金属化聚酰亚胺膜及其制造方法

文档序号:8033821阅读:206来源:国知局
专利名称:金属化聚酰亚胺膜及其制造方法
技术领域
本发明涉及一种金属化聚酰亚胺膜,是在聚酰亚胺膜的表面上形成有由铜或铜合金构成的导电层的金属化聚酰亚胺膜。
背景技术
近年来,为实现电子器械的小型化、轻量化、结构的柔软化,对TAB、柔性电路基板、柔性布线板等的需求日益增高。作为这种基板,目前通常使用以环氧类粘合剂等粘合剂将铜箔粘贴于挠性塑料基板上得到的基板。但是,为实现电子器械的高密度组装,希望将这种基板进一步薄膜化,上述粘合铜箔的结构已不能充分满足薄膜化方面的要求。
另外,上述使用粘合剂的电路基板存在下述问题(1)铜箔的蚀刻液容易渗入粘合剂层,在高温高湿下施加偏压时可能发生铜的转移,使电路发生短路,(2)为实现高速化必须在使阻抗匹配的同时减少串扰(cross talk),但因存在粘合剂而变得困难,(3)粘合剂层的尺寸稳定性差,(4)因粘合剂层的存在使电路基板的微细加工变得困难,难以适应高密度化,(5)粘合剂层的热特性比塑料基板材料差,因此热稳定性方面存在问题,难以实现高密度化,(6)因存在粘合剂,产品也容易发生变形等。
为解决上述问题,正在研究不使用粘合剂而形成金属化膜的技术。例如,公知的方法有通过真空蒸镀、阴极真空喷镀、离子镀等薄膜形成技术,沿电路图案在塑料膜上直接形成金属薄膜后,通过电解电镀等在该金属薄膜上堆积金属镀层的方法,或者在塑料基板的表面上形成金属薄膜,在其上以电解电镀等堆积金属后,蚀刻导电层以形成电路图案的方法等。
但是,在这类结构中,使用耐热性优良的聚酰亚胺膜时,聚酰亚胺膜与金属之间的接合性比其他的塑料差,因而经过电路图案形成工序或电解电镀工序等后续工序时,存在聚酰亚胺膜与金属薄膜之间的接合强度下降,容易剥落的问题。
一部分仍在使用的方法有在铜箔上涂布聚酰亚胺单体后,加热固化形成聚酰亚胺层的方法,以及利用热熔法将热塑性聚酰亚胺膜和铜箔贴合在一起的方法等。但因上述方法中使用铜箔,因而使铜箔的表面粗糙度反映在产品的表面粗糙度中,可能会在形成细微图案时产生不良影响。另外,由于铜箔有厚度限定,因而使薄膜化变得困难。
为解决上述问题,本申请人先前在特开2003-011273号公报中提出了由聚酰亚胺膜、在聚酰亚胺膜的表面上形成的金属核附着部分、在该金属核附着部分上形成的金属层共同构成的金属化聚酰亚胺膜。金属核附着部分由选自Mo、Cr、Ni、Si、Fe及Al中的1种、2种或2种以上元素形成。

发明内容
最近随着金属化聚酰亚胺膜的用途日益广泛,有在更严酷的环境下使用金属化聚酰亚胺膜的倾向,所以更加有必要防止剥离。
本发明是鉴于上述问题而完成的,提供一种即使暴露于高温环境下,也可使导电层与聚酰亚胺膜之间保持较高接合强度的金属化聚酰亚胺膜。
本发明的金属化聚酰亚胺膜具有以下结构聚酰亚胺膜;在距该聚酰亚胺膜表面20nm以内的表层区域中注入了选自Mo、Cr、Ni及Si中的1种、2种或2种以上元素而形成的中间层;在所述中间层上形成的由铜或铜合金构成的导电层,上述中间层中上述元素的注入量为0.3~15mg/m2。该金属化聚酰亚胺膜也可为TAB Tape、柔性电路基板等。
本发明的金属化聚酰亚胺膜的制造方法为,使含有1种、2种或2种以上选自Mo、Cr、Ni及Si中的元素的标靶(target)中产生溅射粒子,将该溅射粒子注入距聚酰亚胺膜表面20nm以内的表层区域,由此形成上述元素的注入量为0.3~15mg/m2的中间层,并进一步在该中间层上形成由铜或铜合金构成的导电层。
