重组球虫病疫苗的制作方法

文档序号:1034539阅读:468来源:国知局
专利名称:重组球虫病疫苗的制作方法
球虫病是一种由细胞内的艾美球虫属(Eimeria)原生动物寄生虫引起的家禽疾病。这种疾病是大型密集家禽繁殖场中的一种地方性疾病。据估计,光是在美国,每年用化疗法防治这种疾病的费用就超过1亿美元。由于对抗球虫药物产生抗性,因而要不断开发新的药剂,但现在药物的开发所需的费用越来越高,消费者对食用家畜体内残留药物的接受程度也越来越低。
现已有很多文献描述了对天然球虫病感染的保护性免疫。现已证明,在受控条件下每天服用少量活的卵囊,几星期后便可对通常毒性剂量的侵染产生完全的免疫(Rose et al,Parasitology 73∶25,1976;Rose et al,Parasitology 88∶199,1984)。对感染具有获得性抗性表明有可能建立一种疫苗而在雏鸡体内诱导免疫,从而无需采用化学抑球虫剂。事实上,这样一种想法已经用Coccivac 制剂(Sterwin Laboratories,Opelika,Alabama,U.S.A)进行了验证。
为了生产球虫病疫苗,Murray等人(欧洲专利申请公告167.443)从禽艾美球虫的子孢子或形成孢子的卵囊中制备了各种提取液,这些提取液中至少含有15种多肽,其中许多多肽都连结在子孢子表面。将这些提取液注射到小鸡体内,则在用形成孢子的毒性禽艾美球虫卵囊口服接种后盲肠损伤减轻。最近,Schenkel等人(美国专利4,650,676)公开了抗禽艾美球虫裂殖子的单克隆抗体的制备方法。利用这些抗体,Schenkel等人鉴定出了这些抗体所针对的多种抗原。Schenkel等人将禽艾美球虫子孢子与这些抗体一起预保温,然后把这些经过处理的子孢子引入小鸡的盲肠,证明盲肠损伤程度与未经处理的子孢子对照相比有所减轻。
重组DNA技术的进展提供了另一种可能的途径,即亚单位疫苗。在应用现有的重组DNA方法时,是将特异的DNA顺序插入一个适当的DNA载体中。形成能在宿主细胞内复制的重组DNA分子。常常用称为质粒的环状双链DNA分子作载体。制备这种形式的重组DNA,必须使用能够在特异的碱基顺序位点切割DNA的限制性核酸内切酶。用限制酶在质粒和所要插入的外源DNA片段中进行切割后,就可以用一种称为连接酶的酶把这两个DNA分子共价连接起来。制备这类重组DNA分子的一般方法已有叙述(Cohen等人,美国专利4,237,224;Collins等人,美国专利4,304,863;Maniatisetal,MolecularCloningALaboratoryManual,1982,ColdSpringHarborLaboratory)。因为这些参考文献在很大程度上说明了本领域的技术状态,所以在此列为参考文献。
制备出重组DNA分子后,只有满足若干条件才能用这些分子来产生由插入的基因顺序确定的产物。最重要的条件是,该重组分子应与宿主细胞相容,并因而能在宿主细胞中自主复制。最近的许多工作利用了大肠杆菌作为宿主细胞,因为它与广泛围的重组质粒相容。根据所用的载体/宿主细胞系统,将重组DNA分子引入宿主的方法可以是转化、转导和转染。
对宿主细胞中是否存在重组质粒的检测,可以方便地利用质粒标记活性(如抗生素抗性)来进行。例如,可以通过在含氨苄青霉素的培养基中培养宿主细胞,从未转化的细胞中选择出携有编码氨苄青霉素降解酶的质粒的宿主细胞。还可以利用两个抗生素抗性标记,使质粒在某个位点编码第二种抗生素降解活性,而所选用的限制性核酸内切酶能切割该位点,从而插入外源基因顺序。这样,含有正确重组质粒的宿主细胞就能通过对第一种抗生素有抗性,而对第二种抗生素敏感来鉴定。
只是将重组质粒插入宿主细胞并分离出转化的宿主细胞,这本身并不能保证能产生大量的所需基因产物。为此,必须将外源基因顺序与一个称为启动子的信号区以正确的相互关系相融合才能进行DNA的转录。此外,外源DNA也可以带有其自身的启动子,只要它能被宿主细胞识别就行。无论来源如何,启动子都是一段DNA顺序,该顺序指导RNA聚合酶的结合,从而“启动”DNA转录出信使RNA(mRNA)。
如果有了能产生大量mRNA的强启动作用,则最终产生的所需基因产物将取决于从mRNA翻译成蛋白质的有效性,而这一过程又取决于核糖体与mRNA结合的效率。在大肠杆菌中,mRNA上的核糖体结合位点包括一个起始密码子(AUG)和一个上游的Shine-Dalgarno(SD)顺序。此顺序含有3~9个核苷酸,位于从AUG密码子算起3~11个核苷酸处。该顺序与大肠杆菌16S核糖体RNA(rRNA)的分端互补(ShineandDalgarno,Nature254∶34,1975)。显然,mRNA中的SD顺序与16SrRNA3′端顺序之间的碱基配对,有利于核糖体与mRNA的结合。有关增强基因表达的综述见RobertsandLauer,MethodsinEnzymology68∶473,1979。
基于LacZ操纵子与λ噬菌体载体的结合建立了另一种表达系统(Huynhetal,inDNACloningvolumeI,D.M.Glover,Ed)。在此系统中,β-半乳糖苷酶的结构基因与控制其表达的可诱导性启动子一起被插入到噬菌体载体中。只要在β-半乳糖苷酶基因3′端的独特克隆位点插入含有蛋白编码区的mRNA的cDNA拷贝或基因组DNA片段,就会导致基因融合。
β-半乳糖苷酶基因的表达导致一种融合蛋白的生成,该蛋白含有114kd的β-半乳糖苷酶和一个由cDNA插入片段编码的羧基末端多肽,但条件是该插入片段含有一个取向(register)与β-半乳糖苷酶读码相同的开放读码。这样,在利用β-D-硫代吡喃半乳糖苷(IPTG)使LacZ阻遏蛋白失活而诱导融合蛋白的表达后,通过基因文库的免疫筛选能够鉴定出一种噬菌体,该噬菌体含有一种基因,其产物能被单克隆或多克隆抗血清识别。这一表达载体系统结合了噬菌体系统在包装DNA并将其引入大肠杆菌细胞过程中的高效率和多肽与β-半乳糖苷酶融合体的高稳定性。
疫苗亚单位途径是将完整感染性生物的一个亚单位以免疫相关状态输入到宿主动物体内。该亚单位可以是一种由寄生虫纯化出的蛋白、一种在杂合系统中表达的重组蛋白或蛋白片段、一种含有单个中和决定簇的合成肽、或一种由病毒载体(如牛痘)引入的蛋白。宿主的免疫系统无需接触过完整寄生虫就能对该亚单位产生一个特异反应。在受到有毒剂量的感染性生物侵袭时,宿主的免疫系统只需受到它以前曾接触过的疫苗亚单位的指导,便能产生有效的防护。
在文献中可以找到循环抗体、小肠上皮中的分泌性IgA(Davisetal,Immunology34∶879,1978)和细胞介导的免疫系统(Giambronietal,PoultryScience59∶38,1980)参与对球虫病的获得性抗性的证据。综述见P.S.DavisinAvianImmunology,M.E.Rose,Ed.,BritishPoultryScience,Ltd.,Edenberg,361-385,1981。免疫系统的各种防护机制的可能参与,意味着要达到完全的、持续的保护作用,可能需要模拟天然感染过程的各个特殊方面的能力。这些方面包括在需要进行保护的位点的局部接触、诱发对起主导作用的抗原加工细胞的发炎反应、适当的寄生虫抗原的存在、可能还有与具有特定膜构型的MHC决定簇的关联。
本发明提供具有艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇的纯化蛋白或其片段。
更具体地说,本发明提供具有艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇的蛋白,所述表面抗原的表观分子量约为28、37、120或高于200千道尔顿,该抗原能与保藏在美国典型培养物收集处(ATCC)并且指定登记号为HB9707至HB9712的一种或多种单克隆抗体特异结合。所述蛋白的例子有具有如

图15、图17、图19和图21所示的氨基酸顺序的蛋白及其功能等价物。所述功能等价物是这样一些蛋白,这些蛋白的氨基酸顺序是由上述氨基酸顺序通过加入、缺失、插入和氨基酸置换而衍生出来的,但条件是这些蛋白保留了艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇。所述蛋白可用于对家禽进行抗球虫病免疫。
本发明还提供针对上述蛋白的抗体,尤其是一些单克隆抗体,例如登记号为HB9707、HB9708、HB9709、HB9710、HB9711和HB9712的单克隆抗体。
本发明还提供编码上述蛋白的DNA顺序;含有这些DNA顺序的重组载体,尤其是能够指导所述DNA顺序在可相容的宿主生物中表达的重组载体;用这些重组载体转化的宿主生物,尤其是能够表达包含在上述重组载体中的、编码上述蛋白的DNA顺序的转化宿主生物。
本发明还提供具有禽艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇的蛋白的制备方法,该方法包括(a)在能够表达编码所述蛋白的DNA顺序的条件下,培养用含所述DNA顺序的重组载体转化的宿主生物;
(b)从该培养物中分离该蛋白或片段。
本发明还提供上述团体宿主生物的制备方法,该方法包括利用已知方法,用一个重组载体转化宿主生物,所述载体含有编码本发明蛋白的DNA顺序。
本发明还提供预防家禽球虫病的疫苗,其中含有一种或多种本发明的蛋白和一种生理上可接受的载体。
本发明还提供预防家禽球虫病的疫苗,其中含有一种含编码本发明蛋白的DNA顺序或其片段的病毒载体和一种生理上可接受的载体,所述病毒载体能够表达该DNA顺序或片段。
本发明还提供一种预防家禽球虫病的方法,该方法包括,给易患球虫病的幼禽服用有效量的本发明疫苗。
对照附图阅读下列发明叙述部分和实施例能更容易地理解本发明。
在附图中图1显示了禽艾美球虫子孢子ELISA测定的结果。将免疫小鼠血清(MS 107-2;△)和对照小鼠血清(X)的稀释液与4×104个纯化的活的子孢子一起保温。用结合有过氧化物酶的抗小鼠IgG抗体和过氧化物酶底物邻苯二胺检测结合在子孢子上的特异抗体。用Titertek Multiscan 板式测量仪测量OD492。
图2显示了用从禽艾美球虫子孢子中溶解出的蛋白进行Western吸印检测的结果。将溶解出的子孢子蛋白用12.5%凝胶通过还原性SDS-聚丙烯酰胺凝胶电泳进行分离,然后转移到硝酸纤维素膜上使其与每种抗体反应。用结合有过氧化物酶的抗小鼠IgG抗体和过氧化物酶底物4-氯-1-萘酚显现由每种抗体识别出的特异蛋白。与每个胶条反应的抗体可在胶条顶部见到。
图3显示了从禽艾美球虫的子孢子和裂殖子及堆型艾美球虫(E.acervulina)的子孢子中溶解出的蛋白进行Western吸印检测的结果。将各种不同的单克隆抗体和血清与结合在硝酸纤维素上的艾美球虫蛋白一起保温,用如图2的说明中所述的方法进行显现。所用的单克隆抗体包括3A5(1)、20C6(2)、7D1(3)、13A6(4)、6A5(5)和一种不与艾美球虫蛋白反应的对照抗体。所用的血清包括小鼠107-2号免疫血清(7)和对照血清(8)。
图4中,左图显示了用125I标记的禽艾美球虫子孢子表面蛋白进行免疫沉淀检测的结果。用IODOGEN或IODOBEADS方法标记子孢子表面蛋白,溶解这些蛋白,用12.5%凝胶进行SDS-聚丙烯酰胺凝胶电泳后,利用放射自显影法显示这些蛋白。右图显示了用活的子孢子免疫的小鼠的血清对125I标记子孢子表面蛋白进行免疫沉淀的结果。将免疫小鼠血清(105-1、105-2、105-3、107-1、107-2、107-3)和对照小鼠血清(对照)与125I-子孢子表面蛋白一起保温,用偶联在琼脂糖上的抗小鼠抗体俘获免疫复合物。将免疫复合物用Laemmli样品缓冲液溶解,用12.5%凝胶通过SDS-凝胶电泳进行分离,用放射自显影法进行显示,M代表标准标记蛋白的分子量(千道尔顿)。
图5显示了用单克隆抗体对125I-子孢子表面蛋白进行免疫沉淀的结果。鉴定由每种抗体结合的125I-蛋白的方法如图4的说明中所述。在每个凝胶泳道的顶部标出了所用的特异性子孢子单克隆抗体和对照抗体(对照)。标准标记蛋白的分子量以千道尔顿给出。
图6显示了空气干燥的禽艾美球虫子孢子制片的相差显微照片和使用了种种单克隆抗体的免疫萤光染色图形显微照片。图A、B、C、D的左侧为相差显微照片,显示了长形的完整子孢子,它有一个大的后折射体(PRB)、一个小的前折射体(ARB)和与后折射体相对的顶端(A)。图A、B、C、D的右侧分别显示了用以下抗体处理的制片单克隆抗体14C3(特异于表面抗原)、6A5(特异于表面蛋白和折射体蛋白)、11D2(特异于子孢子顶端)和对照抗体。用结合有若丹明的抗小鼠抗体对结合在制片上的抗体进行定位,并利用Leitz Dialux 22
显微镜通过表面萤光来显示。所有显微照片都放大630倍。
图7显示了鸡肾细胞内的细胞内子孢子和发育中的寄生虫的抗体染色。用子孢子感染鸡肾细胞,感染后在指定的时间对细胞进行处理以进行抗体染色。在固定前洗涤培养物以除去所有细胞外的子孢子。如图所示,用抗体7D4、8A2、7B2和15A3制得相差显微照片和相应的免疫萤光显微照片。用结合有若丹明的抗小鼠抗体对结合在制片上的抗体进行定位,通过表面萤光进行显示。所有显微照片都放大630倍。
图8显示了鸡肾细胞内的细胞内子孢子和发育中的寄生虫的抗体染色。利用单克隆抗体14B1和19D6、免疫鸡血清和发荧光和第二抗体,在指定的时间制得相差显微照片和相应的免疫荧光显微照片。
图9显示了抗子孢子抗体对细胞内子孢子发育的抑制。将纯化的禽艾美球虫子孢子与对照抗体(X)或抗子孢子抗体7D4(□)、8A2(○)、14B1(●)、或6A5(■)一起于40℃下预保温1小时,然后用来感染MDBK细胞培养物。此外,还将子孢子与培养基(△)或抗球虫药物拉沙里菌素(△)一起预保温。
感染后,通过测定3H-尿嘧啶对细胞培养物的掺入而测定细胞内子孢子的发育。由于拉沙里菌素阻滞子孢子的细胞内发育,所以用此药物预处理的培养物显示出3H-尿嘧啶的掺入最少。
图10显示了65kdβ-半乳糖苷酶融合蛋白样品或所标出的其它样品的SDS-聚丙烯酰胺凝胶电泳/Western吸印分析的结果。进行Western吸印分析时,与羊抗小鼠HPOD结合物一起使用了鼠抗-β-半乳糖苷酶抗体(图A)或混合在一起的单克隆抗体7D1、7D4和20C6(图B)。A、B两图中的各泳道代表(1)β-半乳糖苷酶;(m)预染色的分子量标记,其分子量(kd)在图A的左侧标出;(2)总的细胞沉淀蛋白;(3)通过超声处理从细胞沉淀中释放出的蛋白;(4)超声处理后用盐酸胍从沉淀中溶解出的蛋白。
图11是质粒PEV/2-4的示意图,该质粒是含有噬菌体入m2-4的1.7kbEcoRIDNA插入片段的65kd蛋白表达质粒。插入片段中各限制酶位点的位置相对于EcoRI位点给出,这些位点包括PstI(P,在bp53和766处)、KpnI(K,在bp202处)、BstNI(B,在bp584、1303和1412处)、Sau3A(S,在bp1017和1439处)。
图12是pEV3-SEQ的图谱,该质粒含有一个带有所标出的位点和多连接子,该连接子插在pEV-vrf3的EcoRI和SalI位点之间。用虚箭头所标出的合成寡核苷酸CGGTCGACTCGAGCCA作为链终止DNA顺序分析的引物。
图13是编码由单克隆抗体6A5识别的蛋白的cDNA克隆的限制图谱。图中给出了于1.1kbcDNA的Maxam-GilbertDNA顺序分析的限制性核酸内切酶位点。括号中的EcoRI位点位于0.9kbcDNA的末端。图谱上方的横杠表示由该DNA顺序预测的开放读码,涂黑的部分为可能的信号肽。图谱下部的直线表示用来进行链终止顺序分析的exoⅢ缺失。
