.5纳米至大约5.0纳米的范围内。在一些实施方式中,刻面F2的宽度W12实质上等于刻面F9的宽度,且宽度W12在从约10.0纳米到约50.0纳米的范围内。在一些实施方式中,刻面F3的宽度W13实质上等于刻面F8的宽度,且宽度W13在从约0.5纳米到约5.0纳米的范围内。在一些实施方式中,刻面F4的宽度W14实质上等于刻面F7的宽度,并且宽度W14在从约0.5纳米到约5.0纳米的范围内。在一些实施方式中,刻面F5的宽度W15实质上等于刻面F6的宽度,并且宽度W15在从大约5.0纳米到大约30.0纳米的范围内。

图19绘示根据本揭露的另一实施方式所形成的三五族半导体层的示例性剖面图。图19的三五族半导体层50的整体剖面形状类似于图18的形状,而图19的形状具有圆形“回力镖”形状,其具有凸顶表面,凹底表面与圆角。

在一些实施方式中,三五族半导体层50的整个宽度W21在约10.0纳米至约60.0纳米的范围内。在一些实施方式中,三五族半导体层50的整个高度H21在约10.0纳米至约40.0纳米的范围内。在一些实施方式中,三五族半导体层50的凹部的高度H22在约0.5纳米至约10.0纳米的范围内。在一些实施方式中,第一顶部A1的曲率半径r1在约0.5纳米至约10.0纳米的范围内,并且在一些实施方式中,第二顶部A2与第三顶部A3的曲率半径r2与r3在从约0.5纳米至约10.0纳米。

图20A绘示根据本揭露的实施方式形成的三五族半导体层50的剖面图的穿透式电子显微镜(transmission electron microscope;TEM)图像。图20B示出三五族半导体层50的剖面的轮廓。如图20A与图20B所示,三五族半导体层50具有“回力镖”形状,其具有四个主要表面S11、S12、S13与S14以及四个圆角表面C11、C12、C13与C14。当然,存在两个相对的端表面。圆角表面C11连接主要表面S11与主要表面S12,圆角表面C12连接主要表面S12与主要表面S13,圆角表面C13连接主要表面S13与主要表面S14,圆角表面C14连接主要表面S14与主要表面S11。三个圆角表面C11、C13与C14是凸的,圆角表面C12是凹的。

在一些实施方式中,主要表面S11至S14为实质上平坦的。在除去化合物半导体层30之前,主要表面S12与主要表面S13与化合物半导体层30的两个(111)面接触。主要表面S11与主要表面S12的延伸平面、主要表面S13与主要表面S14的延伸平面以及主要表面S14与主要表面S11的延伸平面个别形成锐角。在一些实施方式中,锐角为约30度至约60。主要表面S12与主要表面S13的延伸平面在一些实施方式中形成约60度至约150度的角度。在一些实施方式中,此角度为约90度至约150度。在其他实施方式中,此角度是钝角。

图21至图23绘示根据本揭露另一实施方式所形成三五族半导体场效晶体管元件的各个阶段的示例性剖面图。在以下实施方式中可以采用与前述实施方式相同或相似的配置、材料、过程及/或尺寸,并且可以省略其详细说明。

在此实施方式中,在形成如图3所示的化合物半导体层30之后,化合物半导体层30的上部通过例如化学机械研磨被平坦化,如图21所示。当化合物半导体层30使用磷化铟时,平坦化的上表面是(100)磷化铟平面。

接下来,三五族半导体层52形成在化合物半导体层30上,如图22所示。在一些实施方式中,三五族半导体层52横向成长在浅沟槽隔离15的上表面上。如图22所示,三五族半导体层50具有实质上三角形的剖面形状。

在形成三五族半导体层50之后,类似于图5A/图5B至图15A/图15B所述的操作。得到使用三五族半导体层52的环绕式栅极场效晶体管,如图23所示。

图24绘示根据本揭露的另一实施方式所形成的三五族半导体层的示例性剖面图。图24所示的三五族半导体层52的剖面图形状对应于图18中的角度a4、a5与a6为180度的情况,因此图18的角度范围应用于图19。

在一实施方式中,第一刻面F21与第四刻面F24与对应于砷化铟(三五族半导体层52)的(001)平面,第二刻面F22与第六刻面F26对应于砷化铟的(111)平面,第三刻面F23与第五刻面F25对应于砷化铟的(110)平面。