由于本发明在聚酰亚胺膜的表层区域注入了选自Mo、Cr、Ni及Si中的1种、2种或2种以上元素而形成中间层,使中间层与聚酰亚胺膜一体化,因而可以减少导电层从聚酰亚胺膜上剥离的情况,可靠性较高。


为本发明金属化聚酰亚胺膜的一种实施方案的截面放大图。
为示出同实施方案的中间层附近的元素浓度变化的图表。
为示出本发明金属化聚酰亚胺膜的制造方法之一例的简图。
为示出本发明金属化聚酰亚胺膜的制造方法之一例的简图。
为示出本发明金属化聚酰亚胺膜的制造方法之一例的简图。
为示出本发明金属化聚酰亚胺膜的制造方法之一例的简图。
为示出本发明实施例中碳、铜、镍浓度变化的图表。
为示出本发明比较例中碳、铜、镍浓度变化的图表。
具体实施例方式
图1为示出本发明金属化聚酰亚胺膜的一种实施方案的截面放大图。该金属化聚酰亚胺膜具备以下结构聚酰亚胺膜1、在聚酰亚胺膜1的一面上形成的中间层2、在该中间层2上形成的导电层4。
聚酰亚胺膜1的材料可以为通常用于该用途的聚酰亚胺树脂中的任意一种。也可为BPDA类聚酰亚胺树脂、PMDA类聚酰亚胺树脂。一般而言,以BPDA(联苯四羧酸)为原料的聚酰亚胺膜(宇部兴产制、商品名“Upilex”等)的热尺寸稳定性及吸湿尺寸稳定性和刚性良好,主要用于TAB,但是具有与金属薄膜之间的接合强度低的特征。而以PMDA(苯均四酸二酐)为原料的聚酰亚胺膜(Toray-DuPont制、商品名“Kapton”,钟渊化学工业制、商品名“Apical”等)与金属薄膜的接合强度较高。聚酰亚胺膜1的厚度并无特别限制,但优选为12~125μm。
聚酰亚胺膜1可为单层,也可为多种聚酰亚胺树脂叠层而成的叠层膜。此时,聚酰亚胺膜1与中间层2接触的面,采用BPDA类及PMDA类中任意一种均可获得同样的效果。
中间层2具有下述结构在距聚酰亚胺膜1表面20nm以内的表层区域中,将选自Mo、Cr、Ni及Si中的1种、2种或2种以上元素(以下称为注入元素)的微粒注入并分散至由聚酰亚胺构成的母材中而形成的复合结构。
图2为模式地示出在中间层2内各元素浓度变化的图表。从聚酰亚胺膜1侧到导电层4侧,中间层2中聚酰亚胺的浓度从约为100%变化至0%。从聚酰亚胺膜1侧到导电层4侧,中间层2中的导电层金属浓度从约为0%变化至100%。另外,从聚酰亚胺膜1侧到导电层4侧,中间层2中注入元素的浓度从约为0%开始增加至最大值,然后再次变化至0%。注入元素的浓度在达到最大值时也未到达100%。注入元素浓度的最大值并无特别限定,但优选在20%或20%以下。
为形成上述中间层2,首先在聚酰亚胺膜1的表面进行蚀刻处理,使聚酰亚胺的表面粗糙化、活性化。通过进行上述的预蚀刻处理,可以在其后将注入元素注入至更深的区域。
蚀刻处理可利用湿式蚀刻处理或干式蚀刻处理。湿式蚀刻处理例如为以腐蚀性溶液浸蚀聚酰亚胺膜1的表面使其粗糙化的方法。腐蚀性溶液可举出例如氢氧化钠、水合肼、乙二胺等的混合液。
干式蚀刻例如可利用在真空中进行的等离子体蚀刻。尤其优选在真空中进行的等离子体蚀刻,而更加优选蚀刻后以串联方式(in line)在不排放气体的条件下,在蚀刻面上形成中间层2。通过使中间层的金属加速冲击活化后的聚酰亚胺表面,能够利用注入元素的入射冲击使注入元素粒子与聚酰亚胺母材相混合。
