石墨烯协同亲水去油污功能陶瓷材料及其制备方法和应用与流程

文档序号:11398447阅读:301来源:国知局
石墨烯协同亲水去油污功能陶瓷材料及其制备方法和应用与流程
本发明涉及一种水去油污陶瓷材料,具体涉及一种石墨烯协同亲水去油污功能陶瓷材料及其制备方法和应用。
背景技术
:化学洗涤剂大多是石油垃圾开发的副产品。由于它溶于水、造价低、洗涤性能好,所以一经发现,很快被人们所接受。化学洗涤剂在使用时会沾在皮肤上,大约有0.5%渗入血液,皮肤上若有伤口则渗透力提高10倍。进入人体内的化学洗涤剂毒素可使血液中钙离子浓度下降,血液酸化,容易疲倦,还使肝脏的排毒功能降低,使原本该排出体外的毒素淤积在体内,积少成多,使人们免疫力下降,肝细胞病变加剧,容易诱发癌症。据报导,人工实验培养胃癌细胞时,注入化学洗涤剂基本物质las会加速癌细胞的恶化,las的血溶性也很强,容易引起血红蛋白的变化,造成贫血症。中央电视台曾报道,洗洁精存在"烧手"和毒副作用等问题,不仅对皮肤有刺激性,而且用于洗涤蔬菜、水果和餐具时残留的烷基苯磺酸盐对人体也有害,必须用大量的水进行冲洗才能去除有害物质。这些有害物质长时间累积,严重时会导致女性流产,胎儿畸形,恶病缠身!吉林电视台曾经做过一个调查,工作人员挑选了市场上的9种洗洁精,并用它们分别清洗餐具,在用自来水冲洗12遍后,检测发现仍有0.03%的残留。近年来,欧美国家一些研究机构还发现,洗涤剂类化学品或其分解产物烷基酚可使一些鸟类及哺乳动物的个体出现生殖器官变小,或使成熟个体的雄性动物出现卵巢等雌性化的现象,某些洗涤助剂对人体有潜在致畸、致癌等遗传毒理学效应。研究人员还用家用洗涤剂对鱼进行急性毒性试验表明,在洗涤剂用量远远低于日常家庭用量的情况下,5种洗涤剂对鱼类有不同程度的影响,并且发现这5种洗涤剂在存放一定时间后,其毒性亦没有发生明显下降。这意味着,含有家用洗涤剂的生活污水不经任何处理就排放到水体中,可能会对鱼类造成一定的影响。洗涤剂在给人们的生活带来诸多方便的同时,也带来了环境污染和影响人体健康等问题。1970年,日本琵琶湖等封闭水域出现了水藻疯长、鱼类死亡现象,经分析和研究表明,是由于水中磷酸盐含量超过正常值,水体富营养化。80年代以后,我国湖泊、水库等水域也普遍受到磷、氮等物质的污染,污染状况令人担忧。我国许多湖泊,如长春的南湖、济南大明湖、南京玄武湖、武汉的东湖、江苏的太湖、安徽的巢湖、杭州西湖和昆明的滇池等都出现了严重的富营养化,水体中磷元素含量大大超标。在一些近海海域,因为水体中氮、磷含量严重超标,使一些浮游生物呈爆发性繁殖,具有红色素的浮游生物聚集使海水变为淡红色,称为"赤潮"现象。水体富营养化使水域生态系统遭到破坏,鱼类、贝类大量死亡,从而影响了人类生活。针对化学洗涤剂存在的这些问题,很多科学家和企业也一直在研究,期望通过减少洗涤剂的化学成分,减少洗涤剂对人体和环境的危害。包括采用无机材料与化学活性剂复合或植物提取等方式。如申请号为201310468649.1的专利,一种洗涤剂及其制备方法;申请号为200810027622.8的专利,一种洗衣材料、其制备方法及洗衣球;申请号为200910064275.0的专利,一种具有漂白杀菌功能的洗衣球;申请号为02121919.2的专利,一种粉末洗涤剂;申请号为0087475.5的专利,洗涤剂组合物。以上专利大多采用无机矿物材料与化学活性剂复合,或无机矿物材料作为活性剂载体,还是通过活性剂的化学作用洗涤衣物。虽然以上专利采用了无机矿物材料的碱性作用,并减少了化学洗涤剂的用量,但也不能从根本上解决化学洗涤方式。采用无机矿物材料与功能陶瓷材料复合制成陶瓷球等产品,可以改变水分子团结构并降低水的表面张力,清洗餐具时可改善水的去油污力,实现用水就可轻松清洗餐具表面油污。这是一种纯物理洗涤的新方式。