一种定向多孔磷酸铁锂-石墨烯复合材料及其制备方法与流程

文档序号:15839805发布日期:2018-11-07 08:18阅读:247来源:国知局
一种定向多孔磷酸铁锂-石墨烯复合材料及其制备方法与流程

本发明属于磷酸铁锂-石墨烯复合材料技术领域。具体涉及一种定向多孔磷酸铁锂-石墨烯复合材料及其制备方法。

背景技术

目前,节能环保成为时代的主题,太阳能、风能、潮汐能等清洁可再生型能源逐渐取代传统的煤、石油、天然气等高污染非再生能源,然而,这些新型能源却存在着不连续性和不稳定性的缺陷,致使其实际应用受到限制,因此,对再生能源进行能量转换与高效存储变得尤为重要。作为高效的能量转换装置,锂离子电池(lib)已广泛应用于能源、动力领域及3c电子产品(computer、communication和consumerelectronic)领域,它的性能与成本主要取决于正极材料。其中,橄榄石型磷酸铁锂因理论比容量高、成本低、循环稳定性和安全性能优异等优点在众多正极材料中脱颖而出。然而,较低的离子扩散速率和电子电导率阻碍了磷酸铁锂倍率性能的发挥,大大限制了磷酸铁锂材料在动力电池领域的使用,针对磷酸铁锂固有缺陷的改性,中外学者们已开展了很多工作。

目前,磷酸铁锂的改性方式主要有颗粒尺寸纳米化、多孔形貌设计、碳包覆、阳离子掺杂等,其中,将磷酸铁锂颗粒纳米化能够明显改善材料的放电比容量。但是,纳米粒子化学活性较高,易发生团聚,不利于提升材料的循环稳定性。相较之纳米化磷酸铁锂,三维多孔结构的磷酸铁锂因其较大的比表面积,较高的体积能量密度和功率密度有望在动力电池领域得到广泛应用。目前,多孔磷酸铁锂的制备通常采用软模板法、硬模板法和非模板法。

非模板法合成工艺简单和操作简便,但形成的孔洞大多混乱无序;软模板法所用模板剂去除方便,且模板剂热解后产生的无定型碳可提升的磷酸铁锂导电性,然而,磷酸铁锂结晶温度较高,软模板剂在较低的温度下便发生分解,因此,无法继续支撑高温下的多孔结构,易出现孔洞坍塌现象。

硬模板法所用模板刚度大,可很好地避免孔洞坍塌问题,且有利于制备三维多孔材料,但是硬模板法所需的模板剂需提前制备,无形中使得工艺变得复杂化,增加了材料的合成成本,且模板剂去除不彻底,易引入副产品。



技术实现要素:

本发明旨在克服现有技术缺陷,目的是提供一种工艺简单、操作方便、生产周期短和形貌可控的定向多孔磷酸铁锂-石墨烯复合材料的制备方法;用该方法制备的定向多孔磷酸铁锂-石墨烯复合材料呈三维定向多孔结构,孔径及孔壁厚度均匀可控,电化学性能优异。

为实现上述目的,本发明采用的技术方案的具体步骤是:

(1)按铁盐∶石墨烯氧化物的质量比为1∶(0.2~2.6),将所述石墨烯氧化物加入到浓度为0.5~2mol/l的铁盐水溶液中,超声搅拌0.5~1.5h,得到溶液ⅰ。