中间层2中注入元素的注入量,优选相对于聚酰亚胺膜1的每单位面积为0.3~15mg/m2,更优选为0.9~10mg/m2。注入元素的注入量优选为在平滑的平面上成膜时形成0.5~5nm厚度的量。为了使如此微量的注入元素以高能量注入分散至具有上述厚度的区域中,中间层2不能为致密的金属层。应予说明,也可预先将中间层2及导电层4形成为所期望的图案形状。
中间层2中注入元素的注入量少于0.3mg/m2时,不能充分提高导电层4相对于聚酰亚胺膜1的接合强度。注入量多于15mg/m2时,聚酰亚胺膜1的表层部结构变得过于混乱,表层部内部发生破坏,反而使导电层4的附着强度降低。并且,在以蚀刻对导电层4进行图案加工时必须同时蚀刻中间层2,而当中间层2过厚时,也存在蚀刻效率降低的问题。
中间层2中注入元素的更优选注入量为0.9~10mg/m2。在该范围内时制造成本也较低,且提高导电层4接合强度的效果也稳定。注入元素的注入量可利用电感耦合高频等离子体分光光度法(ICP)等进行测定。
中间层2的材料可为从Mo、Cr、Ni、及Si中选出的1种、2种或2种以上物质,根据本发明人等的实验,发现尤其在使用其中的Ni、Mo、Si时,可以得到较高的接合强度,且耐久试验后仍可维持较高的接合强度。
在中间层2与导电层4之间,也可蒸镀与导电层4的接合性良好的1层或1层以上的第2中间层。作为第2中间层优选铜或者含铜98质量%或98质量%以上的铜合金,此时,在确保高导电性的同时,可以进一步改善膜基材与金属层的接合性。第2中间层的厚度优选为5~300nm左右。
蚀刻处理可利用湿式蚀刻和干式蚀刻。优选利用干式蚀刻。因为可以有效活化聚酰亚胺表面。最优选在真空中进行等离子体蚀刻处理后,以串联方式(in line)在不排放气体的条件下进行金属成膜。
在聚酰亚胺膜1上形成中间层2时,必须使注入元素以大于通常蒸镀法的能量冲击聚酰亚胺膜1。为了增大入射能量,可以采用如下列举的方法,但并不局限于此。
(1)通过使成膜真空度达到更高真空来提高等离子体的发生电压,加速溅射粒子。以图3进行说明。符号10为以注入元素为主体构成的标靶,在其反面侧配置有磁石12,利用其磁力使标靶10的正面侧产生等离子体14。等离子体14撞击标靶10的表面,使注入元素的微粒入射至与标靶10对向配置的聚酰亚胺膜1中。该构成中,如果提高真空度,则等离子体14的发生电压升高,等离子体14剧烈撞击标靶10,使从标靶10放出的溅射粒子速度增加。虽然装置结构存在较大差异,但为了获得足够的溅射粒子速度,真空度优选为2.7×10-1Pa或2.7×10-1Pa以下。
(2)在磁控DC溅射装置中,可通过减弱磁铁的磁力以降低等离子体密度,从而加速溅射粒子。若以图3为例进行说明,则是通过减弱磁石12的磁力以降低等离子体密度,从而使溅射粒子加速。为获得充分的溅射粒子速度,使磁石可以移动,增大磁石与标靶之间的距离即可。最适当的距离因使用装置的标靶形状及结构而异。
(3)如图4所示,在标靶10与聚酰亚胺膜1反面配置的电极20之间连接电源18,通过对电极20施加正电压,使从标靶10飞出的溅射粒子向聚酰亚胺膜1加速移动。
(4)如图5所示,在从标靶10飞出的溅射粒子到达聚酰亚胺膜1之前,使从离子照射装置24发出的离子束26向聚酰亚胺膜1进行连续照射,以该离子束26加速溅射粒子,使其射入聚酰亚胺膜1。为获得充分的溅射粒子速度,离子束26的平均加速能量优选为150~1800eV,更优选为600~1800eV。等离子体电压优选为250~3000V。