例如申请号为201710052787.x的专利,公开了一种改善水去油污功能材料及其制备方法和应用。申请人在使用以上专利产品时发现,该产品在水温低的情况下清洗去油污效果不明显,如何解决这一问题成为研究的重点。技术实现要素:针对现有技术的不足,本发明的目的是提供一种石墨烯协同亲水去油污功能陶瓷材料,运用纯物理洗涤方式,不含化学活性剂,天然环保,去油污效果好,在低温情况下清洗效果不受影响;本发明同时提供其制备方法和应用。本发明所述的石墨烯协同亲水去油污功能陶瓷材料,由如下重量百分数的原料制成:无机矿物材料5-30%、负离子粉10-50%、碳酸钠2-10%、氧化锆3-20%、氧化钯0.1-0.5%、无机抗菌剂1-10%、氧化钛2-8%、氧化锌3-20%、氧化铈0.1-0.5%、氧化硼0.2-2%、氧化镁0.2-2%和氧化石墨烯0.1-1%。石墨烯由于其独有的特性,被称为“神奇材料”,科学家甚至预言其将“彻底改变21世纪”。石墨烯还具有诸多引人瞩目的光学属性,近年来ibm的研究人员已发现,石墨烯能够吸收和辐射高达40%的远红外线。据中科院上海物理应用技术研究所樊春海、黄庆研究员领导的团队于2010年在实验上首次发现石墨烯的抗菌作用(acsnano,2010,4,4317),即氧化石墨烯可以破坏细菌的细胞膜,从而导致胞内物质外流并杀死细菌。石墨烯不但可以通过对细菌细胞膜的插入进行切割,还可以通过对细胞膜上磷脂分子的大规模直接抽取,来破坏细胞膜从而杀死细菌。石墨烯具有的远红外线辐射和抗菌特性,不仅可以协同本发明中其它功能材料的远红外线辐射和抗菌性能,同时还能激发和催化这些材料的功能特性,起到协同增效和激发作用。本发明添加氧化石墨烯的目的,除了与其它材料协同增效外,主要是利用其特有的光、磁、电等特性激发材料的功能。再就是利用氧化石墨烯与配方中的金属离子材料形成无数个原电池,产生无数个微电压场,从而可激活水分子团的活性并让水分子极性增强,能够弥补水温低时水分子团活性差的缺点,实现快速清洗油污。解决其它材料水温低时清洗效果差的问题。所述的负离子粉的负离子释放量为1-8万个/cm3。在配方中加入负离子材料,是利用其对水的震荡活化效应。负离子在水中通过震荡将大分子团水震荡裂变成小的分子团水,使水变成具有渗透力和溶解力超强的小分子团活性水。小分子团活性水不仅能够促进水的还原效应,降低水的表面张力,还起到辅助清除果蔬表面农残和蜡质的作用,迅速恢复果蔬分子结构,从而起到改善果蔬口感的功效,使清洗过的果蔬口感恢复其本源,更香甜可口。所述的负离子粉优选山东木齐健康科技有限公司市售产品。所述的氧化钯是作为协同激发氧化锆材料的远红外线辐射功能材料。在配方中加入无机抗菌剂是利用抗菌材料的杀菌和抑菌效应,杀灭水中的细菌,防止再次被污染。所述的无机矿物材料为贝壳粉、电气石、沸石、蒙脱石、高岭土或钾长石中的一种或几种。所述的负离子粉的负离子释放量为1-8万个/cm3。本发明所述的石墨烯协同亲水去油污功能陶瓷材料的制备方法,包括如下步骤:(1)混料:将无机矿物材料、负离子粉、碳酸钠、氧化锆、氧化钯、无机抗菌剂、氧化钛、氧化锌、氧化铈、氧化硼、氧化镁和氧化石墨烯放入球磨机中,球磨至粒径为50-200μm,得复合粉体材料;(2)催化:将复合粉体材料升温至600-1000℃,保温4-6小时后,冷至10-25℃,研磨至粉体粒径为50-200μm,筛选,得所述的石墨烯协同亲水去油污功能陶瓷材料。步骤(2)所述的升温为匀速升温,升温速率为4-10℃/分钟。所述的石墨烯协同亲水去油污功能陶瓷材料具有多种应用,具体如下:第一种,应用步骤如下:(1)按如下质量百分比进行配料:石墨烯协同亲水去油污功能陶瓷材料10-50%、氧化硅20-60%、氧化铝10-50%、碳酸钙10-50%、余量为羧甲基纤维素;混合、研磨至粉体粒径为300-800μm,得复合陶瓷材料;(2)成型:将复合陶瓷材料造粒成球或冲压成片型,成球过程不断喷洒水;(3)将步骤(2)成型后的复合陶瓷材料在300-1000℃烧制2-8小时,筛选,得具有亲水去油污性能的油切颗粒球或油切陶瓷片。