图14是1.1kdcDNA分子的核苷酸顺序,该顺序编码由单克隆抗体6A5识别的20kd蛋白。
图15是图14蛋白的氨基酸顺序,是从图14的核苷酸顺序推测的。
图16是1.7kbcDNA分子的核苷酸顺序,该顺序编码由单克隆抗体7D1、7D4和20C6识别的65kd蛋白。
图17是图16蛋白的氨基酸顺序,是由图16的核苷酸顺序推测的,这个氨基酸顺序已通过对由所表达的65kd蛋白所产生的胰酶水解肽进行顺序分析而加以验证。将总氨基酸顺序中相应于某些肽的区域画下线表示。这些肽中已测定的顺序画了上线。
图18是1.1kdcDNA分子的核苷酸顺序,该顺序编码由单克隆抗体8A2识别的28kd蛋白。
图19是图18蛋白的氨基酸顺序,是由图18的核苷酸顺序推测的。
图20是3.2kdcDNA分子的核苷酸顺序,该顺序编码由单克隆抗体7B2识别的蛋白。
图21是图20蛋白的氨基酸顺序,是由图20的核苷酸顺序推测的。
图22是经过免疫亲和纯化的65kd蛋白的SDS聚丙烯酰胺凝胶电泳分析。凝胶通过考马斯蓝染色和Western吸印分析来显示。泳道2和4、3和5含有从两个制备物中纯化的蛋白。泳道1和6含有分子量标记蛋白的混合物,这些蛋白分子量标示在图的左侧和右侧。
图23是经β-巯基乙醇还原的(图A)和未还原的(图B)65kd蛋白胰酶水解物的HPLC洗脱图谱,显示作为柱保留时间的函数的215nm光吸收。
图24显示了基本载体的四个成分的限制图谱,该载体用于将编码球虫抗原的基因重组到牛痘病毒中。这些成分包括7.5k启动子成分(a和b,左)、TK座位(a和b,右)、质粒pVC8的一部分(C)和来自M13tg131的多克隆位点(d)。病毒7.5k和TK启动子的转录方向是从左至右(即从多连接子中的BglⅡ限制位点到EcoRI位点)。
图25显示了由单克隆抗体8A2到识别的艾美球虫抗原的N末端氨基酸顺序,(A)中的单克隆抗体8A2是由一个在图24载体的多连接子成分中含有AUG翻译起始密码子的构建体表达的;(B)中的单克隆抗体8A2与疟疾的190kd先导片段(头34个氨基酸)和图24克隆载体的多连接子下面13个氨基酸)融合。在该蛋白的成熟过程中,N末端的头19个氨基酸可在冒号所标出的位置被切除。
在附图中,使用了标准的单字母缩写来表示核苷酸,使用了标准的一字母或三字母缩写来表示氨基酸。这些缩写的含义可以在一般的生化教科书中找到,例如Lehninger的《生化原理》一书的第96页和798页(PrinciplesofBiochemistry,1984,WorthPublishers,Inc.,NewYork)。
这里所用的下列术语将具有下列含义“20kd蛋白”指一种能与单克隆抗体6A5特异结合的重组或合成蛋白,在用SDS聚丙烯酰胺凝胶电泳测定时其表观分子量约为20千道尔顿。该蛋白还特异地与在SDS凝胶中表观分子量约为28千道尔顿的艾美球虫表面抗原(来自艾美球虫蛋白的全提取液)反应。此抗原存在于子孢子的发育阶段。编码此蛋白的cDNA分子的核苷酸顺序及由此推测出的氨基酸顺序分别示于图14和15。
“65kd蛋白”指一种能与单克隆抗体7D1、7D4和20C6特异结合的重组或合成蛋白,在用SDS聚丙烯酰胺凝胶电泳测定时其表观分子量约为65千道尔顿。这些抗体还特异地与艾美球虫提取液中其表观分子量在SDS凝胶中约为120千道尔顿的表面抗原反应。此抗原存在于子孢子、裂殖体和裂殖子发育的各阶段中。编码此蛋白的cDNA分子的核苷酸顺序及由此推测的氨基酸顺序分别示于图16和17。
“28kd蛋白”指一种能与单克隆抗体8A2特异结合的重组或合成蛋白,在用SDS聚丙烯酰胺凝胶电泳测定时其表观分子量约为28千道尔顿。此抗体还特异地与一种表观分子量在SDS凝胶中约为37千道尔顿的艾美球虫表面抗原反应。此抗原存在于子孢子、裂殖体和裂殖子发育阶段中。编码此蛋白的cDNA分子的核苷酸顺序及由此推测的氨基酸顺序分别示于图18和9。
“45kd蛋白”指能与单克隆抗体7B2特异结合的重组或合成蛋白,在用SDS聚丙酰胺凝胶电泳进行测定时其表观分子量约为45千道尔顿。此抗体还特异地与一种其表观分子量在SDS凝胶中大于200千道尔顿的艾美球虫表面抗原反应。此抗原存在于子孢子发育的各阶段中。编码此蛋白的cDNA分子的核苷酸顺序及由此推测的氨基酸顺序分别示于图20和21。
术语“具有艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇的蛋白”指一种蛋白,该蛋白具有一个或多个这样的区域或决定基,这些区域或决定基能够在免疫感受态宿主生物体内诱发免疫反应和/或能够与互补抗体特异结合。
由于遗传密码具有简并性,所以应当理解,可能有许多核苷酸顺序(功能等价物)都能编码图15、17、19和21所示的氨基酸顺序。还应当理解,插入载体中的本发明DNA顺序和片段的核苷酸顺序可以包括并非实际结构基因一部分的核苷酸,只要求含这些顺序和片段的重组载体能够在适当的宿主生物中指导一种蛋白或片段的生成,这种蛋白或片段具有艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇。
此外,已知在蛋白质中可发生基本上不改变生物活性和免疫活性的氨基酸置换,Neurath等人的《蛋白质》一书中(“TheProteins”,AcademicPress,NewYork,1979),具体说是14页的图6,对此作了描述。最常见的氨基酸置换有Ala/Ser,Val/Ile,Asp/Glu,Thr/Ser,Ala/Gly,Ala/Thr,Ser/Asn,Ala/Val,Ser/Gly,Tyr/Phe,Ala/Pro,Lys/Arg,Asp/Asn,Leu/Ile,Leu/Val,Ala/Glu,Asp/Gly,反之亦然。
本发明示例性实施方案的这些功能上等价的核苷酸顺序变异和氨基酸置换,只要所产生的蛋白保留了艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇,就在本发明的范围内。
术语“片段”指含有本发明的一段cDNA或蛋白亚顺序的DNA顺序或蛋白。这些片段可由较大分子经酶切而产生,对DNA使用限制性核酸内切酶,对蛋白使用蛋白酶。但本发明的片段并不限于任何形式的酶切产物,而包括其末端并不相应于任何酶切点的亚顺序。这些片段可利用这里所提供的顺序资料通过例如化学合成法制得。DNA片段可以通过由分离的信使RNA(mRNA)合成不完全的互补DNA(cDNA)来产生。蛋白片段也可通过表达编码蛋白片段的DNA片段来产生。如果这些蛋白片段含有足以构成免疫反应决定簇和/或抗原决定簇的氨基酸残基数,则可用于本发明。一般约需至少7或8个残基。如下所述,可能需要把这些片段与免疫原性载体分子偶联以使它们具有免疫反应性。
本发明的蛋白可以用本领域内已知的方法来制备,如用重组DNA方法、化学合成法或从艾美球虫制备物中分离。
制备本发明蛋白所需的DNA可以利用图14、16、18和20所提供的核苷酸顺序资料来化学合成。这种化学合成可以用任何已知的方法进行,但优选氨基亚磷酸酯(phosphoramidite)固相载体法(Matteuccietal.J.Am.Chem.Soc.103∶3185,1981)。
此外也可由艾美球虫mRNA制备cDNA。信使RNA可利用标准技术从形成孢子的艾美球虫卵囊或裂殖子中分离。然后可利用这些mRNA样品,如Maniatis等人(同上)所述产生双链cDNA。然后可将该cDNA插入适当的可用于转化大肠杆菌的克隆载体中,以产生一个cDNA文库。
接着,可以利用本发明的克隆基因或其片段作探针来筛选cDNA文库。这些基因或片段可以利用DNA聚合酶Ⅰ通过(例如)缺刻翻译而进行放射标记,标记反应在四种脱氧核糖核苷酸存在下进行,其中一种核苷酸在α位含有32P作为探针(Maniatis等人,同上,第109页)。
虽然在后面的实施例中是用禽艾美球虫作mRNA的来源,但也可用这个种的克隆基因作探针而从其它种的艾美球虫中分离基因,因为在各种不同的种中DNA顺序具有同源性。
鉴定并分离出本发明的艾美球虫基因后,将其插入适当的表达载体中,该载体含有所插入的基因顺序进行转录和翻译所必需的各成分。有用的克隆载体可以由染色体DNA顺序、非染色体DNA顺序和合成DNA顺序的片段构成,例如已知的细菌质粒、噬菌体DNA、质粒和噬菌体DNA的各种组合(如经过修饰而引入了噬菌体DNA或其它表达控制顺序的质粒)、或酵母质粒。本领域专业人员已知的、可用的特殊克隆载体包括(但并不限于)pEV-vrf质粒(pEV-vrf1、pEV-vrf2和pEV-vrf3);SV40;腺病毒;酵母;λgt-WES-λB;Charon4A和Charon28;λgt11-λB;由M13衍生的载体,如pUC8、pUC9、pUC18、pUC19、pBR313、pBR322和pBR325;pAC105、pVA51;pACY177;pKH47;pACYC184;pUB110;pMB9;colE1;pSC101;pm121;RSF2124;pCR1或RP4。
如果基因和所需的克隆载体都用相同的限制酶切割,则易于将艾美球虫基因插入克隆载体中,因为这种切割产生了互补的DNA末端。如果不能这样做,则可能需要修饰切割后所产生的末端,方法是通过再消化单链DNA而产生平末端,或者通过用适当的DNA聚合酶填平单链末端而达到同样的结果。采用这种方法时,可以用一种酶(如T4DNA连接酶)进行平末端连接。此外,也可以通过在DNA末端上连接某些核苷酸顺序(连接子)来产生任何所需的位点。这些连接子可以含有编码限制位点识别顺序的特定寡核苷酸顺序。切割后的载体和艾美球虫基因还可以通过接上均聚物尾巴而加以修饰(Morrow,Meth.Enzymol.68∶3,1979)。
可用于本发明的许多克隆载体都含有可用来选择所需转化体的一个或多个标记活性,如pBR322中的氨苄青霉素和四环素抗性、pUC8中的氨苄青霉素抗性和β-半乳糖苷酶活性、pEV-vrf2中的氨苄青霉素抗性。如果宿主细胞反而缺少这些载体所具有的活性,则对已插入了上述载体的宿主细胞的选择就大大简化了。
应当理解,插在克隆载体中选定位点的艾美球虫基因的核苷酸顺序,可以包括并非实际结构基因一部分的核苷酸。此外,该基因也可以只含有完整野生型基因的一部分。唯一的要求就是,插入克隆载体中的基因片段能够指导具有艾美球虫表面抗原的至少一个免疫反应决定簇和/或抗原决定簇的多肽或蛋白在适当的宿主生物中的产生。
适当的宿主生物的选择受到本领域内已知的几个因素的影响。这些因素包括,例如,与所选用的载体的相容性、由杂交质粒编码的蛋白的毒性、所要的蛋白是否易于回收、表达特性、生物安全性和费用。这些因素的平衡问题一定会遇到,因此必须理解,并非所有宿主对特定重组DNA分子的表达都是等效的。
可用于本发明的适当的单细胞宿主生物包括(但不限于)植物、哺乳动物或酵母细胞及细菌,例如大肠杆菌、枯草杆菌、嗜热脂肪芽孢杆菌(Bacillusstearothermophilus)和放线菌。特别优先的是大肠杆菌MC1061菌株,该菌株曾由Casadaban等人作了描述(J.Mol.Biol.138∶179,1980)。可以使用此菌株或含有质粒pRK248cIts的大肠杆菌K12的任何其它菌株。用于其它大肠杆菌K12菌株的质粒pRK248cIts可从ATCC得到,其登记号为ATCC33766。大肠杆菌MC1061菌株也已保藏,其登记号为ATCC53338。
可以用多种方法将重组克隆载体转移到宿主细胞中。根据所选用的特定载体/宿主细胞系统,这种转移可以通过转化、转导或转染来进行。产生这样一种转化宿主细胞后,就可以培养该细胞,并可以从该培养物中分离蛋白表达产物。
产生本发明艾美球虫蛋白的克隆可以用适当标记的、特异于这些蛋白的抗体来鉴定。优选的单克隆抗体可以用如下的标准方法来制备。
用禽艾美球虫的抗原蛋白来免疫诸如小鼠、大鼠、马、绵羊、猪、兔等动物,得到产生抗体的体细胞用于与骨髓瘤细胞融合。
具有产生抗体能力的体细胞,特别是B细胞,适于与骨髓瘤细胞系融合。这些体细胞可以从已接触过抗原的动物的淋巴结、脾和外周血中得到。在本发明的优选实施方案中,使用小鼠脾细胞,这部分是因为这些细胞能与小鼠骨髓瘤细胞系产生相对较高百分比的稳定融合体。但也有可能使用大鼠、兔、蛙或其它细胞。
现已由淋巴瘤建立了特化的骨链瘤细胞系,用于产生杂交瘤的融合方法(KoehlerandMilstein,Eur.J.Immunol.6511,1976,Shulmanetal,Nature276∶269,1978,etal,J.Virol.42∶220,1982)。建立这些细胞系至少是由于三个原因。第一是为了有利于未融合的、不定地自我繁殖的骨髓瘤细胞及类似的细胞中选择出融合的杂交瘤。这通常是利用有某些酶缺陷的骨髓瘤来进行的,这些酶缺陷使骨髓瘤不能在支持杂交瘤生长的某些选择性培养基中生长。第二个原因源于淋巴瘤细胞固有的产生其自身抗体的能力。使用单克隆技术的目的是为了得到寿命无限的融合杂交细胞系,这些细胞系在杂交瘤的体细胞成分的遗传控制下,产生所需的单一抗体。为减少杂交瘤产生的肿瘤细胞抗体,可以使用不能产免疫球蛋白轻链或重链,或抗体分泌机制有缺陷的骨髓瘤细胞系。选择这些细胞系的第三个理由是因为它们的适用性强,融合效率高。
许多骨髓瘤细胞系都可以用来产生融合的杂交细胞,这些细胞系包括例如P3/X63-Ag8、P3/NSI/1-Ag4-1、SP2/O-Ag-14和S194/5.XXOBU.1。P3/X63Ag和P3/NSI/1-Ag40-1细胞系已由Kohler和Milstein作了描述(Eur.J.Immunol.6511,1976)。Shulman等人(Nature276∶269,1978)建立了SP2/O-Ag14骨髓瘤细胞系。Trowbridge报导了S194/5.XXO.BU.1细胞系(J。Exp.Med.148∶313,1979)。在本发明的实施例中使用是的PAI-O小鼠细胞系(P3/X63-Ag8的一个不产生Ig的亚克隆)。
产生抗体的脾细胞或淋巴结细胞与骨髓瘤细胞的杂交体的制备方法通常包括在能够促进细胞膜融合的一种或几种因子(化学的、病毒的或电的)存在下,分别将这两种体细胞以10∶1的比例与骨髓瘤细胞混合(但该比例也可以在201至1∶1间变化)。最好用同一个种的动物作用于融合操作的体细胞和骨髓瘤细胞的来源。有关融合方法已由Kohler和Milstein(Nature256∶495,1975;Eur.J.Immunol.6∶511,1976)、Gefter等人(SomaticCellGenet.3∶231,1977)和Volk等人(J.Virol.42∶220,1982)作了描述。这些研究人员使用的促融合因子是仙台病毒和聚乙二醇(PEG)。本发明实施例的融合操作使用的是PEG。
由于融合操作产生的活杂交体的频率很低(例如,用脾作体细胞来源时,大致每1105脾细胞只得到一个杂交体),所以必须有一种手段从剩下的未融合细胞特别是未融合的骨髓瘤细胞中选择出融合的杂交细胞。同时也需要有一种手段从所得的其它融合细胞中检测所要的产生抗体的杂交瘤。
在选择融合的杂交细胞时,一般是用支持杂交瘤生长但阻止骨髓瘤细胞生长的培养基来培养细胞,而正常情况下骨髓瘤细胞将继续不定地分裂。(用于融合的体细胞在体外培养中不能保持长期存活,因此不成为问题)。在本发明的实施例中,使用了缺少次黄嘌呤磷酸核糖基转移酶的(HPRT阴性)骨髓瘤细胞。用次黄嘌呤/氨基蝶呤/胸苷(HAT)培养基选择掉这些细胞。在HAT培养基中,融合的杂交细胞由于脾细胞具有HPRT阳性基因型而能够存活。也可以使用带有不同的遗传缺陷(药物敏感性等)的骨髓瘤细胞,从而能够用支持基因型感受态杂交体生长的培养基选择掉骨髓瘤细胞。