(2)按所述铁盐∶磷酸的物质的量比为1∶1,将所述磷酸加入到所述溶液ⅰ中,搅拌20~40min,得到溶液ⅱ。

(3)按所述铁盐∶锂盐的物质的量比为1∶1,将浓度为4mol/l的锂盐水溶液加入到所述溶液ⅱ中,超声搅拌30~40min,得到溶液ⅲ。

(4)将所述溶液ⅲ置于定向冷冻装置中,冷冻20~40min,再于真空冷冻干燥机中干燥36~72h,得到柱状干凝胶。

(5)将所述柱状干凝胶置于管式气氛炉中,在保护气氛和600~750℃条件下保温8~10h,随炉冷却,得到定向多孔磷酸铁锂-石墨烯复合材料。

所述定向多孔磷酸铁锂-石墨烯复合材料为定向多孔结构,孔洞定向排列,孔洞的孔壁由磷酸铁锂纳米粒子和石墨烯堆积形成,孔洞的孔壁分布有纳米孔。

所述铁盐为柠檬酸铁、二水合草酸亚铁和七水合硫酸亚铁中的一种。

所述锂盐为磷酸二氢锂、二水乙酸锂和一水氢氧化锂中的一种。

所述定向冷冻装置包括耐低温容器、铜柱和圆管;在耐低温容器的底部中心位置处设置有铜柱,所述铜柱为大圆柱和小圆柱体同轴线组成的整体,在小圆柱体的圆柱面固定有圆管,铜柱的环形面与圆管的下端面间设有密封圈;使用时,耐低温容器内装有液氮,所述溶液ⅲ置于圆管内。

所述保护气氛为氩气、或为氮气和氢气的混合气体、或为氩气和氢气的混合气体。

由于采用上述技术方案,本发明与现有制备磷酸铁锂材料的技术相比具有如下积极效果:

1、本发明通过改变石墨烯氧化物的加入量,能对所制备的定向多孔磷酸铁锂-石墨烯复合材料的孔径及孔壁的厚度进行有效调控,所制备的定向多孔磷酸铁锂-石墨烯复合材料孔径为135~175nm,孔壁厚度为15~35nm。

2、本发明所制备的定向多孔磷酸铁锂-石墨烯复合材料的三维定向多孔结构是冰晶沿温度梯度方向定向生长,再经真空干燥而形成的结构。装在耐低温塑料容器中的液氮将低温经由铜柱传至铜柱与溶液ⅲ的交界处,溶液ⅲ在界面处开始结晶,形成小冰晶,并沿着温度梯度方向定向生长至ⅲ的表面,圆管能避免溶液ⅲ周围外界温度对冷冻过程中产生的影响,保证定向冷冻过程冰晶生长的一致性。

三维定向的多孔结构能有效促进电解液对电极材料的浸润,为锂离子传输提供了定向的通道,缩短了离子扩散路径。二维石墨烯薄片嵌在多孔的孔壁片层中,充当磷酸铁锂纳米颗粒间电子转移的桥梁,且较大的比表面积还能为离子提供更多的反应活性位点,有利于提升材料的比容量与倍率性能。同时,孔壁片层上纳米孔的存在能有效的缓解充放电过程中因体积膨胀而导致的材料结构的破坏。

3、本发明利用定向冷冻装置并结合后续的干燥和热处理工艺即可制得定向多孔磷酸铁锂-石墨烯复合材料。无需额外制备模板剂,同时,通过真空冷冻干燥可很好的脱去定向生长的冰晶,在热处理过程中,三维定向多孔结构也能很好的得到保持。

因此,本发明工艺简单、操作方便、生产周期短且形貌可控;所制备的定向多孔磷酸铁锂-石墨烯复合材料呈三维定向多孔结构,孔径及孔壁厚度均匀可控,电化学性能优异。

附图说明

图1为用于本发明的一种定向冷冻装置的结构示意图;

图2为图1所示定向冷冻装置的使用状态示意图;

图3为本发明制备的一种定向多孔磷酸铁锂-石墨烯复合材料的xrd图;

图4为图3所示定向多孔磷酸铁锂-石墨烯复合材料的低倍率sem图;

图5为图3所示定向多孔磷酸铁锂-石墨烯复合材料的高倍率sem图。

具体实施方式

下面结合附图和具体实施方式对本发明作进一步的描述,并非对其保护范围的限制。

实施例1

一种定向多孔磷酸铁锂-石墨烯复合材料及其制备方法。所述制备方法是:

(1)按铁盐∶石墨烯氧化物的质量比为1∶(0.2~1.0),将所述石墨烯氧化物加入到浓度为0.5~2mol/l的铁盐水溶液中,超声搅拌0.5~1.5h,得到溶液ⅰ。