(5)如图6所示,使从离子照射装置24发出的作为等离子体源的离子束26照射标靶10,使飞出的溅射粒子入射至聚酰亚胺膜1。离子束26的平均加速能量优选为150~1800eV,更优选为600~1800eV。等离子体电压优选为250~3000V。
导电层4的材料为从铜或铜合金中选出的1种、2种或2种以上物质,尤其优选为纯铜、或者含有镍、锌、或铁等的铜合金。导电层4的厚度在10nm或10nm以上即可,更优选在30nm或30nm以上。导电层4过厚时成本过高,太薄时在电镀工序中容易发生烧断等不良现象。
形成导电层4时,可以利用真空蒸镀、阴极真空喷镀、离子镀等薄膜形成技术,仅在形成有中间层2的聚酰亚胺膜1上使金属成膜,或也可以利用上述各种方法形成一定程度的薄膜后,在该蒸镀膜上通过电解镀覆法或非电解镀覆法等堆积金属镀层。
还可在聚酰亚胺膜1的反面形成氧·水分遮蔽膜。氧·水分遮蔽膜由从氧化硅、氧化铝、氧化钛、氧化锡、氧化铟、氟化镁、氧化镁、铝、铟锡氧化物(ITO)中选出的1种、2种或2种以上物质形成。从对氧及水分的遮蔽性能以及批量生产性优良方面考虑,氧化硅及氧化铝尤其优选用作氧·水分遮蔽膜。
氧·水分遮蔽膜的厚度优选为5~300nm。不足5nm时难以充分得到对氧及水分的遮蔽效果。而即使大于300nm,效果也无变化,反而增加成本。氧·水分遮蔽膜的厚度更优选为20~150nm。氧·水分遮蔽膜的形成方法并无限定,但优选物理蒸镀法(PVD)或化学蒸镀法(CVD)等。
在形成氧·水分遮蔽膜的情况下,即使暴露于高温环境中,氧和水分也难以从聚酰亚胺膜1的反面侵入。由此能够抑制在氧和水分的存在下导电层4中的铜被氧化、生成的铜离子与聚酰亚胺反应发生水解而导致的聚酰亚胺的分解反应。所以,结合中间层2的效果,即使长时间暴露于较目前产品使用环境更高的温度下,导电层4或中间层2从聚酰亚胺膜1剥落的情况也较少,可靠性较高。尤其适用于容易暴露于高温及水分环境中的车载用品,上述效果的差异可通过例如高温环境试验进行评价。
另外,通过在聚酰亚胺膜1表面附着极微量的特定核形成元素形成中间层2之后再形成导电层4,可提高聚酰亚胺膜1和导电层4之间的接合强度。因此,从这一点出发,即使在高温环境下使用时也可以维持较高的导电层4的接合强度。另外,中间层2接触的界面为BPDA类聚酰亚胺、PMDA类聚酰亚胺中的任意一种,均具有获得较高接合强度的效果。
下面举出实施例以证实本发明的效果。
以宇部兴产株式会社制、25μm厚的“Upilex-S”(商品名)作为聚酰亚胺膜基材,以下述条件对该膜基材的两面进行等离子体表面处理。
等离子体表面处理条件氩气、RF输出1.5kW、10min将膜基材置于阴极真空喷镀装置内,在下述条件下形成中间层和导电层。
中间层材料Ni-Cr合金成膜条件氩气、DC输出0.3kW磁铁使用铁素体离子束照射等离子体电压1000V成膜厚度3nm导电层材料铜成膜条件氩气、DC输出4.5kW磁铁使用铁素体成膜厚度200nm并且,在得到的导电层上通过硫酸铜浴形成18μm厚的铜电解电镀层,得到实施例1的样品。
在与实施例1同样的聚酰亚胺膜基材上,不进行等离子体表面处理,用以下通常的阴极真空喷镀条件形成中间层和导电层。在该条件下,元素未被充分注入聚酰亚胺膜的表层部分内。
