具有热固性多孔基质的复合板、制造方法以及由板的组件形成的覆盖壁的结构与流程

文档序号:11630824阅读:190来源:国知局
具有热固性多孔基质的复合板、制造方法以及由板的组件形成的覆盖壁的结构与流程
本发明涉及一种具有多孔热固性基质的复合板、制造该板的方法以及由该板的组件所形成的用于壁的覆盖结构,并且该覆盖结构赋予该壁对低温流体的隔热性和/或防火性或阻燃性和/或对这些流体的密封。本发明具体应用于用于涂覆平台、桥梁或海上液化气生产浮动单元的壳体的这样的结构,并且更常见地应用于例如需要上述隔热性、保护性和密封性三种中至少一个的航空领域中。
背景技术
:已知的是,在泵送操作、处理操作(诸如分离、液化、储存以及转移低温液体)期间,尤其需要防止低温液体(即,在低于-150℃的温度下处于液态的液化气,诸如被称为lpg的液化石油气,或液化天然气)的泄露或意外倾注。实际上,已知的是,低温液体的流动通常由于脆性破坏而可能导致平台或船体的壳体以及桥梁中所使用的钢损坏。为此原因,过去开发了针对桥梁和壳体的基体的覆盖结构,这些结构从隔热性(为了避免基体的危害性冷却)和对所述流体密封的两个方面使基体免受这些流体流的损害。还寻求赋予这些桥梁和壳体的基体以令人满意的耐火性(包括降低的可燃性、耐火焰传播性、降低的火焰散发性)以及隔热性(为了避免这些基体的危害性升温)。因此,已知的是,如何使用保护性覆盖结构作为板的组件,在这些基材上形成铺设面(dallage),这些板例如由以下组成:复合泡沫型多孔组合物,该组合物基于聚合物基质和经注入的中空微球,具有的主要缺点是:对低温流体的密封以及机械强度不足;热固性致密塑料组合物,具有的缺点是:几何模块化受限、重量太大且成本太高;或者尤其在下文所示的文献中所述的具有多孔热固性基质的纤维复合材料。文献wo-a1-2014/009381公开了具有膨胀热固性基质的复合板,该复合板包括浸渍有该基质的天然纤维支撑体,该基质基于水性树脂以及膨胀剂。支撑体由毡形成,所示如,该毡优选包括玄武岩短纤维,而具体在制造板的唯一实施例的描述中,所使用的纤维不是短的,而是与此相反的“bcf”型连续长丝(即“玄武岩连续长丝”)。根据该文献,通过提供另外的聚乙烯热塑性纤维,这种毛毡必须在其两个表面上被缝制。该文献所示出的板的主要缺点在于:使用聚乙烯纤维,这是为了赋予基重具体介于480g/m2至780g/m2之间的毡以令人满意的完整性的需要。然而,据认为,在缝制毡的期间,聚乙烯纤维的使用不能显著改变表面处的机械性能,而相反地能够在毡中导致缺乏均匀性(表示为局部可变表面质量),从而在诸如航空的领域中造成问题。此外,在该文献中描述的用于使热固性树脂交联和膨胀的第三步骤期间,当通过热压法对纤维支撑体进行加热时,使用介于90℃至150℃、优选介于135℃至145℃之间的加热温度以使膨胀剂活化并且使树脂交联。然而,由于该加热温度落在聚乙烯的熔融温度的常规范围(85℃至140℃)内,所以该加热温度在先前缝制期间可能对所使用的聚乙烯纤维产生不利的影响,这可能导致聚乙烯纤维完全无用,并且导致熔融聚乙烯在板的某些区域中的积累。根据该文献除了与利用这些聚乙烯纤维缝制支撑体直接相关的所述板的上述缺点之外,在考虑到与板的比重相关的高厚度时,所测试的板的机械性能仅有相对改善。技术实现要素:本发明的目的是提出一种具有多孔热固性基质的复合板,该板包括至少一个支撑体,所述至少一个支撑体包括无纺玄武岩短纤维并且浸渍有所述基质,这是对上述缺点的补救。为此目的,根据本发明的板是这样的板:所述至少一个支撑体包括沿叠置厚度的若干叠置的无纺布,所述无纺布中的每一个包括所述玄武岩短纤维,并且在不提供任何热塑性纤维的情况下,在所述厚度中被缝制。在本说明书中,“无纺布”是指以已知方式制造的由网组成、由层组成、由毡组成或由垫组成的片材,所述网、层、毡或垫是定向纤维沿特定方向或无规方向,通过摩擦和/或内聚和/或粘合而结合的,不包括纸和通过编织、针织、植绒或缝接获得的产品。“缝制的”无纺布是指通过缝制技术以已知的方式进行机械固结,从而具有在不同片材之间产生垂直纤维桥梁以便将它们保持在一起的效果。为此,缝制仅能使用具有足够长度的纤维(典型为至少30mm,并且通常至少为40mm),因为本发明的情况是在这些无纺布中使用玄武岩短纤维。