(2)按所述铁盐∶磷酸的物质的量比为1∶1,将所述磷酸加入到所述溶液ⅰ中,搅拌20~40min,得到溶液ⅱ。

(3)按所述铁盐∶锂盐的物质的量比为1∶1,将浓度为4mol/l的锂盐水溶液加入到所述溶液ⅱ中,超声搅拌30~40min,得到溶液ⅲ。

(4)将所述溶液ⅲ置于定向冷冻装置中,冷冻20~40min,再于真空冷冻干燥机中干燥36~48h,得到柱状干凝胶。

(5)将所述柱状干凝胶置于管式气氛炉中,在保护气氛和600~650℃条件下保温8~10h,随炉冷却,得到定向多孔磷酸铁锂-石墨烯复合材料。

所述定向多孔磷酸铁锂-石墨烯复合材料为定向多孔结构,孔洞定向排列,孔洞的孔壁由磷酸铁锂纳米粒子和石墨烯堆积形成,孔洞的孔壁分布有纳米孔。

如图1所示,所述定向冷冻装置包括耐低温容器(3)、铜柱(2)和圆管(1)。在耐低温容器(3)的底部中心位置处设置有铜柱(2),所述铜柱(2)为大圆柱和小圆柱体同轴线组成的整体,在小圆柱体的圆柱面固定有圆管(1),铜柱(2)的环形面与圆管(1)的下端面间设有密封圈。如图2所示,使用时,耐低温容器(3)内装有液氮(4),所述溶液ⅲ(5)置于圆管(1)内。

所述铁盐为柠檬酸铁;所述锂盐为磷酸二氢锂;所述保护气氛为氩气。

图3是本实施例制备的一种定向多孔磷酸铁锂-石墨烯复合材料的xrd图;图4是图3所示制品的低倍率sem图;图5是图3所示制品的高倍率sem图。由图3可以看出,其制品为纯相磷酸铁锂材料,无杂峰。由图4和图5可以看出,所制备的定向多孔磷酸铁锂-石墨烯复合材料孔径分布均匀,孔壁片层厚度约为18.8nm,纳米孔孔径约为161.8nm。

本实施例制备的定向多孔磷酸铁锂-石墨烯复合材料为纯相磷酸铁锂材料,定向多孔磷酸铁锂-石墨烯复合材料孔径分布均匀,孔径为155~175nm,孔壁厚度为15~25nm。

实施例2

一种定向多孔磷酸铁锂-石墨烯复合材料及其制备方法。所述制备方法是:

(1)按铁盐∶石墨烯氧化物的质量比为1∶(1.0~1.8),将所述石墨烯氧化物加入到浓度为0.5~2mol/l的铁盐水溶液中,超声搅拌0.5~1.5h,得到溶液ⅰ。

(2)按所述铁盐∶磷酸的物质的量比为1∶1,将所述磷酸加入到所述溶液ⅰ中,搅拌20~40min,得到溶液ⅱ。

(3)按所述铁盐∶锂盐的物质的量比为1∶1,将浓度为4mol/l的锂盐水溶液加入到所述溶液ⅱ中,超声搅拌30~40min,得到溶液ⅲ。

(4)将所述溶液ⅲ置于定向冷冻装置中,冷冻20~40min,再于真空冷冻干燥机中干燥48~60h,得到柱状干凝胶。

(5)将所述柱状干凝胶置于管式气氛炉中,在保护气氛和650~700℃条件下保温8~10h,随炉冷却,得到定向多孔磷酸铁锂-石墨烯复合材料。

所述定向多孔磷酸铁锂-石墨烯复合材料为定向多孔结构,孔洞定向排列,孔洞的孔壁由磷酸铁锂纳米粒子和石墨烯堆积形成,孔洞的孔壁分布有纳米孔。

所述定向冷冻装置及其使用同实施例1。

所述铁盐为二水合草酸亚铁;所述锂盐为二水乙酸锂;所述保护气氛为氮气和氢气的混合气体。

本实施例制备的定向多孔磷酸铁锂-石墨烯复合材料为纯相磷酸铁锂材料,定向多孔磷酸铁锂-石墨烯复合材料孔径分布均匀,孔径为145~165nm,孔壁厚度为20~30nm。