在一些实施方式中,刻面F21的宽度W31在从大约0纳米到大约5.0纳米的范围内。在一些实施方式中,刻面F22的宽度W32实质上等于刻面F26的宽度,且宽度W32在从约10.0纳米到约50.0纳米的范围内。在一些实施方式中,刻面F23的宽度W33实质上等于面F25的宽度,并且宽度W33在从约0纳米到约5.0纳米的范围内。在一些实施方式中,刻面F24的宽度W34在大约10.0纳米至大约60.0纳米的范围内。当宽度W31与W33等于0纳米时,剖面形状是三角形。

图25绘示根据本揭露的另一实施方式所形成的三五族半导体层52的示例性剖面图。图25的三五族半导体层52的整体剖面形状类似于图24的形状,而图25的形状为具有圆角的圆角三角形。

在一些实施方式中,三五族半导体层52的整个宽度W41在约10.0纳米至约60.0纳米的范围内。在一些实施方式中,三五族半导体层52的整个高度H41在约10.0纳米至约40.0纳米的范围内。在一些实施方式中,第一顶部A4的曲率半径r4在约0.5纳米至约10.0纳米的范围内,并且在一些实施方式中,第二顶部A5与第三顶部A6的曲率半径r5与r6在从约0.5为至约10.0纳米的范围内。

图26A绘示根据本揭露的实施方式所形成的三五族半导体层52的剖面图的穿透式电子显微镜图像。图26B绘示三五族半导体层52的剖面图的轮廓。如图26A与图26B所示,三五族半导体层52具有一剖面,且此剖面为具有圆角的实质上三角形,并且三五族半导体层52具有三个主要表面S21、S22与S23以及三个圆角表面C21、C22与C23。当然,存在两个相对端表面。圆角表面C21连接主要表面S21与主要表面S22,圆角表面C22连接主要表面S22与主要表面S23,圆角表面C23连接主要表面S23与主要表面S21。圆角表面C21至圆角表面C23是凸起的。

在一些实施方式中,主要表面S21至主要表面S23为实质上平坦的。主要表面S21与主要表面S22的延伸平面、主要表面S22与主要表面S23的延伸平面以及主要表面S23与主要表面S21的延伸平面分别形成锐角。在一些实施方式中,在去除化合物半导体层30之前,与化合物半导体层30的上表面接触的主要表面S22比其它主要表面S21与主要表面S23宽。

图27A与图27B示出纳米线环绕式栅极场效晶体管的电特性(Ids-Vds)。在图27A中,通道长度Lg=90纳米,栅极长度Wfin=20纳米,在图27B中,通道长度Lg=110纳米,栅极长度WNW=40纳米。在WNW=20纳米时,对于Lg=90纳米,测量的峰值跨导gm为1763μS/μm,次临界震幅SS为76.8mV/dec,且Q=gm/SS为22。此外,在WNW=40纳米时,对于Lg=110纳米,测量的峰值跨导gm为2284μS/μm,次临界震幅SS为171mV/dec以及Q=gm/SS为13.4。在图27B中,得到非常高的峰值跨导peak-gm=2.3mS/μm与非常低的导通电阻Ron=167Ω·μm。

参考图15A与图23,在一些实施方式中,本揭露的纳米线环绕式栅极场效晶体管具有空隙85B。图28A与图28B示出在三五族半导体层下所形成的空隙的示例性剖面图。

图28A示出由六个面所形成的空隙85B的“锁孔(keyhole)”形状。空隙85B的高度H51在约10.0纳米至约100纳米的范围内,并且在一些实施方式中,空隙85B的高度H52与H53在约1.0纳米至约20.0纳米的范围内。高度H52可以不同于高度H53。在一些实施方式中,空隙85B的宽度W51在约3.0纳米至约10.0纳米的范围内。

图28B示出由四个面形成的空隙85B的“泪滴(teardrop)”形状。在一些实施方式中,空隙85B的高度H61在约10.0纳米至约100纳米的范围内,空隙85B的高度H62在约1.0纳米至约30.0纳米的范围内。在一些实施方式中,空隙85B的宽度W61在约3.0纳米至约10.0纳米的范围内。在一些实施方式中,空隙85B的角是圆形的。