应该注意的是,由此本发明的板的特征在于:若干无纺层的叠层,诸如毡,例如,该毡包括这些玄武岩短纤维,优选地大部分是玄武岩短纤维或仅由短玄武岩纤维组成(即,质量分数大于50%,甚至更优选大于90%,可选地为100%)。根据本发明的另一特征,包括在每个无纺布中的或组成每个无纺布的所述玄武岩短纤维可具有介于13μm和16μm之间的平均直径,以及介于30mm和60mm之间、优选介于35mm和45mm之间的平均长度,具体地,本发明中使用的这些玄武岩短纤维为分类至“tbf”(“细玄武岩短纤维”)的范围,它们的平均直径略大于通常介于6μm至12μm的可商购的“tbf”纤维。应当注意的是,可用于本发明无纺布的“tbf”型玄武岩纤维特别具有耐高温的优点,在高达1040℃温度下不会发生变化。还应当注意的是,以下纤维不能在根据本发明的板的无纺布中用作玄武岩短纤维:“bcf”(“玄武岩连续纤维”)型玄武岩纤维,即平均直径通常介于6μm和21μm之间且平均长度通常介于40km和60km之间的连续纤维,这是由于这些“bcf”纤维不能为叠置的无纺布提供足够的机械强度,并且如上述文献wo-a1-2014/009381中所述,需要提供聚乙烯作为缝制纤维;或者“stbf”(“超细玄武岩短纤维”)型玄武岩纤维,其直径通常介于1μm和3μm之间,且平均长度通常接近50mm,这是由于这些纤维的直径非常小而不足以彼此勾住来得到毡型无纺布,并且还对健康有害。此外,应当注意的是,与上述文献wo-a1-2014/009381不同,根据本发明的这些无纺布具有缝制在一起的、且在叠置的厚度上、且在缝制期间无需提供任何热塑性纤维的具体结构,而上述文献教导了提供聚乙烯热塑性纤维来缝制单个毡的两个表面。根据本发明,在无需提供任何热塑性材料(例如,无需提供诸如聚乙烯的聚烯烃或任何其它热塑性聚合物)的情况下,在无纺布厚度上的缝制,使得能够通过将无纺布连接在一起来提供令人满意的机械强度,同时找到了对上述文献中固有的由于使用聚烯烃缝制纤维(在热固性基质的膨胀/交联期间可能熔化)所带来的前述缺陷的补救。有利地,所述若干叠置的无纺布可包括至少三个且优选四个所述无纺布。根据本发明的第一实施方式,在提供玄武岩连续纤维的情况下,缝制所述叠置的无纺布。根据该第一实施方式,所述玄武岩连续纤维可形成插入到所述叠置的无纺布中的平行经纱,所述经纱以优选介于10cm和40cm之间、进一步更优选介于15cm和25cm之间的距离两两隔开。有利地,这些玄武岩连续纤维可具有介于100tex和300tex之间、优选介于180tex和230tex之间的线性质量,并且优选符合“bcf”名称。应当注意的是,这些玄武岩连续纤维能够沿长度方向(即,经纱方向)提高所述支撑体的耐性。同样根据该第一实施方式,所述叠置的无纺布各自可由(即,排他地由)玄武岩短纤维和这些玄武岩连续纤维组成,并且各自可具有介于480g/m2和2000g/m2之间的表面质量。根据本发明的第二实施方式,所述叠置的无纺布各自可具有大于1000g/m2的表面质量,并且在不提供任何纤维下被缝制。根据该第二实施方式,所述叠置的无纺布因此可各自由所述玄武岩短纤维组成(即,排他地仅由玄武岩短纤维组成)。有利地,浸渍有所述热固性基质的所述至少一个支撑体可包括:质量分数介于15%和25%之间的所述叠置的无纺布,以及质量分数介于75%和85%之间的所述基质。还有利地,热固性基质可包括(以质量分数计):介于50%和65%之间的水性树脂,所述水性树脂选自由三聚氰胺-甲醛树脂、酚醛树脂和木胶所构成的组,并且优选为三聚氰胺-甲醛树脂;介于3%和15%之间用于形成开孔的膨胀剂,所述膨胀剂优选包括异丁烷(对于低于150℃的压制温度)或异戊烷(对于高于150℃的压制温度);介于0.5%和2%之间的催化剂,所述催化剂优选包括胺盐酸盐;介于30%和45%之间的水性溶剂,诸如水,以及可选地,介于0%至3%的添加剂,例如碾磨的碳或石墨。根据本发明的另一特征,叠置且浸渍有所述热固性基质的无纺布可具有介于60kg/m3和1200kg/m3之间的比重,以及介于5mm和30mm之间的厚度。