实施例3

一种定向多孔磷酸铁锂-石墨烯复合材料及其制备方法。所述制备方法是:

(1)按铁盐∶石墨烯氧化物的质量比为1∶(1.8~2.6),将所述石墨烯氧化物加入到浓度为0.5~2mol/l的铁盐水溶液中,超声搅拌0.5~1.5h,得到溶液ⅰ。

(2)按所述铁盐∶磷酸的物质的量比为1∶1,将所述磷酸加入到所述溶液ⅰ中,搅拌20~40min,得到溶液ⅱ。

(3)按所述铁盐∶锂盐的物质的量比为1∶1,将浓度为4mol/l的锂盐水溶液加入到所述溶液ⅱ中,超声搅拌30~40min,得到溶液ⅲ。

(4)将所述溶液ⅲ置于定向冷冻装置中,冷冻20~40min,再于真空冷冻干燥机中干燥60~72h,得到柱状干凝胶。

(5)将所述柱状干凝胶置于管式气氛炉中,在保护气氛和700~750℃条件下保温8~10h,随炉冷却,得到定向多孔磷酸铁锂-石墨烯复合材料。

所述定向多孔磷酸铁锂-石墨烯复合材料为定向多孔结构,孔洞定向排列,孔洞的孔壁由磷酸铁锂纳米粒子和石墨烯堆积形成,孔洞的孔壁分布有纳米孔。

所述定向冷冻装置及其使用同实施例1。

所述铁盐为七水合硫酸亚铁;所述锂盐为一水氢氧化锂;所述保护气氛为氩气和氢气的混合气体。

本实施例制备的定向多孔磷酸铁锂-石墨烯复合材料为纯相磷酸铁锂材料,定向多孔磷酸铁锂-石墨烯复合材料孔径分布均匀,孔径为135~155nm,孔壁厚度为25~35nm。

本具体实施方式与现有制备磷酸铁锂材料的技术相比具有如下积极效果:

1、本具体实施方式通过改变石墨烯氧化物的加入量,能对所制备的定向多孔磷酸铁锂-石墨烯复合材料的孔径及孔壁的厚度进行有效调控,所制制品为纯相的lifepo4材料,制品为三维有序多孔结构,孔洞排列有序,孔径均匀。孔径为135~175nm,孔壁厚度为15~35nm。

2、本具体实施方式所制备的定向多孔磷酸铁锂-石墨烯复合材料的三维定向多孔结构是冰晶沿温度梯度方向定向生长,再经真空干燥而形成的结构。装在耐低温塑料容器(3)中的液氮(4)将低温经由铜柱(2)传至铜柱(2)与溶液ⅲ(5)的交界处,溶液ⅲ(5)在界面处开始结晶,形成小冰晶,并沿着温度梯度方向定向生长至ⅲ(5)的表面,圆管(1)能避免溶液ⅲ(5)周围外界温度对冷冻过程中产生的影响,保证定向冷冻过程冰晶生长的一致性。

三维定向的多孔结构能有效促进电解液对电极材料的浸润,为锂离子传输提供了定向的通道,缩短了离子扩散路径。二维石墨烯薄片嵌在多孔的孔壁片层中,充当磷酸铁锂纳米颗粒间电子转移的桥梁,且较大的比表面积还能为离子提供更多的反应活性位点,有利于提升材料的比容量与倍率性能。同时,孔壁片层上纳米孔的存在可能有效的缓解充放电过程中因体积膨胀而导致的材料结构的破坏。

3、本具体实施方式利用定向冷冻装置并结合后续的干燥和热处理工艺即可制得定向多孔磷酸铁锂-石墨烯复合材料。无需额外制备模板剂,同时,通过真空冷冻干燥可很好的脱去定向生长的冰晶,在热处理过程中,三维定向多孔结构也能很好的得到保持。

因此,本具体实施方式工艺简单、操作方便、生产周期短和形貌可控;所制备的定向多孔磷酸铁锂-石墨烯复合材料呈三维定向多孔结构,孔径及孔壁厚度均匀可控,电化学性能优异。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1