选择性培养融合的杂交细胞需要几周。在这段时间的初期,需要鉴定出那些产生所需抗体的杂交体,使它们可以在后续步骤中进行克隆和繁殖。通常,所得杂交体中产生所需抗体的有10%左右,但在1%至30%范围内都是常见的。产生抗体的杂交体可以用几种标准检测方法中的任一种进行检测,这些方法包括酶联免疫检测和放射免疫检测技术,这些技术已见于文献中[参见例如,Kennet等人(编者),MonoclonalAntibodiesandHybridomasANewDimensioninBiologicalAnalyses,pp.376-384,1980,PlenumPress,NewYork)。本发明的实施例中使用了几种检测方法。
选择出所需的融合杂交细胞并分别克隆出几个产生抗体的细胞系后,每个细胞系都可以用两种标准方法中的任一种进行繁殖。可以将杂交瘤细胞的悬浮液注射到组织相容性动物体内。接受注射的动物将因此而长出肿瘤,这些肿瘤分泌由融合的杂交细胞产生的特异性单克隆抗体。可以抽出动物的体液,如血清或腹水液,从而提供高浓度的单克隆抗体。此外,也可以用实验室培养皿分别对每个细胞系进行体外繁殖。可以通过倾析、过滤或离心,收集含有高浓度的单一特异性单克隆抗体的培养基。
在大肠杆菌中产生艾美球虫蛋白时,这些蛋白保留在细胞质或包含体中。因此,为分离这些蛋白、需要破碎外膜。这最好利用超声处理或其它机械破碎装置(如法式压力室或Gaulin匀浆器)来进行。
也可以利用化学方法或酶法来破碎细胞。由于二价阳离子常常是维持细胞膜的完整性所必需的,所以用适当的螯合剂如EDTA或EGTA进行处理可以产生足够的破碎作用,从而有利于蛋白从细胞中流出。同样,曾用某些酶如溶菌酶来达到同样的效果。该酶水解细胞壁的肽聚糖骨架。
也可以应用渗压休克。简单地说,这可通过如下过程来进行首先将细胞置于高渗溶液中,使细胞失水而收缩。而后置于低渗的“休克”溶液中,使水快速流入细胞而逐出所需的蛋白。
从细胞中分离出艾美球虫蛋白后,可以利用盐析法(如用硫酸钠或硫酸铵)、超滤法或本领域专业人员公知的其它方法来浓缩这些蛋白。进一步的纯化可以利用常规的蛋白纯化技术进行,这些技术包括(但不限于)凝胶过滤、离子交换层析、制备性圆盘凝胶电泳或垂直板电泳、等电聚焦、低湿有机溶剂分级分离、或逆流分配。但最好用如下所述的免疫亲和层析法进行纯化。
本发明的蛋白或其片段也可以用适当的方法化学合成,如用完全固相合成法、部分固相法、片段缩合法或经典的溶液合成法。优选如Merrifield所述的固相合成法(J.Am.Chem.Soc.85∶2149,1963)。
这种合成用α氨基末端得到保护的氨基酸进行。带有不稳定侧链的三官能团氨基酸也用适当的基团进行保护,这些基团将防止在肽合成过程中在该部位发生化学反应。选择性地脱除α-氨基保护基,以便在氨基末端发生后续的反应。脱除α-氨基保护基的条件不使侧链保护基脱保护。
α-氨基保护基是那些已知可用于肽分步合成领域的保护基,包括酰基型保护基(例如甲酰基、三氟乙酰基、乙酰基)、芳族尿烷型保护基(例如苄氧羰基(Cbz)和取代的苄氧羰基)、脂族尿烷保护基(例如叔丁氧羰基(Boc)、异丙氧羰基、环己氧羰基)和烷基型保护基(例如苄基、三苯甲本)。优选的保护基是Boc。Tyr的侧链保护基包括四氢吡喃基、叔丁基、三苯甲基、苄基、Cbz、4-Br-Cbz和2,6-二氯苄基。(优选的Tyr侧链保护基是2,6-二氯苄基。)Asp的侧链保护基包括苄基、2,6-二氯苄基、甲基、乙基和环己基。优选的Asp侧链保护基是环己基。Thr和Ser的侧链保护基包括乙酰基、苯甲酰基、三苯甲基、四氢吡喃基、苄基、2,6-二氯苄基和Cbz。优选的Thr和Ser的保护基是苄基。Arg的侧链保护基包括硝基、Tos和Cbz、金刚烷氧羰基或Boc。优选的Arg保护基是Tos。Lys的侧链氨基可以用Cbz、2-CLCbz、Tos或Bos来保护。优选的Lys保护基是2-CL-Cbz基团。根据以下原则选择侧链保护基侧链保护基在偶联过程中保持不变,在氨基末端保护基脱保护过程中或在偶联条件下不被切除。侧链保护基必须在完成最终的肽合成后,能利用不改变目标肽的反应条件脱除。
固相合成通常是通过使α-氨基得到保护的(侧链得到保护的)氨基酸与适当的固相载体偶联而从羧基末端进行。如果与氯甲基化的或羟甲基树脂连接,则形成酯键,所得到目标肽就将在C末端有一个游离羧基。此外,也可以用二苯甲基胺或对甲基二苯甲基胺树脂,在这种情况下形成一个酰胺键,所得到的目标肽将在C末端具有一个羧酰胺基团。这些树脂可以买到,其制备方法由Stewart等人描述(“SolidPhasePeptideSynthesis,2ndEditien,PierceChemicalCo,Rockford,IL,1984)。
C末端氨基酸Arg的侧链用Tos保护,其α氨基官能团用Boc保护,用各种活化剂将该氨基酸偶联到二苯甲基胺树脂上,这些活化剂包括二环己基碳二亚胺(DCC)、N,N′-二异丙基碳二亚胺和羰基二咪唑。连到树脂载体上后,用三氟乙酸(TFA)或HCL的二恶烷溶液在0°到25℃的温度下脱除α氨基保护基。引入甲硫氨酸(Met)后向TFA中加入二甲硫醚,以抑制可能的S-烷基化。脱除α氨基保护基后,将其余的被保护的氨基酸以所要求的顺序分步偶联,得到所需的肽顺序。
进行偶联反应时可以使用各种不同的活化剂,包括DDC、N,N′-二异丙基碳二亚胺、苯并三唑-1-基-氧-三(二甲胺基)-磷鎓六氟磷酸盐(BOP)和DCC-羟基苯并三唑(HOBt)。每种被保护的氨基酸的用量都是过量的(>2.5当量),偶联反应通常在DMF、CH2Cl2或其混合物中进行。在偶联反应的每个阶段通过如Kaiser等人(Anal Biochem.34∶5951970)所述的茚三酮反应监测反应完全程度。如果测得偶联反应不完全,则重复该偶联反应。偶联反应可以用Applied Biosystems Vega250型合成仪或其它市售仪器自动进行。完全合成出目标肽后,将肽-树脂用TFA/二硫乙烷脱保护,然后用一种试剂(如液体HF)于0℃下水解1-2小时,从树脂上切下肽并脱除所有的侧链保护基。
固相载体上侧链与侧链的环化作用要求使用正交保护方案,以便能够选择性地切除酸性氨基酸(如Asp)和碱性氨基酸(如Lys)的侧链官能团。Asp侧链的9-芴基甲基(OFm)保护基和Lys侧链的9-芴基甲氧羰基(Fmoc)保护基可以用于此目的。在这些情况下,用哌啶的DMF溶液选择性地脱除用Boc保护的肽-树脂的侧链保护基。环化反应是用各种活化剂(包括DCC、DCC/HOBt或BOP)在固相载体上进行。HF反应则在如上所述的环化肽-树脂上进行。
合成蛋白的纯化可以按如上所述的重组产生的蛋白纯化方法进行。
也可从禽艾美球虫或其它种的艾美球虫的膜蛋白提取物中,通过免疫沉淀或免疫亲和层析来回收艾美球虫蛋白。前已述及,这些方法能够产生完整的野生型蛋白。在某些情况下,这些蛋白比用重组DNA方法产生的蛋白要大。用于此目的的单克隆抗体,可以利用合成的或天然的艾美球虫蛋白作抗原按上述方法制备。
其它具有必需的免疫反应决定簇和/或抗原决定簇的有用蛋白是一些抗个体基因型抗体或其片段,它们针对本发明蛋白上的活性决定簇。这些抗个体基因型抗体可以针对其它特异于本发明蛋白上的决定簇的抗体而产生(即抗个体基因型抗体是抗抗体)。最好使用单克隆的抗个体基因型抗体。这些抗体可以作为疫苗而施用,使用方式与艾美球虫蛋白本身所能够采取的使用方式相同。
可以将一种或多种本发明的艾美球虫蛋白和抗个体基因型抗体配成含有蛋白和生理上可接受载体的疫苗。合适的载体包括,例如中性PH的0.01至0.1M磷酸缓冲液或生理盐水溶液。
可以以两种方式之一产生抗球虫病的增强免疫。首先可以将佐剂或免疫增强剂加到疫苗中。其次可以将本发明的蛋白以较大的形式给予所要免疫的动物,这种形式既可以是交联复合物,也可以是与载体分子结合。
适于接种动物的佐剂包括(但不限于)佐剂65(含有花生油、二缩甘露醇单油酸酯和单硬脂酸铝);无机凝胶,例如氢氧化铝、磷酸铝和明矾;表面活性剂,例如十六烷基胺、十八烷基胺、溶血卵磷脂、二甲基二(十八烷基)溴化胺、N,N-二(十八烷基)-N′,N′-双(2-羟甲基)丙二胺、甲氧基十六烷基甘油、普卢龙尼克多元醇类;聚阴离子,如吡喃、硫酸葡聚糖、多聚IC、聚丙烯酸和carbopol;肽类,例如胞壁酰二肽、二甲基甘氨酸和特夫素;油乳胶。这些蛋白还可以在掺入脂质体或其它微载体之后施用。
掺入到脂质体或其它微载体中的方法,提供了一种能够在长时间内持续释放疫苗的手段。也可以用一种泵如ALza泵来达到同样的目的。
本发明的蛋白特别是较小片段的免疫原性,可以通过与免疫原性载体分子(即一种具有在宿主动物体内独立诱发免疫反应特性的大分子,本发明的蛋白和蛋白片段可与之共价连接)交联或偶联而得以增强。之所以要与载体分子交联或结合,是因为小的蛋白片段有时起到半抗原(能够与抗体特异结合但不能诱发抗体产生的分子,即它们不具有免疫原性)的作用。这些片段与免疫原性载体分子的结合,使得这些片段由于通常所说的”载体效应“而获得了免疫原性。
合适的载体分子包括,例如,蛋白和天然或合成的聚合物,如多肽、多糖、脂多糖等。一种有用的载体是一种称为QuilA的糖苷,它已由Morein等人作了描述(Nature308∶457,1984)。特别优选的是蛋白载体分子,包括(但不限于)哺乳动物血清蛋白,如钥孔嘁血蓝蛋白,人或牛γ球蛋白,人、牛或免血清清蛋白,或这些蛋白的甲基化衍生物或其它衍生物。其它蛋白载体对本领域专业人员来说将是显而易见的。对准备在其体内诱导出抗艾美球虫蛋白抗体的宿主动物来说,蛋白载体最好(但不一定)是外来的。
与载体分子进行共价侧联时,可以采用本领域公知的方法,具体选择哪一种方法将由所用载体分子的本质决定。如果免疫原性载体分子是蛋白,则在偶联本发明的蛋白或片段时可以采用(例如)水溶性碳二亚胺如二环己基碳二亚胺或戊二醛。
象这样一些偶联剂,也可以用来使蛋白和片段自身交联,而无需使用另外的载体分子。这样交联成蛋白或蛋白片段的聚集体,也能增强免疫原性。
施用有效量的本发明疫苗能够保护家禽不受禽艾美球虫的感染。在体外,针对禽艾美球虫抗原的单克隆抗体与堆型艾美球虫和百型艾美球虫(E.Maxima)产生交叉反应,表明这些抗体也可以赋予针对这些种的保护作用。蛋白或蛋白片段的有效剂量范围为接种动物每千克体重约10~50微克。优选剂量为约25~50μg/kg。初次接种后,最好在一周至几周后进行加强接种。也可以多次加强接种。这些加强接种的剂量范围一般为约5~50μg/kg,最好约20~50μg/kg。可以采用标准的给药途径,如皮下、皮内、肌肉内、口服、肛门或卵内给药。
将本发明的球虫抗原给予家禽的免疫系统时,可以将编码这些抗原的基因克隆到细菌(例如大肠杆菌或沙门氏菌)或病毒(例如痘病毒或疱疹病毒)中,然后把这些活性载体系统通过口服、注射或其它常用的途径施用于家禽。Carbit等人(Vaccines,1987,ColdSpringHarborLaboratory,PP.58~71)描述了大肠杆菌的使用,而Clements(Pathol.Immunopathol.Res.6∶137,1987)描述了沙门氏菌的使用。Moss等人(AnnRev.Immunol.5∶305,1987)综述了采用重组痘病毒的病毒载体系统的使用。
有一种痘病毒,即牛痘病毒,可用来测试球虫抗原在细胞培养物和动物体中的释放。现已发现,对分析研究来说,虽然也可采用另一种痘病毒载体即鸟痘病毒,但牛痘病毒更为有效。这是因为牛痘病毒比鸟痘病毒繁殖快,并且其宿主范围并不仅限于鸡细胞。可以将大量异源DNA插入亍痘病毒基因组中而不抑制病毒的成熟和感染性(Smithetal,Gene25∶21,1983)。利用病毒插入并表达多个异源基因,可以诱导针对在感染动物体内表达的抗原的抗体产生(Rerkusetal,Science229∶981,1985)。
用于产生重组牛痘病毒的技术能够容易地通过常规操作而沿用于鸟痘病毒或疱疹病毒系统。在抗球虫病疫苗中使用这些重组病毒作载体特别有利,因为接种的家禽对球虫抗原和病毒载体都产生免疫(就是说,这类疫苗是二价的)。把另一些基因插入载体病毒中可以进一步扩大这类疫苗的用途。例如,可将新城疫病毒基因组的某些部分与球虫抗原基因一起插入鸟痘病毒中,从而只用一种疫苗就能同时赋予针对新城疫、球虫病和鸟痘的免疫。
施用本发明的活性载体疫苗时,可以采用本领域内公知的多种方法。例如,可以采用对家禽进行抗鸟痘病毒接种时常用的“刺份”法。此方法包括,用一个浸过疫苗的尖针刺进翅膀的皮肤内。该针通常象缝纫机针一样在针尖附近有一个眼,这个眼能带上一滴疫苗。此外,也可将活疫苗皮下或皮内注射到翅膀或其它任何部位中。
重组活性载体疫苗还可以加到饮用水中,甚至可以喷到所要接种的鸡身上。这些疫苗还可在饲料中施用,最好在保护性封装后施用(Balancouetal,Nature322∶373,1986);或者在卵中施用。在后一种方法中,将病毒疫苗直接注射到鸡胚中(Sharma,AvianDis.25∶1155,1985)。
实施例除非特别说明,下面给出的固体混合物中的固体、液体中的液体以及液体中的固体的百分比分别以wt/wt、vol/vol、wt/vol计。
1.抗艾美球虫抗原的单克隆抗体的制备1.1、寄生虫的制备利用标准方法,将禽艾美球虫、堆型艾美球虫、波氏艾美球虫、百型艾美球虫的子孢子从生成孢子的卵束中分离出。简要地说,就是用蒸馏水和20%的漂白粉洗涤生成孢子的卵束,然后再用蒸馏水洗涤。将卵束在组织匀浆器中打碎,通过离心回收不溶物(包括孢子束)。将沉淀中的释放出的孢子束和其它物质再悬浮于含有0.25%胰酶和鸡胆汁的Hank氏盐溶液(pH8)中,在40℃保温2小时。通过用含有10%胎牛血清(FBS)的RPMI-1640介质洗涤两次,然后用PBS在pH7.4下洗涤两次而除去提取溶液。
然后将子孢子在metrazimide梯度上进行纯化[Wisheretal.,Parasitiology88∶515(1984)]。简要地说,就是将子孢子再悬浮于2mlPBS(pH7.0)中,然后将1ml悬浮液铺在15mlmetrazimide梯度上,该梯度的构成为12%、18%和24%的metrazimide(在PBS中,pH7.0)各5ml。通过在900×g下离心40分钟而沉淀子孢子。通过沿着试管壁插入-21号针头并将子孢子吸入针管而将纯化的子孢子从18%和24%metrazimide之间的介面中分离出。
将纯化的子孢子用PBS(pH7.0)洗涤3次,并马上用于免疫接种、感染试验、125I的表面标记,免疫荧光分析成SDS-聚丙烯酰胺凝胶电泳[Laemmli,Natune 227∶680(1970)]以及Western吸印实验。
禽艾美球虫的裂殖子的分离如下面的6.2.3部分所述。将纯化的裂殖子用于免疫接种,并用Laemmli样品缓冲液溶解后用于SDS-聚丙烯酰胺凝胶电泳和Western吸印实验。
1.2、免疫接种按下列日程,将8只雌性Balb/c小鼠(CharlesRiver,Wilmington,Mass.)用纯化的活的子孢子免疫。
第1天 1×107个子孢子静脉注射(i、v)第7天 6×106个子孢子腹膜内注射(i.p.)第85天 6×106个子孢子i、p第120天 3×106个子孢子i、p第244天融合前加强免疫接种第1天 5×106个子孢子i.v.,5×106个子孢子i.p.