有利地,所述板可进一步包括:至少一个铝片,所述至少一个铝片设置在所述至少一个支撑体的所述叠置的无纺布外,例如设置在各自由所述叠置的无纺布组成的两个所述支撑体之间;和/或形成所述板的保护性覆盖的外层,所述外层选自由橡胶、热塑性弹性体、环氧涂料和聚氨酯所组成的组。应当注意的是,所述外层例如旨在形成根据本发明的壁或基体的覆盖结构的上层,限定操作者可在其上移动的地板、平台、桥或壳体的外表面。有利地,所述板可具有:在25℃,小于或等于50mw.m-1k-1(有利地,35mw.m-1k-1)的导热率,尤其是对低温流体的良好隔热性,从而下基板的温度不低于-60℃;和/或对低温流体的密封,能够避免这些流体与下基板的任何接触;和/或被动耐火性,包括:*根据nfen13501-1标准,cfl-s1类的燃烧性,*根据astme84标准测量,小于25的耐火焰传播性,*根据astme84标准测量,小于130的烟雾散发指数,以及*对火的隔热性,确保下基板的温度不高于427℃。应当注意的是,本发明的板具有透过超频和易于修复的优点,该超频包括水的特定频率(1000mhz和1100mhz之间)。根据本发明的壁的覆盖结构旨在赋予所述壁以相对于低温流体的隔热性和/或防火性和阻燃性和/或对所述低温流体的密封,该结构尤其适用于覆盖平台、桥梁或海上液化气生产浮动单元的壳体,所述覆盖结构为这样的结构,该结构包括:用于附接至所述壁的所述板的组件,所述板通过密封接合构件连接在一起,所述密封接合构件优选包括复合带状物(cordon),所述复合带状物基于浸渍有多孔热固性基质的玄武岩短纤维,所述多孔热固性基质与所述板的多孔热固性基质相同或不同于。应当注意的是,根据本发明的覆盖结构可涉及任何壁或下基板的覆盖,无论该壁例如是水平的(然后结构形成用板坯组合例如多边形板形成的铺路)、垂直的还是其他,并且这些结构可例如保护诸如墙壁或隔板等壁免受火灾。或者,这些结构可以保护建筑物、工业设备(包括隔热导管或低温储罐)以及陆路交通工具、铁路交通工具、海运交通工具、河运交通工具,空中交通工具或太空飞行器。根据本发明的制造根据本发明的板的方法包括以下连续步骤:a)在不提供任何热塑性纤维且优选提供玄武岩连续纤维下,在所述叠置厚度中缝制所述至少一个支撑体的所述叠置的无纺布;b)用所述热固性基质浸渍经缝制的无纺布;c)对该经浸渍的无纺布进行轧光;d)对经浸渍且轧光的无纺布进行干燥;以及随后e)在具有可控间距的加热板之间对经浸渍、轧光且干燥的无纺布进行压制。附图说明通过阅读下文中所描述的本发明的说明性且非限制性的数个示例性实施方式,将更加清楚本发明的其它特征、优点和细节,其中,以下描述参考附图进行,其中:图1是根据符合所述第一实施方式的本发明实施例的包括在板中的支撑体的局部剖面示意图,示出了在支撑体用热固性基质浸渍之前,施加至该支撑体的缝制;图2是图1的支撑体在缝制和浸渍有基质后的局部剖面示意图;图3是根据本发明的板的局部透视图,示出了该板的带槽的纵向边缘,用于容纳另一板的接合构件;图4是细节的局部透视图,示出了通过插入接合构件来与另一板组装的图3的板的边缘;以及图5是图4的组件的放大俯视且局部透视图。具体实施方式图1中,在制造期间的根据本发明实施例的支撑体1是可见的,包括:四个叠置的例如毡式的无纺布2、3、4、5,如前所述,利用设置有针6a和针7a的工具6和工具7对它们进行缝制,其主要由或仅由大体为“tbf”类型的玄武岩短纤维2a、3a、4a、5a组成。优选地,纤维2a、3a、4a、5a可有利地具有约13μm的平均直径以及约40mm的平均长度。在图1的实例中,以纯示意性的方法示出了纤维2a、3a、4a、5a,其表明在每个无纺布2至5中,或多或少地考虑了纤维2a至5a的无规取向。通过沿双箭头a的方向交替移动工具6和工具7使带有根据该第一实施方式所提供的“bcf”类玄武岩长纤维(即,基本连续的纤维)的针6a和针7a各自穿过叠置的无纺布2至5的总厚度来形成经纱8以获得无纺布2至5在厚度中的缝制后,得到在图1中部分可见的经缝制的支撑体,并且以连续经纱8的介于10cm和40cm之间且有利地以约20cm的间隔插入玄武岩连续经纱8(在这些附图中仅可见一根)从而,在图2中完成所述支撑体的缝制。