应当理解,并非所有优势都必须在本文中一一讨论,没有任何特定的优势是需要存在于所有实施方式中,并且其他实施方式或示例可以提供不同的优点。

根据本揭露的一些实施方式,由于作为通道的三五族(例如,砷化铟)化合物半导体层在其剖面图中具有“回力镖”形状或“三角形形状”,所以可得到比具有相同覆盖区(即,宽度)的简单的条状通道更高的电流容量。此外,还可以增加通道的表面积。此外,由于主要刻面(例如,图19的F2与F9或图24的F22与F26)在(111)平面中,所以有利于L能谷(L-valley)导体的电子传输。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,在凹陷浅沟槽隔离之后与移除化合物半导体层之前,还包含:形成一虚拟介电层在三五族层上;形成一虚拟多晶硅层在虚拟介电层上;图案化虚拟多晶硅层,而形成一虚拟栅极;形成多个侧壁间隔物在虚拟栅极的多个相对侧面上;在形成侧壁间隔物之后,形成一第一层间介电(interlayer dielectric;ILD)层;以及移除虚拟栅极,而形成一开口,其中化合半导体层经由开口被移除。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中三五族半导体层为一砷化铟层。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中化合物半导体层为一磷化铟层。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中硅基材具有作为一主要表面的一(100)平面。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中硅区域通过具有四甲铵氢氧化物的蚀刻被凹陷。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中在化合物半导体层形成之后,化合物半导体层的一上部具有两(111)平面,两(111)平面形成一个三角形剖面。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中三五族半导体层具有第一到第四主要表面、三个凸圆角面以及一个凹圆角面。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中:第一凸圆角面连接第一主要表面与第二主要表面;凹圆角面连接第二主要表面与第三主要表面;第二凸圆角面连接第三主要表面与第四主要表面;以及第三凸圆角面连接第四主要表面与第三主要表面。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中在化合物半导体层被移除之前,第二主要表面与第三主要表面是接触化合物半导体层的两(111)平面。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中:第一主要表面与第二主要表面的多个延伸平面形成一锐角;第二主要表面与第三主要表面的多个延伸平面形成一角度,角度从60度到150度;第三主要表面与第四主要表面的多个延伸平面形成一锐角;以及第四主要表面与第一主要表面的多个延伸平面形成一锐角。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中第二主要表面与第三主要表面的延伸平面形成一角度,角度从90度到150度。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中在移除化合物半导体层的步骤中,化合物半导体层是部分地被移除。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中栅极介电层也形成在金属栅极层与凹陷的硅区域之间。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中一空隙是形成在金属栅极层中,金属栅极层在三五族半导体层与凹陷的硅区域之间。

根据本揭露的一些实施方式,一种形成一环绕式栅极场效晶体管的方法,方法包含:形成一浅沟槽隔离在一硅基材中,浅沟槽隔离围绕硅基材的一硅区域;凹陷硅区域;在凹陷硅区域之后,形成一化合物半导体层在凹陷的硅区域的一表面上;在形成化合物半导体层之后,平坦化化合物半导体层的一上部;形成一三五族半导体层在平坦化的化合物半导体层上;在形成三五族半导体层之后,凹陷浅沟槽隔离以暴露在三五族半导体层下的硅基材的一部分;移除化合物半导体层;以及形成一栅极介电层与一金属栅极层环绕三五族半导体层。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,在凹陷浅沟槽隔离之后且在移除化合物半导体层之前,还包含:形成一虚拟介电层在三五族半导体层上;形成一虚拟多晶硅层在虚拟介电层上;图案化虚拟多晶硅层,而形成一虚拟栅极;形成多个侧壁间隔物在虚拟栅极的多个相对侧面上;在侧壁间隔物形成之后,形成一第一层间介电层;以及移除虚拟栅极,而形成一开口,其中化合物半导体层是经由开口被移除。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中三五族半导体层为一砷化铟层,且化合物半导体层为一磷化铟层。

根据本揭露的一些实施方式,一种形成环绕式栅极场效晶体管的方法,其中三五族半导体层具有一剖面,剖面为具有圆角且实质上三角形的形状。

根据本揭露的一些实施方式,一种环绕式栅极场效晶体管,包含:一砷化铟纳米线,作为一通道层;一栅极介电层,包围砷化铟纳米线;以及一栅极电极金属层,形成在栅极介电层上,其中砷化铟纳米线具有第一主要表面到第四主要表面、三个凸圆角表面以及一个凹圆角表面。

上述已概述数个实施方式的特征,因此熟悉此技艺者可更了解本揭露的态样。熟悉此技艺者应了解到,其可轻易地利用本揭露做为基础,来设计或润饰其他制程与结构,以实现与在此所介绍的实施方式相同的目的及/或达到相同的优点。熟悉此技艺者也应了解到,这类均等架构并未脱离本揭露的精神和范围,且熟悉此技艺者可在不脱离本揭露的精神和范围下,进行各种的更动、取代与润饰。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1