第2天同第1天第5天超免疫脾细胞与骨髓瘤细胞融合利用下列方法将每一只小鼠的血清都进行抗子孢子抗体的测试用纯化的子孢子蛋白进行ELISA检测、用溶解的子孢子蛋白进行Western吸印检测、用125I标记的子孢子表面蛋白进行免疫沉淀分析、用纯化的子孢子进行免疫荧光检测。选择具有最高子孢子抗体反应活性的小鼠(小鼠107-2)进行融合前加强免疫接种(见图1该抗血清的ELISA分析)。第5天时,将小鼠杀死,取出脾脏用于制备脾细胞。
1.3、细胞培养和细胞融合在融合前两天,在完全培养基[Iscove氏修改的Dulbecco氏培养基(IMDM、Gibco),加有10%FBS、谷氨酰胺(2.0mm)、以及2-巯基乙醇(100μM)]加上HAT(100μM次黄嘌呤、0.4μM氨基蝶呤和16μM胸苷)中,从幼年小鼠中制备脾细胞喂养细胞。利用修改的dest Grofh等人的方法[J、Immunol.Methods 35∶1(1980)],将108个脾细胞与108个PAI-O小鼠骨髓瘤细胞融合。任何其它适于制备杂交瘤的骨髓瘤细胞都可利用。许多这类骨髓瘤细胞对本领域专业人员来说是已知的和可得的。
将这些细胞混合,离心沉淀并且在恒定的轻轻搅拌下,在37℃下1分钟内再悬浮于1.0ml含35%(vol/vol)聚乙二醇的IMDM中。在37℃下保温3分钟后,再次沉淀细胞,并再轻轻悬浮于10ml IMDM+HAT中。然后,在完全培养基+HAT中将细胞烯释到1×106个细胞/ml,并将其分散到含有5×105个脾细胞喂养细胞/ml完全培养基的24孔微量滴定板上。
利用下列方法对杂交瘤上清液进行抗子孢子抗体分析用纯化的子孢子进行ELISA分析、用子孢子蛋白进行Western吸印分析、利用125I标记的子孢子表面蛋白进行免疫沉淀分析、用纯化的子孢子和用子孢子感染的细胞进行免疫荧光测定。通过有限稀释将杂交瘤克隆。
1.4、子孢子的ELISA分析将纯化的子孢子(4×104)加到96孔U型底PVC平板的每一个小孔中,这些小孔中事先已加入含1%BSA的PBS(pH7.0)。通过在1000×g下离心5分钟,使子孢子沉入孔底。将子孢子再悬浮于100ml稀释的抗血清或杂交瘤上清液中,并在室温下恒定搅拌保温2小时,然后用含1%BSA的PBS(pH7.0)洗涤子孢子,以除去未结合的抗体。
为了检测结合到子孢子上的特异抗体,将100μl过氧化物酶结合的山羊抗小鼠IgG加入再悬浮的子孢子中,并将悬浮液在室温下保温2小时。洗涤子孢子,加入底物溶液(含有0.4%mg/ml邻苯二胺的0.1M柠檬酸缓冲液,pH4.5,0.12%过氧化氢),在室温下保温30分钟,即可看见结合的抗体。通过加入含有50mM偏亚硫酸氢钠的2.5MH2SO4而终止反应。结合的抗体量通过有色底物的OD488读数而确定。
在总共480个加有融合细胞的小孔中,有432个对杂交瘤生长呈现出阳性。其中,在初级子孢子ELISA测定中,358个杂交瘤对抗体产生呈现出阳性。在这些原始亲本杂交瘤细胞的增殖和传代过程中,有104个死亡或停止产生抗体,因此在随后的用子孢子ELISA和Western吸印分析进行的筛选中呈现阴性。子孢子ELISA鉴定出205个杂交瘤细胞系可产生10倍于背景水平的抗体。
1.5、子孢子蛋白的Western吸印分析将纯化的子孢子(约5×107个子孢子/ml/凝胶)溶于Laemmli样品缓冲液中,通过SDS-聚丙烯酰胺,凝胶电泳[或在12.5%的凝胶中,或在7.5-20%梯度凝胶(Laemmli,同上)中]进行分离,并电泳转移至硝酸纤维素膜上。将纤维素膜在3%明胶缓冲液(3%明胶、Tris-Hcl,pH7.5、0.15MNacl)中封闭,并切成小条,再将小条在1%BSA缓冲液(1%BSA、50mM磷酸钠,pH6.5、0.5MNacl、0.05%Tween-20)中4℃下与稀释的抗血清或杂交瘤上清液反应12小时。在PBS(pH7.4,0.05%Tween-20)中洗涤小条,并用过氧化物酶结合的抗小鼠抗体检测特异性结合的抗体。通过加入底物溶液[4-氯-1-萘酚(30mg溶于10ml冰冷的甲醇和50mlTris-Hcl,pH7.5中)、0.15M Nacl、终缩度为0.015%的H2O2],在室温下保温30分钟,即可看见结合抗体。反应通过用蒸馏水充分洗涤而终止。
在子孢子ELISA分析中呈现阳性的那些抗体中,有160个抗体在利用溶解出的子孢子蛋白进行的Western吸印分析中,也呈现阳性。
Western吸印分析(见图2)表明单克隆抗体的反应方式有以下三种(a)与单个的艾美球虫蛋白结合(例如,11A1和11D1),(b)与2个或3个蛋白结合(例如,65A和20C6),(c)与多个蛋白结合(例如,11A5、13A6、和14B5)。
利用禽艾美球虫殖子和堆型艾美球虫蛋白进行Wescorn吸印分析(图3),进一步鉴定抗体的特征。一些抗体,包括3A5、13A6、7D1和20C6,可识别从禽艾美球虫和堆型艾美球虫的子孢子和禽艾美球虫的裂殖子中分离出来的蛋白。另一些抗体如6A5,表现出种和阶段的特异性,只结合禽艾美球虫子孢子蛋白。
从一些抗体得到的结果概括于表1,其中抗体的特异性以两种方式表示(a)凝胶中被抗体结合的蛋白的来源和大小,(b)被抗体沉淀的125I标记的禽艾美球虫蛋白的大小(右栏)。表中还以同型物进一步给出了抗体的特征。
表1Western吸印分析艾美球虫蛋白(以kd表示凝胶中大小)被沉淀的抗体同型物禽堆型百型蛋白的大小SpzMrzSpzSpz(kd)7B2 G2a >200 - - - -7D4 G1120 120 120 - 1107D1 G1120 120 120 N.D. 11020C6 G1120 120 120 N.D. 1103A5M1201201201712019D6 G3180 180 - - 1208A2 G2a37 37 - - 376A5 G2b28/26 - - - 2514B5N.D.>150N.D.N.D.
15B3N.D.>150N.D.N.D.
14B1 G36 6 - - 24/1712B2 G328/26 - - - 24/1715A3 G128/6 - - - 17/15/615C4M28/26---105/15/612C3 G328 - N.D. N.D. 255B6 G3- N.D. 63C4Mmmm-7016D2Mmmm-70/8513A6Mmmm-11011B6 G3m m m - 10512A3 G3m m m - 24/1712D4 G1m N.D. N.D.
Spz和Mrz分别为子孢子和裂殖子的缩写。
G和M分别代表IgG和IgM。
m表示抗体与多个蛋白结合,蛋白大小为24到大于200kd。
N.D表示的值未确定。
1.6、125I标记的子孢子表面蛋白的免疫沉淀反应利用IODOGEN方法(Pierce化学公司)或利用IODOBEADS(Pierce化学公司),将纯化的子孢子表面蛋白用125I标记。对后一种方法而言,将4IODOBEADS用0.2M磷酸钠(pH7.5)洗涤3次,加入1~3mCi的125I~Na,室温下保温5分钟。向反应瓶中加入200μl含有纯化子孢子(3×108)的PBS(pH7.0),继续保温15分钟。保温结束时,加入苯甲磺酰氯(PMSF)至终浓度为0.5mM。
在12,000Xg下离心30秒,回收保温混合物中的子孢子,并溶解于1ml含有2%十二烷基硫酸钠(SDS)或1%TritonX-100的PBS(pH7.0)中。在12,000Xg下离心3分钟而除去不溶物。利用截止分子量为3,500的滤膜,将溶解的子孢子蛋白在4℃下对3升PBS(pH7.0)透析以除去残余的游离125I。使用前,将125I标记的子孢子蛋白(典型的是将1.5×108cpm掺入蛋白)在4℃下贮存。可被TDA沉淀的放射性一般超过总放射性的95%。125I标记的子孢子蛋白的SDS聚丙烯酰胺凝胶电泳分析示于图4的左图。
通过向250μl含有125I标记的子孢子蛋白(1×105cpm)的缓冲液I(0.25%NP40,10mM Tris-HCL,pH7.5,0.15MNaCl)中加入300μl杂交瘤上清液或稀释的抗血清,而进行免疫沉淀反应。在4℃下保温16小时后,加入100-200μl50%的偶联到琼脂糖(Sigma化学公司)上的山羊抗小鼠IgG悬浮液。将混合物在一旋转混合器上室温下保温2小时。通过在12,000Xg下离心1分钟而沉淀琼脂糖珠,并用洗涤缓冲液(0.1%SDS、0.5%NP-40、0.2%脱氧胆酸钠、10mMPMSF、10mMTris-HCl、pH8.5、0.15MNaCl)洗涤3次。
通过加入60μl2×Laemmli样品缓冲液并在95℃下加热3分钟而将结合在固相抗体上的125I标记的蛋白释放和变性。通过在12.5%凝胶中进行SDS聚丙烯酰胺凝胶电泳而分离免疫沉淀的125I标记的子孢子蛋白,并通过放射白显影而观察。
用免疫小鼠血清进行的免疫沉淀分析的结果示于图4的右图。在子孢子ELISA分析中表现阳性的那些杂交瘤抗体中,有74个在免疫沉淀分析中也表现为阳性。如图5所示,杂交瘤抗体分成两类,一类是仅沉淀单个蛋白(如3C4、6A5、7D4、8A2、11D2和20C6),另一类是沉淀2个或更多个蛋白(如12B2、15A3、15C4和19D6)。
1.7、用纯化的子孢子进行免疫荧光测定将PBS(pH7.0)中的子孢子(1×105)加到有8个小室的载玻片(LabTek)上,在37℃下空气干燥12小时。用10%正常山羊血清于37℃下封闭载片2小时。向每个小室中加入稀释的抗血清或杂交瘤上清液,并在室温下保温2小时。洗涤载玻片,加入若丹明结合的抗小鼠抗体(在PBS,pH7.0,0.3% Triton X-100中稀释),室温下放置1小时。洗涤载玻片后,利用荧光观察结合的抗体。
大多数抗体对空气干燥的子孢子表面膜和/或折射体表现出特异的免疫荧光(图6的图A和B)。一些抗体在子孢子的顶端强列着色,而在其余的子孢子表面只轻度着色(FD图6C)。代表性的空气干燥的纯化子孢子见于图6A、B、C和D的左边。纯化的子孢子是完整的、长形的,表现出明显的较大的后折射体(PRB)和较小的前折射体(ARB)。子孢子的顶端(A)与后折射体相对。在制备物中仍有完整孢子囊(图B的左边)和破碎的孢子束膜的轻度污染。
1.8、ELISA.Western吸印、免疫沉淀及免疫荧光分析结果的总结对55个单克隆抗体进行上述分析,其结果概括于表2。
表2单克隆抗体分析的概括WESTERN吸印
表2(续)单克隆抗体分析的概括Western吸印抗体禽艾美球虫低量堆型艾美球虫禽艾美球虫免疫沉淀fSpz.aSpz.bSpz.cMz.dIFAe10A5>150--7,510511A6>150---3-7B2>200+->20011B1>150,200---1,7,62711D4120/24+--12711D6120/24+--2-12C3120/24+--1,8,22515B2120/24+++3-15A390/10-14+--1,628/14-1714C360---1,4614A5120/6--1,3,668A237++-1,4376A528,10-14+--1,625-2811A124+--1,6-11C124+----12B224+--1,524/12012C624+----16B124+--1,46/14-1718D524+--1,648/25/620C4241,35/14-1714B1<6+--1,620-2410A2--1,2,46/1055B6-1,66/17/15a、所给出的值为Western吸印分析中被抗体识别的禽艾美球虫子孢子(Spz)蛋白的分子量或分子量为40-150kd(M′)、120和80-150kd(M2)以及25和40-150kd(M3)的各组被识别蛋白的分子量。
b、用禽艾美球虫子孢子蛋白常量的1/5进行Western吸印分析。因而,显示阳性反应的抗体具有更高的亲和性。
c、Western吸印反应活性以对堆型艾美球虫子孢子(Spz)蛋白的活性表示。
d、Western吸印反应活性以对禽艾美球虫裂殖子(Mz)蛋白的活性表示。
e、对空气干燥的禽艾美球虫子孢子进行间接检测而得到的免疫荧光检测(IFA)染色图型总结为以下部位的染色(1)表面,(2)顶端,(3)不完整表面,(4)明亮表面,(5)亮表面,(6)扩散表面,(7)折射体,(8)点状染色。
f、给出的是在免疫沉淀(Immunoppt)测定中被抗体捕获的125I标记的禽艾美球虫子孢子蛋白的分子量。
优选的单克隆抗体7D4、7D1、20C6、8A2、6A5和7B2已经按照《布达佩斯条约》的有关条款,以分泌这些单克隆抗体的杂交瘤细胞形式保藏于美国典型培养物保藏中心(AmericanTypeCultureCollection,12301ParklawnDrive,Rockville,Maryland,U.S.A.)指定的登记号分别为HB9707、HB9708、HB9709、HB9710、HB9711和HB9712。
1.9、体外感染测定按Doran等人的方法(Doran等人,J.Protozool.25∶544,1978)建立初生鸡肾上皮细胞,并在四室的Lab-Tek载玻片上培养到40~50%汇合。也可用MDBK(Madin-Darby牛肾)细胞(ATTC-CCL22)代替鸡肾上皮细胞。
用50,000个或200,000个纯化的子孢子接种细胞。感染16小时后,将细胞单层洗涤几次,以除去未进入细胞的所有子孢子。在感染后3、16、24、48、64、96和120小时时,分别用100%的甲醇固定有代表性的接种细胞培养物(室温下5分钟)。将固定后的载玻片于4℃下贮存于含1%BSA的PBS(pH7.0)中,直到进行上述的免疫荧光测定前进行处理。用各种抗体得到的染色结果示于图7。
感染后的3-24小时之间,固定的培养物显示了细胞内的子孢子(图7,3小时时的7D4,19小时时的8A2)。后来,子孢子解体,只剩下折射体(7D4,60小时)。细胞内子孢子的表面和顶端被抗体7D4明亮染色(图7,7D4,3小时),但该抗体不染色感染细胞。
24小时后,子孢子开始解体并发育或裂殖体,裂殖体在随后的48小时内成熟。抗体7D4继续与解体的子孢子反应,但不与未成熟的裂殖体反应(图7,7D4,60小时)。但随着裂殖体成熟,7D4开始与裂殖体内的结构反应(图7,7D4,100小时)。这些结构为发育中的裂殖子,抗体7D4继续与释放出的成熟裂殖子的表面抗原反应。(图7,7D4,120小时)。
因此,7D4鉴定出一个120kd的膜抗原,它存在于禽艾美球虫子孢子和裂殖子的表面。该抗原在寄生虫发育的裂殖体阶段不表达,直到在裂殖体中发育出未成熟的裂殖子。
抗体14B1的反应方式与抗体7D4相同,即对细胞内子孢子的表面和顶端染色(图8,14B1,16小时),并扩散染色细胞内子孢子附近的细胞质。被14B1识别的抗体存在于成熟裂殖体中的未成熟裂殖子的顶端(图8,14B1,100小时),和成熟的释放的裂殖子的顶端(图8,14B1、120小时)。抗体7D4和14B1呈现的染色图型是相似的,但被这两个抗体识别的蛋白的分子量相去甚远,分别为120kd和6kd。
虽然抗体7D4和14B1与寄生虫的大部分发育阶段反应,但其它抗体只与细胞内子孢子的表面抗原(图7,15A3)或折射体(图7,7A2)反应,而不与寄生虫的裂殖体或裂殖子阶段反应。
通过感染测定,鉴定出两个特殊的抗体8A2和19D6。抗体8A2与-37kd蛋白反应,该蛋白存在于子孢子表面(图7C,8A2,19小时)、发育中的裂殖体的所有阶段(图7C、8A2、120小时),以及释放的裂殖子表面(图7C,8A2,120小时)。与被抗体7D4和14B1所识别的蛋白不同的是,37kd蛋白的合成贯穿于寄生虫的细胞内发育中。
抗体19D6不仅与一180kd子孢子表面蛋白反应,还与子孢子感染细胞的细胞质中的一种蛋白反应(图8,19D6,3小时)。被抗体19D6识别的细胞质蛋白可能是细胞感染后由子孢子排出的蛋白,因为该蛋白在未成熟裂殖体发育过程中消失,在成熟的裂殖体和释放出的裂殖子中又出现。
得自用禽艾美球虫感染后存活的小鸡的血清抗体,以与抗体7D4相似的染色方式对细胞内子孢子的顶端和表面染色(图8B,免疫鸡血清,3小时),但不染色细胞内子孢子的折射体。
用子孢子感染的鸡肾细胞进行免疫荧光实验,鉴定出这样一些抗原(a)特异于子孢子(如,分别被抗体7B2和6A5识别的大于200kd的蛋白和28kd的蛋白),(b)见于细胞内寄生虫的所有阶段(如,被8A2识别的37kd的蛋白),(c)特异于子孢子和裂殖子,但不特异于裂殖体(如,分别被抗体7D4和14B1识别的120kd和6kd的蛋白)。
