一种稀土掺杂的不同形貌钛酸铋纳米晶薄膜及其制备方法与流程

文档序号:12580590阅读:888来源:国知局
一种稀土掺杂的不同形貌钛酸铋纳米晶薄膜及其制备方法与流程

本发明属于无机功能薄膜材料技术领域,具体涉及一种稀土掺杂的不同形貌的钛酸铋纳米晶薄膜及其制备方法。



背景技术:

铁电存储器以其优越的存储特性得到了人们的广泛关注,其中应用和研究最为广泛的铁电材料是锆钛酸铅Pb(Zr1-xTix)O3(简称PZT),它具有较低处理温度和很高的自发极化强度,但是PZT薄膜也存在抗疲劳特性差、含重金属铅、易挥发,会对环境和人体造成危害等问题。近年来,铋层状材料以SrBi2Ta2O9(SBT)、Bi4-xLaxTi3O12(BLT)为代表,特别是后者在制备温度、铁电特性和抗疲劳方面都明显优于前者,被广泛认为是最具有应用前景的铁电材料之一,引起了人们更多的关注。

钛酸铋(Bi4Ti3O12,BIT)是一种铋层状钙钛矿结构的铁电体,具有优良的压电铁电性能,但是显著的疲劳特性限制了其发展,通过掺杂可以稳定钙钛矿结构,从而增加其抗疲劳特性。因此,深入研究掺杂对钛酸铋性能的影响,对其在非挥发性存储器、光存储器、压电及光电器件的发展具有重要意义。本发明采用溶胶凝胶法在基片上形成一层晶种层,接着采用水热法在含有晶种层的基底上制备出了稀土掺杂钛酸铋薄膜(Bi4-xRxTi3O12,BRT)。



技术实现要素:

本发明的目的在于针对现有技术存在的上述不足,提供一种稀土掺杂的不同形貌的钛酸铋纳米(微米)晶薄膜及其制备方法。该方法工艺过程简单、易控,成本低廉,可重复性强,纯度高,制备得到的薄膜可广泛应用于非挥发性存储器、光存储器、压电及光电器件等技术领域。为实现上述目的,本发明所采用的技术方案如下:

一种稀土掺杂的钛酸铋纳米晶薄膜,该钛酸铋纳米晶薄膜由稀土掺杂钛酸铋铁电薄膜形成,化学式为Bi4-xRxTi3O12,其中0≤x≤0.85,R为稀土元素镧或镨或钕中的一种。

上述稀土掺杂的钛酸铋纳米晶薄膜的制备方法,包括以下步骤:(a)将基片清洗干净,封存备用;(b)将硝酸铋和硝酸R溶解在乙二醇甲醚中得A溶液,将钛酸四丁酯溶于乙二醇甲醚和乙酰丙酮混合液中得B溶液,将B溶液滴入A溶液中搅拌均匀得BRT溶胶;(c)将制得的BRT混合溶胶旋涂在基片上,高温退火处理后在基片上制得晶种层;(d)配制硝酸铋-硝酸R溶液,配制四氯化钛溶液,将硝酸铋-硝酸R溶液滴入四氯化钛溶液中,搅拌均匀并调节pH至碱性得前驱物溶液;(e)将表面制有晶种层的基片置于装有前驱物溶液的反应器中,进行水热反应即得。

按照上述方案,步骤(a)中基片分别用丙酮、乙醇以及去离子水超声清洗,接着用浓硝酸、氟化铵、尿素的混合溶液清洗,最后用去离子水冲洗干净后封存在无水乙醇中备用。

按照上述方案,步骤(b)制得的BRT溶胶中乙二醇甲醚与乙酰丙酮的体积比为6-8:4-2,BRT溶胶的浓度为0.05-0.4mol/L,BRT溶胶中Bi、R、Ti的摩尔比为4-x:x:3,0≤x≤0.85。

按照上述方案,步骤(c)中首先将BRT混合溶胶甩涂在基片上,接着将基片置于100-200℃热处理,然后再次甩涂1-29次,甩涂完成后将基片置于400-800℃高温退火1-30min。