中间层材料Ni-Cr合金成膜条件氩气、DC输出0.3kW磁铁使用铁素体离子束照射无成膜厚度3nm导电层材料铜成膜条件氩气、DC输出4.5kW磁铁使用铁素体成膜厚度200nm并且,在得到的导电层上通过硫酸铜浴形成18μm厚的铜电解电镀层,得到比较例1的样品。
从实施例1及比较例1的金属化聚酰亚胺膜上切出宽10mm×长150mm的长方形状试验片。以IPC-TM-650(美国印刷电路工业协会标准试验法)中规定的方法,测定膜基材与导电层之间的剥离强度(peel强度)。该试验法为将上述长方形状试验片的聚酰亚胺膜侧朝向圆周方向地粘合固定在直径6英寸的鼓的外周,然后用夹具以5cm/分钟的速度向与聚酰亚胺膜成90℃的方向边剥离边牵拉金属膜的一端,测定所需的荷重(kN/m)。
另外,对实施例1及比较例1的各试验片进行加热处理后,再利用上述方法测定剥离强度。加热处理的条件为,在大气中150℃下加热保持168小时。
进而,对实施例1及比较例1的各试验片进行加湿加热处理(PCT处理)后,通过上述方法测定剥离强度。PCT的处理条件为,在温度121℃、湿度100%的环境中保持48小时。
结果如表1所示。


如表1所示,实施例1在加热处理后、及PCT处理后的任意一种情况下都表现较高的剥离强度。
图7为利用XPS分析法对实施例1中的中间层2及其附近的碳(1s)、铜(2p)、镍(2p)的元素浓度分布进行测定的结果。图8为对比较例1进行同样测定的结果。由此可见,图7表示的实施例1中,注入元素进入到聚酰亚胺膜的表层部分内,因而得到了较高的接合强度。而对应图8所示的比较例1,推测由于注入元素未能充分进入聚酰亚胺膜的表层部分内,导致其接合强度没有实施例1那么高。
本发明通过在聚酰亚胺膜的表层区域注入从Mo、Cr、Ni及Si中选出的1种、2种或2种以上元素而形成中间层,使中间层与聚酰亚胺膜一体化,因而能使导电层从聚酰亚胺膜剥离的情况较少发生,可靠性较高。
权利要求
1.一种金属化聚酰亚胺膜,具有以下结构聚酰亚胺膜;在距所述聚酰亚胺膜表面20nm以内的表层区域中注入了从Mo、Cr、Ni及Si中选出的1种、2种或2种以上元素而形成的中间层;在所述中间层上形成的由铜或铜合金构成的导电层,上述中间层中上述元素的注入量为0.3~15mg/m2。
2.一种金属化聚酰亚胺膜的制造方法,其特征在于,使含有1种、2种或2种以上选自Mo、Cr、Ni及Si中的元素的标靶中产生溅射粒子,将所述溅射粒子注入至聚酰亚胺膜的表面,由此形成距聚酰亚胺膜表面20nm以内的表层区域中注入有上述元素、上述元素的注入量为0.3~15mg/m2的中间层;进一步在所述中间层上形成由铜或铜合金构成的导电层。
全文摘要
一种金属化聚酰亚胺膜,具有以下结构聚酰亚胺膜;在距所述聚酰亚胺膜表面20nm以内的表层区域中注入了从Mo、Cr、Ni及Si中选出的1种、2种或2种以上元素而形成的中间层;在所述中间层上形成的由铜或铜合金构成的导电层,上述中间层中上述元素的注入量为0.3~15mg/m
文档编号H05K1/05GK1669787SQ20051000522
公开日2005年9月21日 申请日期2005年2月1日 优先权日2004年2月4日
发明者相田正之 申请人:三菱伸铜株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1