1.10体外子孢子中和测定在一种修改的Schmatz等人的方法(J.Protozool.33∶109,1986)中,将MDBK细胞用胰酶处理,然后以7.5×104个细胞/ml的密度悬浮于加有1%FBS的最低必需培养基(Gibco)中。向微量滴定板(经组织培养处理,96孔)的每个小孔中加入1.5×104个细胞,于40℃下培养48小时。纯化的子孢子或者在40℃下用抗体预处理1小时,或着在感染细胞单层前不处理。使用前,将抗体(组织培养上清液、腹水液或抗血清)对PBS(pH7.0)充分透析,在56℃下加热30分钟使之失活,并过滤灭菌。
感染后,立即向每个小井中加入[5,6]-3H-尿嘧啶,至终浓度的5μci/ml。感染19小时后,除去培养基,并将培养物用PBS洗涤一次。用胰酶-EDTA在40℃下释放细胞15分钟,并用玻璃纤维滤膜收集。将滤膜干燥,置于闪烁液(READY-SOLV
,New Engand Nuclear)中,对结合的放射性进行计数。通过掺入用未处理的子孢子感染的细胞中的放射性活性,与掺入用抗体处理的子孢子感染的细胞中的放射活性进行比较来确定抗体抑制子孢子穿入和/或发育的能力。
将子孢子也与对照抗体,缓冲液或拉沙里菌素(一种抑球虫剂)一起预保温。拉沙里菌素在MDBK细胞中完全阻断子孢子的发育,大大地减少了3H-尿嘧啶的掺入。
结果示于图9,可以看见抗体7D4(□)、8A2(○)和14B1(●)明显地抑制了3H-尿嘧啶掺入感染的MDBK培养物。抗体6A5(■)效果小些,但也表现出一定的抑制作用。在用缓冲液(△)和对照抗体(X)处理时,无抑制作用,而拉沙里菌素(X)几乎产生完全的抑制。
2.cDNA表达文库的构建2.1、生成孢子的卵束的制备以50,000个禽艾美球虫/鸡进行口服接种,7天后,从3周龄的小鸡(HubbardCross;AvianServices,Frenchtown,NewJersey,U.S.A)体内摘除盲肠,在匀浆器(Waringblender)中用蒸馏水研磨一分钟。用蒸馏水将体积调至1升,加入胃蛋白酶(Sigma化学公司,St.Louis,Missouri,U.S.A)至3g/l。用浓Hcl将pH调至2.0,并将混合物在39℃下搅拌保温2~3小时,或保温至观察到单个卵束的悬浮液。消化后,用10NNaOH将pH调至8.0,再加入3升蒸馏水。将混合物静置过夜。然后除去上清液,用水洗涤沉淀,直至上清液清彻。通过在室温下向蒸馏水悬浮液中吹入气泡而使卵束生成孢子。24小时后终止孢子生成作用,进行RNA的制备。
2.2、生成孢子的卵束的mRNA的分离利用Maniatis等人(同上196页)描述的胍盐/氯化铯方法的修改方法制备总RNA。将卵束用PBS(0.15MNaCl、20mM磷酸钠,pH7.9)洗涤,并通过小心涡流混合再悬浮于10ml溶液中(pH7.4)中,该溶液含有5M异硫氰酸胍,50mMTris-Hcl、10mMEDTA、0.5%Sarkosyl(N-月桂酰肌氨酸钠,Sigma化学公司)和0.1Mβ-巯基乙醇,溶液中最好加有5μl防泡剂A(UnionCarbide,Danbury,Connecticut,U.S.A)或其它防泡剂。将细胞悬浮液匀浆,直到在显微镜下观察到卵束已基本破裂。
通过低速离心除去不溶的细胞碎片,并将匀浆液分成4份,铺在12ml聚碳酸酯离心管中的1.2ml5.7MCsCL、0.1MEDTA(pH7.5)上。在15℃下,将离心管在BeckmanSW50.1转子中以40,000rpm离心17小时。弃去上清液,将管壁干燥,将沉淀再悬浮于加有200μg/ml蛋白酶K(BoehringerMannheim)的1.25ml10mMTris-HCL、1mMEDTA、1%十二烷基硫酸钠(pH7.5)中。在37℃下保温30分钟后,用苯酚提取溶液三次。将最终的水相中的RNA用乙醇沉淀3次,然后溶于1ml水中。
聚腺苷酸化[多聚(A)+]的制备,利用Maniatis等人(同上,197页)的方法将约2mg总RNA通过一寡聚(dT)纤维素柱(Pharmacia Fine Chemicals)两次而完成。将多聚(A)+RNA用乙醇沉淀两次,并溶于200μl水中。由260nm处的光密度值算出,产生约26μg的产物。
2.3、裂殖子的制备以50,000个上述生成孢子的卵束/鸡感染小鸡,5天后,从50只感染小鸡(3周龄,Hubbard Clss;Avian Services Frenehtown,NJ)的盲肠中收集禽艾美球虫的裂殖子。将盲肠摘除,并在磁力搅拌器上用磷酸盐缓冲的盐水(PBS)洗涤15分钟。通过低速离心(50xg)部分地除去上皮细胞碎片,通过在4℃以2,000xg离心10分钟而收集粗提的裂殖子。将沉淀再悬浮于溶解缓冲液(8.29g/l NH4CL、0.372g/l Na2DETA、1.0g/l KCO3,pH7.6)中,并在冰上保温30分钟。通过离心收集裂殖子,在PBS中洗涤一次,并在分液漏斗中通过一个含有1.0g纺制尼龙纤维(ScrubNylonFiber,FenwallLaboratories,Deerfield,Illinois,U.S.A)的柱。如上所述离心收集裂殖子,并在干冰上冰冻以分离RNA或在二乙胺乙基纤维素(DEAE,WhatmanDE52,Whatman,Clifton,NewJersey,U.S.A)上进一步纯化以进行Western吸印分析。
为了在DEAE纤维素上进行纯化,将大约1×109个裂殖子(在PBS中)加不到10ml床体积的柱上,并用PBS洗脱。在头100ml流出液中回收裂殖子,这些裂殖子基本上去除了红血细胞和其它细胞碎片。
2.4、裂殖子mRNA的分离将含有1×109至1×1010个有机体的冰冻裂殖子沉淀融于10ml含有1mM二硫苏糖醇(DTT)和300单位RNA酶抑制剂(Promega Biotec,Madison,Wisconsin,U.S.A)的TEL/SDS缓冲液(0.2M Tris-HCL,0.1MLiwl,25mM EDTA,1%(w/v)十二烷基硫酸钠(SDS),pH8.8)中,并在特氟龙包被的组织匀浆器中匀浆10~12次。通过在3,000xg下冷冻离心而分离不溶性碎片。用TEL缓冲液平衡的苯酚∶氯份∶异戊醇(24∶24∶1,V/V)将上清液提取两次。
将水相用100μg/ml蛋白酶K在37℃下消化30分钟,再用等体积的苯酚∶氯仿(1∶1)提取,将核酸用两倍体积的乙醇在干冰上沉淀1小时,或者在-20℃下沉淀过夜。在10,000g下离心1小时后,将沉淀再悬浮于TE(10mM Tris,pH7.5,2mMEDTA)中,并在15℃,150,000xg下离心通过4ml的CsCL层(5.7MCsCl 0.1M EDTA)。用2.5倍体积的乙醇将RNA沉淀从0.2M乙酸钾中再沉淀。利用Maniatis所述的方法(同上,197页),将此总RNA通过寡聚(dT)纤维素一次。以富集多聚(A)+RNA。从5×109个裂殖子产生的1.9mg总RNA中一般含有约20μg多聚(A)+RNA。
2.5、卵束和裂殖子cDNA的合成及插入噬菌体载体利用Gubler等人(Gene25∶263,1983)所述的方法,由6μg生成孢子的卵束的多聚(A)+RNA合成双链cDNA,利用反转录酶(BRL)延长寡聚(dT)引物,利用RNA酶H(BRL)和大肠杆菌DNA聚合酶I(New England Biolabs)合成互补链。然后用T4DNA聚合酶(BRL)将双链cDNA消化成平末端,根据厂商的方法,用EcoRI甲基化酶(New England Biolabs)处理后,加入EcoRI连接子(GGAATTCC,Collaborative Research)。
用EcoRI消化上面制备的cDNA之后,利用Huynh等人所述的方法(Huynhetal,Approach,1985,IRLPress,Washington,D.C.,pp.49-78),在λgt11(StratageneCloningSystems,SanDiego,California,U.S.A)中制备一个文库。根据厂商的方法,将EcoRIcDNA片段连接到EcoRI消化的脱磷酸化的γgt11臂(StratageneCloningSystems)上,并用Gigapack药盒(StratageneCloningSystems)将所得DNA包入噬菌体。
用所得文库涂布Y1088宿主细胞(ATCCNo.37195)进行扩增。从在异丙基-β-D-硫代吡喃半乳糖苷(IPTG,Sigma化学公司)存在下X-gal平板上兰色噬菌斑与无色噬菌斑的比例,估计重组体的百分比约为90%。
裂殖子多聚(A)+RNA的双链cDNA拷贝基本上按上述方法合成。通过在变性凝胶中的迁移率(Bailey et al.,Anal.Biochem.70∶75,1976)判断出用于构建文库的双链cDNA含有约200到4,500个碱基对(bP)。
如上所述,将裂殖子cDNA甲基化,并连接到EcoRI连接子上,但用cCGAATTCGG连接子(CollaborativeResearch)。用EcoRI消化后,利用Huynh等人所述的方法(同上)将cDNA在BiogelA-50M柱上进行分级分离,以除去过量的连接子分子和小于约300bp的cDNA。
如上所述,将cDNA连到λgt11臂上,并将DNA包入噬菌体。用所得的含有约50,000个噬菌体的文库涂布Y1088宿主细胞进行扩增。在IPTG存在下的X-gal平板上的噬菌斑分析,表明重组体约为90%。
3.cDNA文库的免疫筛选以约10,000个噬菌斑/150mm平板的密度用λgt11裂殖子cDNA表达文库涂布Y1090细胞(ATCCNo.37197)。将六块上述平板在42℃下培养3.5小时,用预先在10mMIPTG中浸泡过的硝酸纤维素滤膜覆盖,以诱导β-半乳糖苷酶融合蛋白的表达,并在37℃下再培养4-5小时至过夜。从平板上取下滤膜,用TBS(20mMTris,pH8.0,0.15MNacl)分批洗涤几次。通过在一旋转摇床上于4℃下在含有20%胎牛血清(FCS)的TBS中保温2-4小时,而阻断非特异性蛋白结合位点。
收集含有已知可与裂殖子抗原反应的九个单克隆抗体(7D4、7D1、20C6、13A6、20C1、11B6、3A5、13A1和15B2)的腹水液,调至20%FCS、0.15MNacl,终体积为100ml,再加到培养皿中的每块滤膜上,(每个培养皿两块滤膜)。将滤膜在一旋转摇床上4℃下用初级单克隆抗体库保温过夜。未结合的抗体通过在室温下用TBS洗涤滤膜5-6次而除去。结合的抗体如Hawkes等人所述(Anal.Biochem.119∶142,1982),通过下述方法检测,即将滤膜与山羊抗小鼠辣根过氧化物酶(HPOD)结合物(Boehringer-Mannheim)保温,然后利用3mg/ml4-氯-1-萘酚(BioRad)和0.018%H2O2显色。
将最初高密度筛选中鉴定出的阳性噬菌斑利用同样的单克隆抗体库进行次级筛选,从而进行噬菌斑纯化。将阳性斑涂布在许多方格阵中,每个阳性斑都用IPTG诱导,然后转移到硝酸纤维素滤膜上,并用库中的一个单克隆抗体与之保温,这样,每个阳性斑都被指定与库中的一个单克隆抗体反应。鉴定出一个定名为λm2-4的阳性噬菌体,它被库中8个抗体中的三个抗体(抗体7D1、7D4和20C6)识别。
用同样的方法筛选生成孢子的卵束cDNA文库,但用含有抗体6A5、7B2、15A3和20C6的单克隆抗体库进行第一次筛选;用7B2、15A3、20C6和8A2进行第二次筛选;和15A3、7B2和20C6进行第三次筛选;并且在保温缓冲液中还含有0.05%Tween-20[聚氧乙烯(20)山梨糖单月桂酸酯]。这样,便从卵束cDNA文库中鉴定出定名为λS1-3、λS1-4和λS1-7的噬菌斑、定名为λS2-1、λS2-4和λS2-5的噬菌斑以及定名为λS3-1的噬菌斑,它们分别由单克隆抗体6A5、8A2和7B2识别。由噬菌体得到的DNA产生可与6A5抗体反应的蛋白,将该DNA通过用EooRI消化以及在琼脂糖凝胶中电泳而进行分析(Maniatis等人,同上,150页)。于是发现三个不同的插入片段,其大小分别约为1150、890和615bp。
4.艾美球虫基团在大肠杆菌中的表达分别从噬菌体λS1-7和λS1-3中分离1.1kb和0.9kb的EccRIDNA分子,并插入三个可变读码框表达载体(pEV-vrf1、pEV-vrf2和pEV-vrf3)每一个的EcoRI位点,这三个载体如Crowl等人所述方法(Gene38∶31,1985)进行构建。利用Mandel等人[J.Mol.Biol.53∶159(1970)]所述的方法,将含有两种可能取向的插入片段的质粒转化入大肠杆菌MC1061菌株中,如Bernard等人所述[MethodsinEnzymology68∶482(1979)],该菌株含有相容性质粒pRK248cIts。MC1061菌株和质粒pRK248cIts已保藏于美典型培养物保藏中心,指定的登记号分别为ATCC33766和53338。
将细菌转化体在含有0.5%葡萄糖和0.5%酪蛋白氨基酸的M9培养基(Maniatis等人,同上,68页)中30℃下培养,并如Crowl等人所述,在O.D.(550mμ)为0.5时,将温度升到42℃以诱导λPL启动子的转录。保温2-3小时后,取出1ml样品,离心收集样品中的细胞。如Crowl等人(同上)所述处理细胞沉淀,并如Laemmli所述[Nature 227∶680(1970)]将溶菌物进行SDS聚丙烯酰胺凝胶电泳。电泳后,将凝胶中的蛋白或用考马斯亮蓝染色,或转移到硝酸纤维素滤膜上进行Western吸印分析[Towbin et al.,Proc.Natl.Acad.Sci.USA 76∶4350(1979);Burnetti,Anal.Biochem.112∶195(1981)],利用6A5单克隆抗体和山羊抗小鼠HPOD结合物进行检测。
上面的分析表明,在载体pEV-vrf1中一种取向的0.9kbcDNA分子产生能与6A5抗体反应的20kd蛋白。未观察到1.1kb分子的表达,这可能是因为它含有5′非编码顺序。为了尽可能增加上述蛋白的产量,用各种表达介质进行观察,发现优选的表达介质为每升(±10%)含有6OgKH2PO4,4.0gKHP7O45.0g(NH4)2SO4、3.5gMgSO4-7H2O,21.0g酵母提取液,3.5g细胞胰化胨、1.0ml LB625防泡剂。25g葡萄糖。70mg硫胺素-HCL。2.5ml维生素溶液[GIBCO MEM(100X)维生素溶液]及1.0ml微量元素。LB625防泡剂是联合碳化物公司的一种产品,它是乙烯和聚环氧丙烯的线性聚合物,它在37.8℃下的粘度为625赛氏通用粘度秒。
每升发酵液中所含的维生素包括D-泛酸钙。氯化胆碱、叶酸、烟酰胺、吡哆醛-HCL、和另加的硫胺素-HCL各0.25mg;0.50mg异肌醇;0.025mg核黄素。每升发酵液中所含的微量元素包括2.7mg Fecl36H2O;ZnSO4-7H2O和CuSO4-5H2O各0.8mg;CoCL2-6H2O和Na2MoO4-2H2O各0.7mg;0.2mg H3BO3;以及0.5mg MnSO4-H2O。
首先在一种溶素原中研究噬菌体λm2-4所表达的有免疫活性的蛋白的本质,该溶素原是从感染的Y1090细胞通过在允许温度(30℃)和不允许温度(42℃)下进行差级生长而分离出来的。为了对该溶素原合成的蛋白进行Western吸印分析,将50ml培养物在LB培养基[Maniatis等人,同上,69页]中30℃下培养,直到O.D.(550mμ)为0.5小时,将温度升至42℃,以诱导噬菌体的复制。在42℃下保温15分钟后,加入IPTG到10mM,继续在37℃下保温30分钟。在4℃下离心收集细胞,并通过在Laemmli样品缓冲液(0.125MTris,pH6.8,1%(w/v),SDS,14M-巯基乙醇,001%澳酚兰(W/V)20%(V/V)甘油)中煮沸5分钟而使细胞溶解。
通过在12.5%SDS-聚丙烯酰胺凝胶中电泳,使相当于1.0ml的培养物分离,然后电泳转移到硝酸纤维素滤膜上,如上所述用鉴定λm2-4噬菌体的三个单克隆抗体(7D1、7D4和20C6)的抗体库进行探测。Western印迹的显色揭示出一个大于150kd的融合蛋白,它存在于诱导出的溶素原中(图10B,第2泳道)将异于β-半乳糖苷酶的抗体也与这个高分子量的蛋白反应,并且与一个大约为114kd的蛋白反应,这是预期的β-半乳糖苷酶的大小(见图10A,第2泳道)。
用EcoRI消化噬菌体λm2-4,产生一个1.7kb的DNA分子。将此分子亚克隆入一个经EcoRI线性化的含有质粒pEV-VRF1、2和3的质粒库(Crowl等人,同上)中,并如上所述,转化入含有质粒pRK248cIts的大肠杆菌MC1061菌株中。利用在λm2-4溶素原中可与融合蛋白反应的三个单克隆抗体,筛选可在温度诱导时表达有免疫活性蛋白的转化体。利用库中三个单克隆抗体之一的7D4,通过对大肠杆菌溶解物的Western吸印分析,进一步鉴定有免疫活性的重组蛋白的特征。通过SDS-聚丙烯酰胺凝胶电泳分析测定每发现一个阳性克隆都含有带有预期的1.7kb插入片段的质粒DNA,并且一经诱导便可指导合成大约65kd的蛋白。