按照上述方案,步骤(d)中制备硝酸铋-硝酸R溶液时首先向水中滴加少量硝酸,再将硝酸铋和硝酸R溶于水溶液得硝酸铋-硝酸R溶液,制备四氯化钛溶液时将四氯化钛溶于冰水中。

按照上述方案,步骤(d)中采用浓度为0.1-6mol/L的氢氧化钾调节前驱物溶液的pH值至9-14,前驱物溶液中Bi、R、Ti的摩尔比为4-x:x:Y,其中Y的取值在1.5-3之间。

按照上述方案,步骤(e)中反应器水热釜的填充度为50-90%,水热反应温度为150-240℃,反应时间为2-48h。

按照上述方案,所述基片为钛片、铂片、硅片、石英片中的一种。

与现有技术相比,本发明具有以下有益效果:(1)采用溶胶凝胶-水热法在基片制备了纯相BRT薄膜,结合了两种制备方法的优点,降低了反应温度;(2)制备的稀土掺杂铁电薄膜具有优良的电性能,可用于非挥发性存储器、光存储器、压电及光电器件方面制作;(3)工艺过程简单、易控,成本低廉,薄膜的纯度高。

附图说明

图1为本发明实施例1制备得到的BLT薄膜样品的XRD图;

图2为本发明实施例1制备得到的BLT薄膜样品的SEM图;

图3为本发明实施例1制备得到的BLT薄膜样品的P-E曲线图;

图4为本发明实施例2制备得到的BLT薄膜样品的XRD图;

图5为本发明实施例2制备得到的BLT薄膜样品的SEM图;

图6为本发明实施例2制备得到的BLT薄膜样品的P-E曲线图。

具体实施方式

为使本领域普通技术人员充分理解本发明的技术方案和有益效果,以下结合具体实施例和附图进行进一步说明。

实施例1

一种稀土掺杂的钛酸铋纳米晶薄膜,其化学式为Bi4-xRxTi3O12(0≤x≤0.85),该钛酸铋纳米晶薄膜的制备方法包括:

一、钛基片的预处理

将钛片裁剪成10mm×20mm的长方形,分别用丙酮、乙醇以及去离子水进行超声清洗,每次超声5min。随后将钛片放入浓硝酸、氟化铵、尿素的混合溶液中清洗,直至钛片恢复光亮的银白色表面。最后取出钛片用去离子水将残留液体冲洗干净,放入无水乙醇中封存备用。

二、溶胶制备

将硝酸铋、硝酸镧按化学计量比3.25:0.75溶解于适量乙二醇甲醚中,保持温度为45℃,直至混合物完全溶解,为补偿Bi在后续薄膜退火过程中的损失,补加10%过量的硝酸铋。在室温下把钛酸四丁酯溶入乙二醇甲醚和乙酰丙酮的混合液中搅拌均匀。将该钛酸四丁酯溶液滴入到前述制得的硝酸盐溶液中,搅拌1h静置24h后过滤,得到橙黄色透明的BLT溶胶。溶胶中乙二醇甲醚与乙酰丙酮的体积比为7:3,BLT溶胶的浓度为0.1mol/L,溶胶中Bi、La、Ti的摩尔比为3.25:0.75:3。

三、晶种层的制备

将制备的橙黄色透明溶胶以3000r/min的转速(旋转时间30s)甩涂在预处理后的钛基片上(钛片必须保持干燥),在150℃低温热处理5min,重复3次上述甩胶-热处理过程,最后在600℃高温退火处理5min。

四、水热前驱物的制备

将硝酸铋、硝酸镧按化学计量比3.25:0.75溶于水中(溶解前水中需加1-2ml浓硝酸),搅拌直至充分溶解,再继续搅拌15min得硝酸铋-硝酸镨混合溶液。量取TiCl4并在冰水浴中溶解得TiCl4溶液,冰水浴是为了避免TiCl4过分水解。将硝酸铋-硝酸镨溶液滴入TiCl4溶液中,搅拌15min,然后用浓度为1.5mol/L的氢氧化钾调节溶液pH值至12,继续搅拌15min得到水热前驱物溶液。水热前驱物溶液中Bi、La、Ti的摩尔比为3.25:0.75:1.5。