作为提供为用于该缝制的“bcf”类型的纤维,有利地使用滴度小于或等于230tex,优选等于180tex的纱线,这些长或连续纱线具有介于6μm和21μm之间的平均直径。有利地,经由连续纤维8缝制的无纺布2-5的叠体所具有的表面质量或单位面积重量介于480g/m2和1000g/m2之间,其中包括780g/m2,在图2的实施方式中表明,以厚度e叠置的无纺布2-5由玄武岩纤维组成,其包括短纤维2a至5a作为主要部分以及连续纱线8作为少量部分(以质量计)。如前文本发明的一般性讨论中所指出的那样,应该注意的是,作为一种选择在不提供任何纤维下,进行无纺布2至5的缝制,这些无纺布2至5则仅由玄武岩短纤维2a至5a组成。在这种缝制之后,无纺布2至5被浸渍有热固性基质9,该热固性基质9(以质量计,主要)基于水性热固性树脂,优选三聚氰胺-甲醛共聚物(具有醛的质量含量仅为约0.2.10-1%)。下表1中详细描述了测试由无纺布2至5组成的支撑体1的配方以及浸渍该支撑体1的热固性基质9的组成的实施例。表1成分在支撑体1和基质9中的质量分数无纺布支撑体120热固性基质980三聚氰胺甲醛树脂45膨胀剂(异丁烷)3催化剂(胺盐酸盐)1水31为了由浸渍有该基质9的无纺布支撑体1来制造根据本发明的复合板10,如下进行根据本发明的示例性实施例。在第一步中,对浸渍有基质9的支撑体1进行压延,以控制该支撑体1和该基质9之间的相对比例。在第二步骤中,如下对浸渍有基质9且经压延的支撑体1进行干燥:·从支撑体1中蒸发一部分水,持续2小时;·使蒸发的水冷凝2小时;·连续排放经冷凝的水;随后·在24小时至48小时期间,重复两次蒸发和冷凝循环。在第三步骤中,如下在干燥条件下,在具有受控间距的两个加热板之间对支撑体1进行压制:·在120℃下在板上施加300kn的力持续8分钟的周期;·在0kn(减压)下持续30秒的周期;·在120℃下在板上施加300kn的力持续7分钟的周期;以及随后·在平坦表面上,使产品冷却30分钟。应当注意的是,在根据本发明的板10的制造方法的范围内能够想到的压制是:在同一周期中将一个或数个无纺支撑体1压制在一起;或者可替代地n个支撑体1逐个(即,n个周期中)压制在一起,n非限制地为介于2和5之间的整数(在该情况下,不同的支撑体1可具有相同的厚度或间距)。因此,如图3和图5所示,由此获得了根据本发明的各自由矩形板形成的复合板10,表明能够选择获得具有正方形几何形状或其他多边形几何形状的板10。在这些示例性实施方式中,本发明的这些板10中所获得的最大表面积为0.5m2至6m2,该最大表面积受限于所使用的压制机表面。此外,这些板10各自具有介于60kg/m3至1200kg/m3之间的比重,并且对于厚度介于5mm和30mm之间的板10,其可在每个板10的表面上发生变化或不变化。在板10上进行上述测试,所得到的在25℃下热导率小于或等于35mw.m-1k-1的结果,对低温流体的密封和被动耐火性的结果全部令人满意(通过所述易燃性、所述耐火焰传播性、所述烟雾散发指数以及所述对火的隔热性来测量)。如图3至图5所示,在每个板10的两个纵向边缘11中的每个边缘中,制出纵向凹槽12以容纳密封接合带状物13,用于获得根据本发明的壁的覆盖结构20。每个带状物13基于与无纺布2至5的纤维2a至5a相同的基础短纤维,其浸渍有与用于浸渍无纺布2至5的基质9相同的多孔热固性基质(或者,多孔复合带状物13可使用基于不同于每个板10的那些支撑体和/或浸渍基质)。在图3至图5的实例中,每个凹槽12具有不对称的u横截面,即由比其他边缘15(这些图中的上边缘)宽的边缘14(这些图上的下边缘)来限定,从而在两个板10在同一平面以凹槽12的两个边缘彼此面对布置的的邻接期间,较宽的下边缘14基本上彼此邻接,而较窄的上边缘15彼此间隔开。因此,每个接合带状物13具有大体为t状的横截面(即,倒置的t,其顶点填充面向它的两个凹槽12,并且腿部在两个上边缘15之间连续地延伸,所述两个上边缘15在板10的整个长度上隔开,同时与板10的相邻表面齐平)。应当注意的是,因此能够模块化覆盖结构20,该模块化覆盖结构具有适用于待保护的下壁的可变表面积。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1