发现该65kd的蛋白的表达,对生长介质和诱导方法的变化较不敏感。在细胞沉淀的超声波破碎后,定量回收上清液中的该蛋白。
将含有1.7kb插入片段的表达质粒用于后续的制备重组蛋白步骤,该质粒图示于图11。将该质粒在对λcI857具有溶原性的MC1061宿主细胞中30℃下进行增殖(利用Arber等人所述的产生入噬菌体溶素原的标准方法制备宿主细胞(Arberetal.,inColdSpringHarborMonograph,LambdaⅡ,1983,Hendrixetal.,Eds.,ColdSpringHarbor Laboratories,Cold Spring Harbor,P.450),以保持质粒中的PL启动子处于阻遏状态。
利用同样的方法,表达28kd的蛋白,它是由约1.1kb的生成孢子的卵束cDNA片段所编码的。该蛋白特异性地与单克隆抗体8A2结合。同样进行了45kd蛋白的表达,它是由约1.2kb的生成孢子的卵束cDNA编码的。该蛋白特异性地与单克隆抗体7B2结合。
5、DNA顺序分析一般利用Birnboim等人(NucleicAcidsResearch7∶1513,1979)的方法,从1ml饱和的过夜培养物中小规模地分离质粒DNA。该方法可以从细菌菌落中分离少量的DNA,用于分析。较大量的质粒DNA的制备,根据标准方案,利用1升培养物进行氯化铯离心(Maniatis等人,同上,93页)。
利用Maxam等人的化学断裂法(MethodsinEnzymology65∶499,1980)和Sanger等人的链终止法(Proc.Natl.Acad.Sci.USA74∶5463,1977),以及Smith等人(Cell16∶753,1979)和Wallace等人(Gene16∶21,1981)对双链质粒DNA修改的方法,测定得自形成孢子卵束的基因文库的cDNA的DNA顺序。在链终止法中,用7-脱氮-dGTP(Barretal.BioTechniques4∶428,1986)代替dGTP,以消除G-C挤压现象。
为了便于顺序分析,将得自λS1-7的1.1kbEcoRI分子转入质粒pEV3-SEQ(图12),该质粒在pEV-vrf3的EcoRI位点旁有一个多连接子。用该多连接子使质粒在BamHI和KpnI位点线性化,以便用核酸外切酶Ⅲ产生单向缺失(Henikoff,Gene 28∶351,1984)。用多连接子的XbaI位点进行3′-末端标记,以对缺失产物进行Maxam-Gilbert测序,用引物CGGTCGACTCGAGCCA进行Sanger测序。如Maniatis等人所述(同上,122页),利用[γ-32P]ATP(ICN)和多核苷酸激酶标记引物的5′端。
图13显示了用于Maxam-Gilbert测序的1.1kbEcoRI分子中的限制位点。也显示了0.9kb分子中的EcoRI位点的位置,因为也用了这些位点。还显示了核酸外切酶Ⅲ造成的缺失的端点。进行这些测序时或是利用Maxam-Gilbert方法从pEV3-SEQ多连接子的XbaI位点开始,或者利用Sanger法,用一引物延伸而进行(图12)。将整个cDNA的两条链利用上述的一种或二种方法同时进行测序。由于DNA中G-C含量高,Maxam-Gilbert反应物通常在8%和15%的聚丙烯酰胺-脲凝胶中进行分级分离。
引物的延伸通过下述方法进行将1.5μg多聚(A)+RNA在一缓冲液中与2微微摩尔5′端标记的合成寡核苷酸引物GAGGTCTGCCATTTTGC在42℃下保温60分钟,所述缓冲液为50mM Tris-HCL(pH8.0)8mM MgSO4、0.1M Nacl、2mM二硫苏糖醇、每种三磷酸脱氧核苷酸(dNTP,Pharmacia Fine Chemicals)各2mM、20单位RNA酶抑制剂(Promega Biotec.Madison,WI)和20单位AMV逆转录酶(Pharmacia,Piscataway,NJ,FPLC纯)。将所得产物在用于顺序分析的8%聚丙烯酰胺-脲凝胶中进行分析,用32P-标记的经HpaⅡ消化的pBR322 DNA作为分子量标记。
为了进行顺序分析,从凝胶上洗脱初级产物,并利用Maxam等人的化学断裂法(同上)进行分析,或将ddNTP用于延伸反应(Tolanetal.,J.Biol.Chem.259∶1127,1984;Gravesetal.,J.Biol.Chem.261∶11409,1986)。反应物在8%的聚丙烯酰胺-脲凝胶中进行分析。
1.1kbcDNA分子的核苷酸顺序示于图14。在这个较大的分子中,0.9kb分子的顺序从碱基188延伸至碱基1082。由该核苷酸顺序的开放读码分析推测的氨基酸顺序示于图15。图15所示的推测氨基酸顺序的正确性证实如下。
制备其氨基酸顺序相应于图15中41-54和145-164残基的合成多肽。将针对这两种多肽而制备的免抗血清用于子孢子总蛋白和表达0.9kbcDNA的大肠杆菌转化体之溶解物的Western吸印分析。在这两个Western吸印分析中,针对两个多肽的抗体都与蛋白结合。
利用同样的方法,测定噬菌体λm2-4中编码65kd蛋白的1.7kb插入片段的核苷酸顺序,其结果示于图16。所推测的由该DNA顺序编码的蛋白的氨基酸顺序示于图17。如下所述,通过对所表达的65kd蛋白进行胰酶消化而产生的多肽进行氨基酸顺序分析而证实上述顺序。
奇怪的是,预期1.7kb分子的DNA顺序开放读码编码一个约33,349道尔顿的蛋白。然而,该DNA片段的表达产物在SDS凝胶中迁移的表观分子量约为65kd。预期的和所观察的蛋白分子量之间的差别的原因还不清楚。该蛋白在此称为“65kd”蛋白。
以同样的方式,测定编码由单克隆抗体8A2识别的28kd蛋白的cDNA分子的核苷酸顺序和推测的氨基酸顺序,结果分别示于图18和19。
同样测定1.2kb7B2cDNA的核苷酸顺序和推测的氨基酸顺序。因为发现了一个连续的开放读码,并且通过免疫沉淀从子孢子中分离出的蛋白大于200kd,所以利用1.2kbcDNA作为探针筛选基因文库,以选择更大的cDNA。于是得到一3.2kb的cDNA,其核苷酸顺序和所推测的氨基酸顺序分别示于图20和21。
6、65kd蛋白的纯化与特征鉴定6.1、蛋白纯化在10升的发酵罐中,将含有pEV/2-4表达质粒的大肠杆菌MC1061(pRK248cIts)在1.5XM-9培养基中进行高细胞密度发酵,在允许温度下生长约4小时后,如上所述,利用温度诱导的标准方法进行发酵。诱导5小时后收集细胞群,得到500克细胞沉淀。
将50克大肠杆菌细胞沉淀均匀地悬浮于500ml10mMTris-HCL(pH8.0)、5mMEDTA中,并在2-8℃下搅拌2小时。将悬浮液在7000磅/平方英寸下通过Gaulin匀浆器(APVGaulin,Everett,Massachusetts,U.S.A)两至三次。将细胞溶解物在SorvallRC-5离心机中24,000xg下离心1小时,弃去沉淀。向上清液中加入固体硫酸铵终浓度为80%。在4℃下静置2小时在24000xg下离心1小时将沉淀溶于20mM磷酸钾(pH6.8)中,离心后将上清液以20mM磷酸钾(pH6.8)透析。
将一Pharmacia出品的玻璃柱(5cm直径×10cm长度)装上NuGelP-DE 200
(200埃,40-60μm,弱阴离子交换,Separation Industries,Metuchen,NJ)硅胶载体。用20mM磷酸钾(pH6.8)平衡凝胶。上样(10ml/分),用平衡缓冲液洗涤,用含有0.4M Nacl(pH6.8)的20mM磷酸钾洗脱。柱级分用抗体7D4进行Western吸印分析而检测65kd蛋白。
用免疫亲和柱进一步纯化65kd蛋白。该柱所用的吸附剂通过在将单克隆抗体7D4固定在NuGel p-聚乙醛
(500埃,40-60μm,Separafionlndust ries,Metuchen,New Jersey,U.S.A)硅胶载体上而制备。固定方法如下将10克聚乙醛载体悬浮,并用0.1M磷酸钾、0.1M NaCl(pH6.8)洗涤,然后定量移入锥形瓶中,该瓶中含有20ml蛋白浓度为8mg/ml的单克隆抗体7D4。然后向悬浮液中加入氰氢硼化钠(4mg)。央4℃下轻轻震荡混合物16小时。将凝胶过滤,并用0.1M磷酸钾、0.1M NaCl(pH6.8)洗涤。检查合并的滤液中未结合的抗体。结合密度为8mg/g载体。未偶联的活化位点通过将凝胶悬浮于20ml 1M乙醇胺(pH7.5)中而阻断。向悬浮液中加入氰氢硼化钠(4mg),然后在4℃下搅拌16小时。收集凝胶,并用冷的偶联缓冲液彻底洗涤。
为了进行免疫亲和层析,用固定的7D4抗体装柱(1cm×10cm),并用含有0.1% Triton x-100的冷的砱酸缓冲盐(PBS)平衡。从NuGelP-DE200
柱上洗下的含有65kd蛋白的级份的合并物,用含有0.1%Triton X-100的PBS稀释两倍,并上样到一个流速为10ml/分的柱上。上样后,用PBS洗涤凝胶,以除去未吸附的物质。吸附的免疫活性物质用0.3M乙酸、0.1M NaCl缓冲液(pH2.7)洗脱。然后利用YM10膜(Amicon,Div.W.R.Grace & Co.Danvers,Massachusetts,U.S.A.)在Amicon Stircell
装置中浓缩蛋白。
如Laemmli所述(Nature227∶680,1970)。利用SDS聚丙烯酰胺凝胶电泳测定蛋白的纯度。凝胶用考马斯亮蓝染色。还利用7D4单克隆抗体与山羊抗小鼠辣根过氧化物酶的结合物,进行Western吸印分析。结果示于图22。泳道2、3、4和5含有从两种制备物中纯化出的蛋白。泳道1和6含有分子量标记蛋白的混合物,其分子量示于图的左边和右边。每个泳道中加10μg蛋白进行电泳。
在图22中可以看见,纯化的蛋白在SDS凝胶中以一个表观分子量约为65kd的主要条带而迁移,次要条带的移动比较高或较低。
6.2、等电点的测定将10μg纯化的65kd蛋白在预制的等电聚焦凝胶(得自LKBInsfruments,Gaifhersburg,Mart,yland,U.S.A.)中进行等电聚焦。将已知等电点的标准蛋白的混合物同时进行电泳。按照厂商的说明,利用3.5-9.5pH梯度,在50mA、1,500V下电泳约2小时。
等电聚焦完成后,用考马斯亮蓝染料染色凝胶,检测蛋白带。然后,通过测量pH梯度中条带的位置与标准蛋白的位置进行比较,确定纯化蛋白的等电点。由此测出的蛋白等电点为4.6。
6.3、氨基酸组成分析如Pan等人所述(MethodsofProteinMicrocharacterization,1986,Shively,ed,TheHumanaPress,pp.105-119),利用与荧光胺的柱后反应进行氨基酸组成分析。将含有3μg65kd蛋白的样品在含有4%巯基乙酸的6NHCL中于110℃下真空水解20-40小时,将10%的水解产物用于分析。过甲酸氧化后,测定半胱氨酸值。结果示于表3。
表365kd蛋白的氨基酸组成分析氨基酸摩尔百分比Asp6.06Thr6.07Ser7.27Glu18.24Pro5.35Gly16.76Ala11.71Cys4.45Val4.88Met2.08Ile2.17Leu3.22Tyr2.20Phe2.13His1.07Lys2.72Arg3.61TrpNDND=未确定6.4、N末端和C末端顺序分析取200微微摩尔蛋白(通过氨基酸组成分析测定),利用Hewick等人的方法(J.Biol.Chem.256∶7990,1981)和AppliedBiosystems470A型测序仪(AppliedBiosystems,Inc.,FosterCity,California,U.S.A)进行N末端分析。由此测得的N末端顺序为M-N-K-N-S-?-L-G-G-F-?-S-M-Q-E-S-P-P-P-。用问号标明的位置上为何种氨基酸尚不确定,因为PTH-Cys的回收率低,并且半胱氨酸有可能参与形成二硫键(Hewicketal.,J.Biol.Chem.256∶7990,1981)。
如Hayashi所述(Meth.Enzymol.47∶84,1977),通过羧肽酶Y的时程消化对1200微微摩尔的65kd蛋白进行C末端分析。羧肽酶Y(BoehringerMannheim,Indianapolis,IN)是溶解在0.05M乙酸钠缓冲液(pH5.9)中,使用时浓度为0.8μg/350μl。在0、2、5、10、20和30分钟后取等分试样进行分析。将各等分样品用盐酸酸化以停止进一步的反应,然后如上述进行氨基酸分析。这一分析表明,C末端氨基酸顺序可能是(Met,Trp)-Ala-Ser。观察到色氨酸与甲硫氨酸同时增加,但Trp难以用荧光胺分析仪定量,因为它与荧光胺的反应性低。所以,Trp和Met的相对位置不能用这种分析方法确切地测定。
6.5、胰蛋白酶肽分析部分是为了确认由编码65kd蛋白的cDNA核苷酸顺序推测的氨基酸顺序,取一些该蛋白用胰蛋白酶(CooperBiomedical,Philadelphia,Pennsylvania,U.S.A.)消化,所得的肽如下述进行顺序测定。
于37℃,在0.2M碳酸氢铵(pH8)中对148μg蛋白进行胰酶消化过夜所采用的酶与底物的比例为1∶30(以重量或摩尔数计)。所产生的肽以WatersHPLC系统用Altexulfrasphere250×4.6mmC-18柱(BeckmanInstruments,Fullerton,CA)进行分离,用浓度逐渐升高(0-55%)的乙腈在0.1%(基础)三氟乙酸中的溶液进行梯度洗脱。在进行HPLC分离前,将消化产物于37℃下用β-巯基乙醇还原30分钟,以断裂这些肽中所有的二硫键。用实验室数据控制检测仪(LaboratorgDataControl,RiveraBeach,florida,U.S.A.)于215nm处监测柱流出液。HPLC柱分辩出8个主峰,如图23A所示。
首先如上所述对每个峰进行氨基酸分析,以测定这些肽的量和组成。然后用AppliedBiosystems470型气相测序仪,通过自动Edman降解测定得自HPLC柱的大部分肽峰的顺序。乙内酰苯硫脲(PTH)氨基酸衍生物的鉴定,是如Hawke等人(Anal.Biochem.120∶302(1982)所述用WatersHPLC系统并采用AltexultrasphereC-18柱,或用AppliedBiosystems120型联机PTH氨基酸分析仪进行的。
图17在画下线的区域下部,给出了上述肽中某些肽的氨基酸顺序。每个肽的编号(相应于HPLC峰号)在相应的顺序旁边用画圈的数字给出。在这些肽顺序中不确定的某些残基,在这些位置上用问号标明,但这些肽的氨基酸组成分析表明,在已推测出的顺序的相应位置上标明的氨基酸存在于这些肽中。肽中的某些残基不确定是由于色氨酸与荧光胺的反应性低。
相应于完整65kd蛋白N-末端的肽6,在N末端含有4个由表达质粒中的某些核苷酸编码的残基。对肽8进行分析得到的氨基酸顺序与肽3相似,但没有C末端的4个残基,表明这可能是胰酶消化不完全的结果。肽5未进行顺序测定,因为该肽的氨基酸组成分析表明,它与肽6相同,只是缺少N末端的头3个氨基酸残基。
如上所述对胰酶消化产物进行HPLC分析,但预先不用巯基乙醇还原,所得到的洗脱曲线中没有峰4、7和8(图23B)。这一结果提示,这些含半胱氨酸的肽在未还原的蛋白中可能参与了二硫键的形成。
7、家禽的免疫7.1、使用65kd抗原为了确定施用纯化的重组65kd蛋白是否能够预防小鸡受生成孢子的禽美球虫卵囊的侵袭,进行了一系列免疫实验。在这些实验中,取1日龄至3周龄的来航鸡(AvianServices,Frenchtown,NewJersey,U.S.A.),放在洁净的房间里,由未曾接触过其它家禽的饲养员来喂养,直到进行免疫时。将这些鸡放在电热育雏笼中,待它们长至3或4周龄后,再移入拉架笼内。
在整个实验中,不限量供给未加药的童子鸡幼雏饲料和水。在用卵囊进行免疫时,把这些鸡移到另一个建筑物中,并且一直到实验结束都放在那里。免疫前,每周至少检查动物临床症状3次,免疫后则每天检查一次。在鸡长至3或4周龄,随机分成各试验组之前,用翅号分别给每只鸡做上记号。
用各批如上所述免疫亲和层析纯化出的65kd蛋白作为免疫原。这几批免疫原含有细菌内毒素活性,活性范围为每μg蛋白约0.3至约50内毒素单位,这个活性按1985年第21次修订版的《美国药典》第1165-1167页(United States Pharmacopeial Convention,Inc.,Rockvill Md.)所述进行测定和定义、使用前将蛋白溶于0.02M K2HPO4缓冲液(pH6.8)中,用同样的缓冲液根据需要进行稀释。