五、水热反应

将第三步制备的钛基片垂直插入反应釜中,再将白色悬浊状的水热前驱物溶液注入反应釜内,进行水热反应。反应釜的填充度为70%,水热反应温度为180℃,反应时间为24h。

实施例2

一种稀土掺杂的钛酸铋纳米晶薄膜,其化学式为Bi4-xRxTi3O12(0≤x≤0.85),该钛酸铋纳米晶薄膜的制备方法如下:

一、钛基片的预处理

将钛片裁剪成10mm×20mm的长方形,分别用丙酮、乙醇以及去离子水进行超声清洗,每次超声5min。随后将钛片放入浓硝酸、氟化铵、尿素的混合溶液中清洗,直至钛片恢复光亮的银白色表面。最后取出钛片用去离子水将残留液体冲洗干净,放入无水乙醇中封存备用。

二、溶胶制备

将硝酸铋、硝酸镧按化学计量比3.25:0.75溶解于适量的乙二醇甲醚中,保持温度为45℃,直至混合物完全溶解,为补偿Bi在后续薄膜退火过程中的损失,补加10%过量的硝酸铋。在室温下把钛酸四丁酯溶入乙二醇甲醚和乙酰丙酮的混合液中搅拌均匀。将该钛酸四丁酯溶液滴入到前述制得的硝酸盐溶液中,搅拌1h静置24h后过滤,得到橙黄色透明的BLT溶胶。BLT溶胶中乙二醇甲醚与乙酰丙酮的体积比为7:3,BLT溶胶的浓度为0.1mol/L。溶胶中Bi、La、Ti的摩尔比为3.25:0.75:3。

三、晶种层的制备

将制备的橙黄色透明溶胶以3000r/min的转速(旋转时间30s)甩涂在预处理后的钛基片上(钛片必须保持干燥),在150℃低温热处理5min,重复9次上述甩胶-热处理过程,最后在700℃高温退火处理5min。

四、水热前驱物的制备

将硝酸铋、硝酸镧按化学计量比3.25:0.75溶于水中(溶解前水中需加1-2ml浓硝酸),搅拌直至充分溶解,再继续搅拌15min得硝酸铋-硝酸镧混合溶液。量取TiCl4并在冰水浴中溶解得TiCl4溶液。将硝酸铋-硝酸镧溶液滴入TiCl4溶液中,搅拌15min,然后用浓度为1.5mol/L的氢氧化钾调节溶液pH值至12,继续搅拌15min得到水热前驱物溶液。水热前驱物溶液中Bi、La、Ti的摩尔比为3.25:0.75:1.5。

五、水热反应

将第三步制备的钛基片垂直插入反应釜中,再将白色悬浊状的水热前驱物溶液注入反应釜内,进行水热反应。反应釜的填充度为70%,水热反应温度为220℃,反应时间为24h。

为充分了解本发明实施例制备的钛酸铋纳米晶薄膜的结构及性能,我们分别对其进行了XRD、SEM和P-E分析测试,结果如图1-6所示。实施例1制备得到的镧掺杂钛酸铋纳米晶薄膜样品的XRD、SEM和P-E测试结果分别如图1-3所示,实施例2制备得到的镧掺杂钛酸铋纳米晶薄膜样品的XRD、SEM和P-E测试结果分别如图4-6所示。

从图1和图4可以看到实施例一和实施例二均能制得单一相的层状钙钛矿结构的BLT薄膜,其中实施例二的BLT产物结晶度较高。图2和图5为实施例一和实施例二样品的扫描电镜图,可以看到图2中产物形貌为块状小颗粒,晶粒大小比较均匀,晶粒空隙不大,比较致密;图4产物形貌为带状和棒状。图3和图6为实施例一和实施例二样品的P-E测试结果,可以看到图3产物的剩余极化强度为4.5μC/cm2,而图6产物的剩余极化强度明显高于图3,为20.1μC/cm2

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1