用牛血清清蛋白(BSA,Pentex)作为对照。由于所用的免疫原中有热原活性,所以在所有BSA对照中都加入了大致等量的热原活性,以便将这种活性可能引起的任何非特异性效应考虑在内。这种热原活性是以未转化的大肠杆菌的溶菌产物的形式加到BSA中的,这种溶菌产物的制备方法是利用超声处理破碎大肠杆菌,然后用0.45μ滤膜(Millipore)过滤该材料。
将稀释的对照BSA或艾美球虫抗原样品与等体积的佐剂合并,用带有18号针头的玻璃注射器充分混合,然后再施用。分别用弗氏完全佐剂和不完全佐剂进行初次免疫和加强免疫。这两种佐剂都得自GIBCO(GrandIsland,NewYork,U.S.A.)。
在小鸡长至4周龄时,在鸡体后部的颈基部进行初次皮下免疫。有些鸡还在6周龄时接受加强免疫。所注射物质的体积为约0.4至2.4ml。如果体积较大,则将此剂量分两次注射。最后一次接种2或3周后,给小鸡口服施用25,000或50,000个生成孢子的禽艾美球虫卵囊。感染7天后,处死存活的小鸡,解剖后对总损伤计分。对所有在实验过程中死亡的鸡也进行解剖。诊断后如下对肠损伤计分0=正常;1=轻度感染;2=中度感染;3=严重感染;4=死亡。所得读数总结为每组鸡感染程度的平均值。在感染时和感7天后称重这些鸡。有些鸡没有用BSA或球虫抗原接种,但也作为感染或未感染的未接种对照进行处理。
两个这样的实验的结果示于表4。
表4用纯化的重组65kd抗原接种一次或二次而对小鸡进行皮下免疫的作用不同周龄的小鸡编号处理a剂量(μg) 损伤计分b增重/减重c(g)4周6周实验110IUC--2.8-258抗原3.15-2.4-4410抗原12.25-2.5-106BSA17.5-3.0+4010UUC--0+10710IUC--2.9-408 抗原 3.15 1.6 2.0e-1510 抗原 17.5 13.2 1.8e+58BSA12.2513.22.5-1310UUC--0+87实验28dIUC - - 2.6 -1110抗原4-2.2+6510抗原20-2.0+199抗原100-2.9+1410BSA100-2.4-710IUC--2.5+1510抗原442.1+3510原抗20202.0+748抗原1001002.1+8110BSA1001002.4+694UUC--0-3a-IUC、抗原、BSA和UUC分别指(用卵囊)感染的未免疫对照、纯化的65kd蛋白、牛血清清蛋白和未感染的未免疫对照。
b-在实验1中,一次免疫3周后,用50,000个生成孢子的禽艾美球虫卵囊对鸡进行免疫;加强接种2周后,对这些鸡用25,000个卵囊进行免疫。在实验2中,卵囊免疫的时间相同,但对只接种一次和经过加强接种的鸡都给予25,000个卵囊。每个实验都保留感染的未免疫对照,在同样的周龄时给予同样数目的生成孢子的卵囊,7天后处死。结果以如上文所述的0-4计分表示。
c-所示数值为感染时体重与感染7天后体重之差。
d-这一组原有9只鸡,但有一只在1周后死亡。
e-与IUC相比P≤0.05。
表4的数据表明,用65kd蛋白接种所产生的损伤计分,一般比感染但未免疫的对照要低。实验1中进行加强接种的两组鸡(在表中用上标e表示)表现出具有统计意义的损伤计分降低。在另一些情况下,损伤计分降低的程度没有这么大,但接种鸡的增重量一般都提高了。
为了确定第三次接种是否能进一步增强预防作用,进行了一个实验,在该实验中,以8只鸡为一组,在3和5周龄或3、5或7周龄时作为感染或未感染的未接种对照,或用BSA或裂殖子蛋白接种的鸡进行处理。头两次接种用弗氏完全佐剂进行。如果进行第三次接种,则此次接种用弗氏不完全佐剂进行。接种操作如上述在皮下进行。
最后一次接种两周后,对每只鸡口服给予25,000个生成孢子的禽艾美球虫卵囊进行感染。在感时和感染7天后测量体重,最后一次测量体重后将鸡处死,对盲肠损伤评分。结果示于表5。
表5用纯化的65kd抗原进行二或三次接种而对鸡进行皮下免疫的作用处理a不同周龄的剂量(μg) 损伤计分b增重/减重c(g)3周5周7周IUC---2.13+59抗原44-1.75+122抗原44-2.88+128原抗2020-1.88+87抗原2020-1.88+69BSA2020-3.13+106BSA2020-2.38+131UUC---0+131IUC---2.25+23抗原4442.25+91抗原2020202.25+86BSA2020201.75+78a-IUC、抗原、BSA和UUC分别指(用卵囊)感染的未免疫对照、纯化的65kd蛋白、牛血清清蛋白和未感染的未免疫对照。
b-小鸡在最后一次接种2周后用25,000个生成孢子的禽艾美球虫卵囊感染,对感染的未免疫对照来说是在处死的前7天进行感染。这些用于双次免疫和三次免疫实验的对照,在感染时为7和9周龄。结果以如上文所述的0-4的计分表示。
c-所示数值为感染时体重与感染7天后体重之差。
表5的数据表明,进行第三次接种并未改善免疫效果。与未经处理的感染对照或用BSA接种的鸡相比,抗原提供了较强的预防作用,这是由盲肠损伤计分降低证明的。
为了确定除皮下注射以外的施用途径是否会产生更好的效果,以8只3周龄来航鸡为一组,利用皮内、皮下、肌肉内、口服和肛门施用途径,给各组鸡施用两个剂量水平的65kd蛋白,共施用三次,每次间隔两周。最后一次施用免疫原两周后,给这些鸡口服25,000个生成孢子的禽艾美球虫卵囊进行感染。感染一周后将鸡处死,确定盲肠损伤计分。
如上所述进行皮下注射。在左腿外侧进行深度肌肉内注射。在右翅前侧进行皮内注射。用5cm长的18号圆尖针头进行口服施用,使接种物沉积到鸡嗉囊内。用一根5cm长的18号橄榄尖针头进行肛门施用,将针头伸入泄殖孔内达最大长度。在口服和肛门施用,分别使鸡站立和倒置几分钟,避免可能发生的接种物逐出。
皮下注射的剂型如上所述,初次注射时使用弗氏完全佐剂,加强注射时使用弗氏不完全佐剂。用于其它施途径的剂型含有指定浓度的蛋白和0.02M K2HPO4缓中液(pH6.8)。
该实验的结果示于表6。
表6各种施用途径对用65kd抗原接种鸡的影响
a-IUC、抗原、BSA和UUC分别指(用卵囊)感染的未免疫对照,纯化的65kd蛋白、牛血清清蛋白和未感染的未免疫对照。SC、IM、A、O和ID分别提指皮下、肌肉内、肛门、口服和皮内施用途径。
b-小鸡在最后一次接种2周后,用25,000个生成孢子的禽艾美球虫卵囊进行感染,对感染的未免疫对照来说是在处死前7天进行感染。这些对照在感染时为9周龄。结果以如上所述的0-4的计分表示。
c-所示数值为感染时体重与感染7天后体重之差。
d-与IUC比较,P<0.05。
表6表明,在小鸡用5μg抗原以口服途径免疫,和用25μg抗原以皮内途径免疫时,观察到的盲肠损伤计分最低。这些结果具有统计意义。对其它施途径和其它剂量水平观察到损伤计分的数值较低,表明它们具有预防倾向。但这些计分与IUC鸡的计分之差不具有统计意义。
在上述实验中没有观察到线性剂量反应,这可能是由于65kd抗原的各种制备物中痕量污染物和/或热原含量不同或其它因素。
7.2、牛痘载体接种为得到用本发明的禽艾美球虫抗原免疫小鸡的更有效手段,将编码由单克隆抗体6A5识别的20kd蛋白的1.1kbcDNA(图14)和编码由单克隆抗体8A2识别的28kd蛋白的1.1kbcDNA分子(图18),克隆到牛痘病毒中,并如下所述用来接种小鸡。
7.2.1、载体的制备所制得的所有重组体都是通过用Mackett等人所述的方法(Proc.Natl.Sci.AcadUSA79∶7415,1982)同源重组到病毒胸苷激酶(TK)座位而得到的。现已在牛痘病毒(VV)的HindⅢJ片段上画出了TK座位的图谱(Hrubyetal.,J.Virol.43∶403,1982),此片段的部分顺序已进行了测定(Weiretal.,J.Virol.46∶530,1983)。
为构建一个重组载体,将VVHindⅢJ片段亚克隆到pUC8中(图24a)。用HpaⅡ切割此构建体。所得片段用大肠杆菌DNA聚合酶Klenow片段(Klenow)处理,用HindⅢ再切割,用低熔点琼脂糖分离出含有病毒TK基因的片段。将分离出的片段连入pUC8载体的HindⅢ和平末端(S1处理)EcoRI位点中(图24b右)。接着,用Klenow处理经HindⅢ消化的DNA,并再连接该载体片段,从而去掉HindⅢ位点。为插入VV启动子(定名为7.5K启动子),用ClaI和EcoRI切割该载体。
VV 7.5K启动子位于该病毒最小的SalI片段之一中(Venkatesan et al.,Cell 25∶805,1981)。将相应的片段克隆到M13mp8中。选择出一个克隆,其中的转录方向朝向M13mp8的EcoRI位点(图24a,左)。用ScaⅠ和SmaⅠ切割该DNA,加入BglⅡ连接子,再连接该DNA(图24b)。从该M13构建体中分离出含病毒启动子片段的EcoRI-AccI片段,将其连入上述pUC8-TK片段中,产生载体pUC-TK-7.5K*。用BglⅡ和EcoRI消化这个新载体。
为了得到带有多具克隆位点的载体,将一个适当的多连接子引入上述构建体。为此选择了M13tg131(Amersham)中所含的多连接子(图24d)。通过用BglⅡ和EcoRI消化噬菌体DNA,分离出多连接子片段,将该片段插入到pUC8-TK7.5K*构建体中,产生用于将外源抗原重组到VV中的最终基本载体(图24c),即PUC8-TK-7.5K。
编码能与单克隆抗体8A2结合的28kd蛋白的EcoRI片段,并不含有编码该蛋白N末端部分的顺序。因此该蛋白的原有起始密码子和先导顺序都缺失了。
为补偿这些缺失区,制备了两个不同的构建体,并检验了其表达情况。在第一个构建体中,通过缺失基本表达载体PUC8-TK-7.5K(图24d)中多连接子的一部分而产生了一个读码内起始密码子。用EcoRV和SmaⅠ消化此载体而缺失部分多连接子(图24d),然后再连接。通过这一操作,SphⅠ限制位点中所含的ATG密码子被置于EcoRI片段上的卵囊蛋白编码区的正确读码内。测定新多连接子的顺序,证实了操作是成功的。由此构建体编码的蛋白,其推测的N末端氨基酸顺序示于图25A。
为了在该DNA顺序中不仅补偿起始密码子,而且补偿缺失的先导顺序,将EcoRI片段置于一种疟虫抗原的先导顺序之后的正确读码内。用于分离该先导顺序的疟虫抗原为被称为Ro-33的190kd蛋白(Certaetal.,EMBOJ.6∶4137,1987)。但必须指出,其它先导顺序,如球虫先导顺序,也可用于同样的目的。
为分离含有先导顺序的DNA片段,用DraⅠ消化Ro-33DNA。分离出含有限制酶PvuⅡ和HindⅢ识别位点的片段,并用HindⅢ消化。将原始载体构建体PUC8-TK-7.5K(图24c)用SalⅠ切割,用Klenow处理,然后用HindⅢ消化。在此载体片段中克隆所分离的DraⅠ-HindⅢ疟虫抗原先导片段。用此构建体来表达一种融合蛋白,即恶性疟虫的190kd蛋白与由抗体8A2识别并由EcoRI片段编码的禽艾美球虫抗原之间的融合蛋白。此融合蛋白的推测N末端氨基酸顺序示于图25B。
将编码28kd蛋白的EcoRI片段克隆到基本载体(图24c)中所含的多连接子的EcoRI位点中。繁殖以正确取向含有上述片段的构建体,并用来重组到牛痘病毒中。
由于上述片段的翻译起始位点插入基本载体(见上)的方式不同,重组牛痘病毒所要表达的基因可能有两种不同的N末端顺序(图25)。在第一个构建体中只另入了3个额外的氨基酸(Met、Arg和Trp)(图25A),而在第二个构建体中,总共有47个得自190kd疟虫抗原先导顺序的氨基酸与由单克隆抗体8A2识别的多肽的N末端融合(图25B)。在该先导顺序的潜在切割位点处进行加工后,除去了19个额外的氨基酸,从而产生一个以Val、Thr、His起始的成熟蛋白。
编码由单克隆抗体6A5识别的20kd蛋白的EcoRI片段含有整个顺序。不经进一步加工而将此片段如上所述克隆到VV载体的EcoRI位点中。
利用选择重组病毒的两步法,将上述编码球虫抗原的基因重组到牛痘病毒WR株中。
第一步是用培养基I[Eagle氏最低必需培养基(MEM),5%胎牛血清(FCS;得自Amimed),青霉素/链霉素(分别为100单位/ml和100μg/ml),2mM谷氨酰胺;所有试剂都得自Gibco]在8cm2培养皿中培养CV1猴细胞至80~90%汇合。除去培养基,换用0.2ml含有温度敏感性牛痘病毒tsN7株(Drillen et al.,Virology 131∶385,1983)的病毒悬浮液,其浓度为0.1噬菌斑形成单位(pfu)/细胞。将培养皿在室温下放置1小时,然后每皿加入2ml培养基I,将培养皿放在CO2培养箱中于33℃(允许该病毒生长的温度)下培养2小时(Kieny et al.,Nature 312∶163,1984)。
在结束上述培养一个半小时前,制备含DNA的磷酸钙沉淀。此沉淀含有HeBS缓冲液(280mMNaCL、1.5mM磷酸氢钠、50mMHEPES)、200ng纯化的牛痘WR株病毒DNA和200ng含质粒DNA的纯化球虫抗原基因,总体积为0.55ml。每种DNA都是以1μlTE缓冲液(10mMTris-HCL,PH7.5,1mMEDTA)加入。向此溶液中滴加0.65ml250mM氯化钙溶液并伴以轻轻旋转。将此混合液于室温下放置20分钟。
培养2小时后,从培养皿中吸出培养基,换用0.25ml上述含DNA的磷酸钙沉淀,并于室温下放置1小时。然后每皿加入2ml培养基I,将培养皿放在5%CO2培养箱中于39.5℃下培养2小时(Kieny et al.,同上)。在此温度下,ts N7病毒不能复制,因而便选择出了至少在ts7座位中已经重组的病毒。因为磷酸钙最终将对细胞生长产生抑制作用,所以在上述培养2小时后除去培养基,并在轻轻旋转下将细胞用1ml PBS洗三次。吸出最后一次的PBS溶液,每皿加入2ml培养基I。继续于39.5℃下在CO2培养箱中培养2天。
经过两天的培养后,将含有培养基和细胞的培养皿短时间放置于-30℃下,然后融化,从皿底刮下仍然附着的细胞,将该悬浮液如上所述进行超声处理。将此匀浆液用于第二个选择步骤。
在这一步骤中,从生长在8cm2培养皿中的L143B TK细胞(ATCCCRL 8303)的几乎汇合的细胞苔中除去培养基,换用0.2ml末稀释的匀浆液或用PBS以1∶5或1∶30(V/V)稀释的匀浆液。使TK-细胞的感染在室温下进行1小时。
培养后,向细胞中加入2ml含有0.1mg/ml溴代脱氧尿苷(BUdR,Sigman Chemical Co.)的半固体培养基Ⅱ(培养基I加非必需氨基酸(GIBCO;序号043-1140)、必需维生素(GIBCO;序号042-1120)和1%琼脂糖)。然后把培养皿放在CO2培养箱中于37℃下培养16-24小时。在细胞上铺上第二层除上述成分外还含有0.2%中性红的半固体培养基Ⅱ,把培养皿再培养16-24小时。出现了清晰可见的无色噬斑,用巴氏吸管穿破噬斑区,以单个的克隆回收病毒(噬斑纯化)。将以这种方式回收的病毒如上所述培养在CV1细胞上,并在143B TK-细胞上进行第二轮和第三轮噬斑纯化。如上所述培养和纯化这些由噬斑纯化的病毒。
为检验该重组病毒表达球虫抗原的情况,将用重组病毒感染的CV1细胞用台式离心机沉降(HettichMikrorapidK,于20℃下以100%离心3分钟),沉淀用PBS洗两次,再离心后再悬浮于PBS中。交细胞悬浮液加到玻璃显微镜载片(Flow)上,使其干燥。第二种方法包括,在显微镜载片(MilesLab-Tek4808)上直接培养CV1细胞,用病毒感染细胞,培养1-2天。然后用PBS洗去细胞上的生长培养基,于室温下使细胞在载片上干燥。为固定细胞,将载片于-30℃下浸在丙酮中至少一小时,使其在室温下干燥。
将用PBS稀释的小鼠抗球虫抗原单克隆抗体铺在显微镜载片上,使液体均匀地盖在细胞上。把载片放在37℃的潮湿培养箱中1小时,然后用PBS洗涤几次。无需使载片干燥,将也用PBS稀释的第二抗体(FITC标记的羊抗小鼠IgG,Nordic)铺在载片上,把载片放在37℃的湿润培养箱中1小时,使抗体起反应。用PBS洗涤几次后,使载片完全干燥。将几滴20%(V/V)甘油水溶液吸到载片上,在上面放一张盖玻片(Menzel24×60)。然后用显微镜(ZeissICM405、F10或Planapo63物镜)在紫外光下观察细胞制备物的荧光。
WR株病毒可以在几乎所有类型的细胞中繁殖(Drillenetal.,J.Virology28∶843,1978),其繁殖可通过空斑的形成而直接观察到。但在多数情况下都是用鸡胚成纤维(CEF)细胞来制备大量的病毒。
为得到CEF细胞,从卵中分离出11日龄的胚,剔除其四肢,将其切成小片并于室温下在0.25%胰蛋白酶溶液(Difco)中再悬浮2小时。用1倍体积的培养基1稀释此悬浮液,用细胞筛(Bεllco,150目)过滤,然后沉降细胞(Hermie台式离心机,5分钟,2,000rpm,室温)。将细胞沉淀再悬浮于1/4原体积的培养基I中,将此CEF细胞悬液接种到细胞培养皿中。根据细胞的起始密度,使培养物生长1-2天,直接用于感染或在再传代1-2次后用于感染。有关建立这种初级培养物的简要介绍可见Frehney的《动物细胞培养》一书的第11章99页(CultureofAnimalCells,AlanR.LissVerlag,NewYork1983)。
为进行感染,从生长在175cm培养瓶(Falcon 3028)中的80-90%汇合的CEF细胞中除去培养基,于室温120℃下在含有病毒(0.1pfu/细胞,0.01ml/cm2)的PBS溶液中培养细胞1小时(PBS/Dulbecco,Amlmed)然后加入培养基I(0.2ml/cm2),将培养瓶于37℃下培养2-3天,直到约80%的细胞溶解。所得的母液直接与细胞和原始培养瓶中的培养基一起于-30℃下贮存,准备用于病毒纯化。
利用下列纯化步骤来得到去除了所有宿主细胞特有成分的病毒制备物。将贮存于-30℃下的感染细胞培养物融化,振荡成刮下培养瓶表面残留的细胞。从培养基中离心出细胞和病毒(Sorvall离心机,GSA转子,于10℃下以5,000rpm离心1小时)。将细胞和病毒颗粒的沉淀再悬浮于PBS(体积为沉淀的10-20倍)中,并如上所述再次离心。然后将此沉淀再悬浮于10倍体积的RSB缓冲液中(10mM Tris-HCL,pH8.0,10mM KCL,1mM MgCL2)。
为了溶解其余的完整细胞,并从细胞膜中除去病毒,对上述悬浮液进行超声处理(两次,每次以60瓦处理10秒,室温,带有4mm探针的Labsonic1510)。然后在10℃下将该混合物用SorvalGSA转子以3,000rpm离心3分钟。这样便得到了没有细胞核和大的细胞碎片的病毒悬浮液。小心除去上清液,将沉淀再悬浮于RSB缓冲液中,再进行超声处理并如上所述进行离心。
将第二次上清液与第一次上清液合并,铺在10ml35%蔗糖层(Fluka,在10mMTris-HCL,pH8.0中)上,于10℃下以14,000rpm在KontronTST28.38/17转子(类似于BekmanSW27)中离心90分钟。倒出上清液,将病毒颗粒沉淀再悬浮于10ml10mMTris-HCL(pH8.0)中,进行超声处理以匀浆该混合液(如上所述匀浆2次,每次10秒),然后加到加阶式梯度上进行进一步的纯化。
阶式梯度由蔗糖在10mM Tris-HCL(pH8.0)中的不同浓度的溶液各5ml构成,其浓度如下20%、25%、30%、35%和40%。于10℃下,将此梯度置于Kontron TST 28.38/17转子中以14,000rpm离心35分钟。在30%~40%蔗糖区内可见若干条含病毒颗粒的条带。移出该梯度的这一区域(10ml),用PBS(20ml)稀释蔗糖溶液,并沉降病毒颗粒(Kontron转子,10℃下以14,000rpm离心90分钟)。沉淀中几乎只含有病毒颗料(通过O.D.测量结果与空斑检测结果的比较而作出判断,见下文)。将此沉淀再悬浮于PBS中,使病毒浓度平均为1-5×109pfu/ml。此病毒贮备物或者直接使用,或者用PBS稀释后使用。
采用两种方法来确定病毒浓度和病毒贮备物的纯度。简便的是,用分光光度计(Uvikon 860)测量贮液在260nm处的光密度(OD/260),得到病毒颗粒的绝对浓度,其中1OD/260大约相当于1.2×1010个颗粒/ml(Joklik,virology 18∶9,1962)。此外还通过在细胞上测定病毒的效价(空斑检测)而得到病毒浓度,假定60个病毒颗粒中只有一个能感染细胞。
为在培养细胞上确定病毒浓度,用培养基I在8cm2塑料培养皿(Falcon 3001)上培养CEF细胞。当细胞生长至80-90%汇合时,除去培养基,换用0.2ml稀释的病毒在PBS中的溶液,于室温下放置1小时。将病毒贮液进行10倍依次稀释。室温培养后,在每个平皿中加入2ml半固体培养基I(培养基I+1%琼脂糖),并将平皿在CO2培养箱中放置16-24小时。然后铺上2ml含0.2%中性红(Fluka 72210)的半固体培养基I,以染色活细胞,将平皿再培养16-24小时。然后在显微镜下计数无色空斑。
7.2.2、小鸡免疫进行下列试验以确定一些牛痘病毒载体是否能预防小鸡受致病性禽艾美球虫品系(T2-750/7、T7-776/1或T6-771品系)生成孢子的卵囊的感染,这些载体所携有的基因编码能与单克隆抗体8A2和6A5特异结合的禽艾美球虫蛋白。
所有试验都使用由孵化场(E.Wuthrich,Belp,Switzerland)供应的产蛋白品种(Warren)的小公鸡进行。将日龄小鸡饲养在加热电池孵化器中,直至指定的日龄,然后把它们分成各个不同的试验组,并放在铁丝笼中使其不受球虫病感染。在整个试验过程中,喂之以玉米、小麦和大豆粉(粗蛋白21.7%)为主的生长(broiler-grower)饲料。
在第一个试验中,在第42天将等重的小鸡随机分成三组,每组6只鸡。3天后,用重组型或野生型牛痘病毒对小鸡进行免疫,免疫时在右翅膀下进行两次皮下注射,每次注射50μl病毒悬浮液(1010pfu/ml,在PBS中)。使用了两种重组牛痘病毒,它们都含有编码能与抗体8A2特异结合的禽艾美球虫蛋白的DNA。其中一种病毒(定名为37K M3)含有190kd疟虫抗原的先导顺序;另一种病毒(定名为37K K3)则缺少这个先导顺序。用野生型牛痘病毒WR株作为阴性对照。
第一次注射1周后,在同样的条件下进行一次加强注射,此次注射用前一次所用相同类型的牛痘病毒在小鸡的左翅膀下进行。加强注射1周后(第59天),从所有小鸡体内各取2ml血样,利用ELISA法检测血清中是否存在特异性抗体。简言之,在一块微量滴定板(NUNCImmunoplateF96)和各小孔中涂上禽艾美球虫子孢子的悬浮液(10,000个细胞/ml),并与稀释倍数逐渐增加的鸡血清一起保温。所用的检测试剂为与辣根过氧化物酶结合的羊抗鸡免疫球蛋白(DirkegaardandPerryLaboratory,Gaithersburg,U.S.A.),并同时使用四甲基联苯胺作为其底物。效价定义为给出至少双倍于背景值光密度的血清稀释度的倒数值(表7)。
第一次注射四周后(第73天),用50,000个生成孢子的卵囊感染小鸡。将悬浮于1ml生理盐水中的球虫接种物利用一个带有纯针头的带刻度注射器经口施用于小鸡的嗉囊中。第80天,处死所有小鸡,解剖后,对盲肠总损伤计分(0=正常,1=轻度感染,2=中度感染,3=严重损伤,4=小鸡死于球虫病)。在感染周期的最后两天内,定量收集粪便,测定有代表性的粪便样品中所有排泄出的卵囊的数目。结果示于表7。
表7用表达28kd蛋白的牛痘病毒接种45日龄的小鸡病毒α小鸡数抗体效价盲肠损伤计分卵囊日排泄量/鸡(×10-637K3b4301.3314937M3b13601.50107野生型b2002.60271a-病毒37M3含有190kd疟虫抗原的先导顺序,而病毒37K3不含此顺序。野生型病毒为牛痘病毒WR株。
b-有两只鸡在感染球虫病前死亡。
表7表明,与野生型对照病毒相比,两种含有编码28kd蛋白的DNA的病毒,都诱导特异于寄生虫的抗体的产生,并赋予某种预防卵囊感染的作用,这都是根据盲肠损伤计分的下降和卵囊排泄量减少来判断的。就预防球虫病而言,这两种病毒是等效的,但是,带有疟虫先导顺序(37M3)的构建体在鸡体内产生的抗子孢子抗原的抗体效价比标准病毒构建体(37K3)要高,这表明,融合构建体有一定的优点。
在第二个试验中,如上所述饲养并免疫小公鸡,但从第22天开始。此时施用2×108pfu的病毒剂量(在100mlPBS中)。所用的病毒来自不同的牛痘病毒制备物,病毒中含有编码28kd蛋白的DNA,该蛋白不带有(定名为37KS)或带有(定名为37M19)疟虫先导顺序。用同样的野生型WR株病毒作对照。在第一次注射1或2周后,以同样的剂量在右翅膀下进行加强注射。
第57天(第一次注射5周后),用50,000个生成孢子的卵囊感染所有小鸡。一周后,如上所述将鸡处死,解剖并计分。还测定感染后的日增重和最后两天期间的卵囊日排泄量。结果示于表8。
表8用表达28kd蛋白的牛痘病毒接种22日龄的小鸡
a-病毒37M19含有190kd疟虫抗原的先导顺序。病毒37KS不含此顺序。野生型病毒为牛痘病毒WR株。
表8表明,与野生型对照病毒相比,两种含有球虫DNA的病毒都赋予针对致病性卵囊感染的某种预防作用,这是根据增重量、盲肠损伤计分和卵囊排泄量来判断的。这两种病毒大致等效。在初次注射一周后进行加强注射,使增重量略高,卵囊排泄量略低,但盲肠损伤计分对这两个加强计划来说大致相同。
在第三个试验中,考察了三次接种的效应。给21日龄的小鸡注射(右翅膀)两份50μl(3×109pfu/ml)的病毒悬浮液,该病毒为野生型牛痘病毒或含有编码20kd蛋白的DNA的病毒,所述蛋白能与单克隆抗体6A5特异结合。在第28天,所有小鸡都在左翅膀下进行相同剂量的加强注射。有些鸡还在第35天在翅膀两侧再进行一次同样剂量的加强注射。其它小鸡未再接种,而作为进一步的对照。
第42天,从所有小鸡体内取血样,如前所述用ELISA法检测是否存在针对寄生虫的子孢子阶段的特异抗体。第49天(第一次注射4周后),用50,000个生成孢子的卵囊感染所有的小鸡。一周后,如上所述处死这些小鸡,解剖后对总的盲肠损伤计分。每周记录体重以计算日增重量,在感染周期的最后两天内收集粪便,以测定卵囊排泄量。结果示于表9。
表9用表达20kd蛋白的牛痘病毒接种21日龄的小鸡卵囊排泄量/gVV 注射次数小鸡数抗体效价日增重(g) 盲肠损伤计分粪便(×10-6)rVV262102.92.331.69rVV3672004.21.671.32WT36560-4.12.672.09N-60-3.82.831.75
rVV含有球虫DNAWT野生型N无表9的数据表明,注射三次时,产生球虫抗原的病毒产生特异于子孢子蛋白的高效价抗体。此外。用这种类型的重组病毒进行的两组处理,都产生了针对卵囊感染的某种预防作用,这是根据增重量提高、盲肠损伤计分下降、和卵囊排泄量降低来判断的。比较用来接种的对照得到的结果,表明野生型牛痘病毒接种不赋予预防作用。因此,由携有球虫DNA的病毒赋予的保护作用是特异性的,并不是由于与牛痘病毒本身接触而引起的一般性免疫刺激。三次接种比两次接种更为有效。
可对本发明进行许多修改和变化而不偏离其要旨和范围,这对本领域专业人员来说是显而易见的。给出此处所述的具体实施方案只是举例,本发明仅由所附的权利要求书来限定。
权利要求
1.一种具有艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇的蛋白的制备方法,该方法包括(a)培养含有重组载体的转化宿主生物,所述重组载体含有编码一种蛋白的DNA顺序,所述蛋白具有艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇,所述表面抗原的表观分子量约为28、37、120或大于200千道尔顿,并能够与一种或多种保藏在ATCC、指定登记号为HB9707至HB9712的单克隆抗体特异结合;所述培养是在能表达所述DNA顺序或片段的条件下进行的;(b)从培养物中分离所述蛋白。
2.一种根据权利要求1的方法,其特征在于,所用的转化宿主生物中所含的重组载体中所含的DNA顺序,编码具有图15所示的氨基酸顺序或其功能等价顺序的蛋白。
3.一种根据权利要求1的方法,其特征在于,所用的转化宿主生物中所含的重组载体中所含的DNA顺序,编码具有图17所示的氨基酸顺序或其功能等价顺序的蛋白。
4.一种根据权利要求1的方法,其特征在于,所用的转化宿主生物中所含有重组载体中所含有DNA顺序,编码具有图19所示的氨基酸顺序或其功能等价顺序的蛋白。
5.一种根据权利要求1的方法,其特征在于,所用的转化宿主生物中所含有重组载体中所含有DNA顺序,编码具有图21所示的氨基酸顺序或其功能等价顺序的蛋白。
6.一种能够表达一个DNA顺序的转化宿主生物的制备方法,所述DNA顺序编码如权利要求1-5中任一项所限定的蛋白,该方法包括,以已知方式用含有所述DNA的重组载体转化宿主生物。
7.一种针对如权利要求1-5中任一项所限定的蛋白的抗体的制备方法,该方法包括,以已知方式给能够诱发针对所述蛋白免疫反应的动物注射所述蛋白,并利用本领域已知方法分离所产生的抗体。
8.一种用于对家禽进行抗球虫病免疫的疫苗的制备方法,该方法包括,将如权利要求1-5中任一项所限定的蛋白与一种药学上可接受的载体混合。
9.一种用于对家禽进行抗球虫病免疫的疫苗,该疫苗含有一种或多种如权利要求1-5中任一项所限定的蛋白和一种生理上可接受的载体。
10.如权利要求1-5中任一项所限定的蛋白在制备能够预防家禽球虫病的疫苗中的应用。
11.一种用如权利要求1-5中任一项所述的方法制备的蛋白,该蛋白具有艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇。
12.一种用如权利要求6所述的方法制备的转化宿主生物,该宿主生物能够表达一个DNA顺序,该顺序编码如权利要求1-5中任一项所限定的蛋白。
13.一种用如权利要求7所述的方法制备的抗体,该抗体针对如权利要求1-5中任一项所限定的蛋白。
14.如以上所述的发明。
15.一种蛋白,该蛋白具有艾美球虫表面抗原的一个或多个免疫反应决定簇和/或抗原决定簇,所述表面抗原的表观分子量约为28、37、120或大于200千道尔顿,并能与保藏在ATCC、指定登记号为HN9707至HB9712的一种或多种单克隆抗体特异结合。
16.权利要求15的蛋白,其特征在于,该蛋白具有图15所示的氨基酸顺序,或者是其功能等价物。
17.权利要求15的蛋白,其特征在于,该蛋白具有图17所示的氨基酸顺序,或者是其功能等价物。
18.权利要求15的蛋白,其特征在于,该蛋白具有图19所示的氨基酸顺序,或者是其功能等价物。
19.权利要求15的蛋白,其特征在于,该蛋白具有图21所示的氨基酸顺序,或者是其功能等价物。
20.一个DNA顺序,该顺序编码根据权利要求15至19中任一项的蛋白。
21.权利要求20的DNA顺序,其特征在于,该顺序含有图14所示的全部或部分核苷酸顺序。
22.权利要求20的DNA顺序,其特征在于,该顺序含有图16所示的全部或部分核苷酸顺序。
23.权利要求20的DNA顺序,其特征在于,该顺序含有图18所示的全部或部分核苷酸顺序。
24.权利要求20的DNA顺序,其特征在于,该顺序含有图20所示的全部或部分核苷酸顺序。
25.一种重组载体,它含有根据权利要求20至24中任一项的DNA顺序。
26.一种根据权利要求25的重组载体,其特征在于,该重组载体能够指导所述DNA顺序在可相容的宿主生物中的表达。
27.权利要求25或26的重组载体,其特征在于,该载体为痘病毒载体。
28.权利要求25或26的重组载体,其特征在于,该载体为一种大肠杆菌载体。
29.权利要求28的重组载体,其特征在于,该载体为pEV/2-4。
30.一种用根据权利要求25至29中任一项的重组载体转化的宿主生物。
31.一种根据权利要求30的转化宿主生物,其特征在于,该转化宿主生物能够表达包含在所述重组载体中的一个DNA顺序,该顺序编码如权利要求15至19中任一项所限定的蛋白。
32.一种抗体,该抗体针对一种如权利要求15至19中任一项所述的蛋白。
33.一种根据权利要求32的抗体,其特征在于,该抗体是一种单克隆抗体。
34.一种根据权利要求33的抗体,其特征在于,该抗体选自ATCCHB9707、HB9708、HB9709、HB9710、HB9711、HB9712。
全文摘要
本发明提供编码艾美球虫表面抗原的DNA顺序、含有这些DNA顺序的重组载体、含有这些载体的转化宿主生物、以及利用转化的微生物制备抗原的方法。还提供了用艾美球虫表面抗原预防家禽球虫病的方法。施用这些表面抗原进行预防时,该抗原可以是纯化的蛋白,也可以是编码这些蛋白的DNA形式,该DNA位于合适的病毒载体如牛痘病毒中。
文档编号A61K39/012GK1038837SQ89104278
公开日1990年1月17日 申请日期1989年6月3日 优先权日1988年6月3日
发明者沃纳·阿尔滕贝格, 玛丽·海伦·宾格, 理查德·安东尼·奇宗奈特, 理查德·艾伦·史兰马, 彼得·托马斯·隆梅迪科, 斯蒂芬·J·麦安德鲁 申请人:霍夫曼-拉罗奇有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1