步骤(2)成型过程中如果冲压成片,那么成型过程中不需要喷洒水。所述的具有亲水去油污性能的油切颗粒球或油切陶瓷片,能够应用于净水、洗菜、洗衣和洗浴设备中。第二种,按如下质量百分比进行配料:石墨烯协同亲水去油污功能陶瓷材料3-19%、硅藻土80-95%、粘合剂1-5%;将三者混合,经800-1200℃烧制2-8小时,得具有净水和亲水去油污功能的陶瓷滤芯。第三种,将石墨烯协同亲水去油污功能陶瓷材料3-19%、活性炭80-95%、粘合剂1-5%;将三者混合,经经600-1200℃烧制3-8小时,得具有净水和亲水去油污功能的活性炭棒。第四种,将石墨烯协同亲水去油污功能陶瓷材料与pp棉料混合拉丝,得具有净水和亲水去油污功能的pp棉滤芯;所述的石墨烯协同亲水去油污功能陶瓷材料的用量为石墨烯协同亲水去油污功能陶瓷材料与pp棉料总质量的2-20%。第五种,所述的石墨烯协同亲水去油污功能陶瓷材料与亚硫酸钙除氯材料复合能够制成具有亲水去油污和除氯功能的产品;所述的石墨烯协同亲水去油污功能陶瓷材料与富氢水瓷材料复合能够制成具有亲水去油污和去农残功能的产品;所述的石墨烯协同亲水去油污功能陶瓷材料与钕铁硼磁性材料复合能够制成效果更好的亲水去油污产品。本发明功能原理如下:本发明是通过材料对水作用,瞬间大幅降低水的表面张力,在餐具表面形成一层超级亲水膜,实现亲水膜切割餐具表面油污,达到清除油污的效果。据杨氏方程关于液体对固体表面的润湿规律。对于高能表面和表面张力小的液体,固体容易润湿。水是一种极性分子,水分子间存在电偶极相互作用,分子间形成氢键,通过这种氢键作用,液态水分子彼此间结合为较大的水分子团簇。这种水分子团具有间隙较大的结晶构造,是一种动态平衡,即nh2o与(h2o)n之间不断进行着缔合解离过程,其稳定存在时间仅10-12秒。已有研究证实:通过电场、磁场、声波和红外线等作用,可以破坏水分子间的氢键,改变水分子团的结构,从而降低水的表面张力。综上所述,本发明的有益效果如下:(1)本发明中采用了负离子材料、氧化锆和氧化石墨烯,氧化锆和氧化石墨烯均为远红外线材料,本发明通过负离子材料和远红外线材料的能量波震荡水分子团变小,降低表面张力,达到清洗去油污的效果。(2)氧化石墨烯具有优良的远红外线辐射和抗菌能力,在与配方中材料复合加工后,起到激活和协同增效的作用,将水的表面张力大幅降低,解决了水温低时的清洗效果差的难题,实现了突破。本发明还加入了天然无机矿物材料,利用其提升水的ph,能够辅助清洗油污。(3)本发明还具有杀灭和抑制水中细菌作用,同时在餐具表面形成的超级亲水膜,还可以保护餐具不会再次被污染。(4)本发明运用纯物理洗涤方式,不含化学活性剂,天然环保,去油污效果好。(5)本发明所述的制备方法,科学合理、简单易行。(6)本发明还提供了所述石墨烯协同亲水去油污功能陶瓷材料的多种应用方法,简单易行。附图说明图1是本发明实施例1制备的石墨烯协同亲水去油污功能陶瓷材料处理水的接触角图;图2是本发明石墨烯协同亲水去油污功能陶瓷材料的远红外辐射图谱。具体实施方式下面结合实施例对本发明做进一步说明。实施例中用到的所有原料除特殊说明外,均为市购。实施例1所述的石墨烯协同亲水去油污功能陶瓷材料,由如下重量百分数的原料制成:所述的无机矿物材料为电气石和沸石,两者的质量比为1:1。所述的负离子粉的负离子释放量为5万个/cm3。其制备方法如下:(1)混料:将无机矿物材料、负离子粉、碳酸钠、氧化锆、氧化钯、无机抗菌剂、氧化钛、氧化锌、氧化铈、氧化硼、氧化镁和氧化石墨烯放入球磨机中,球磨至粒径为120μm,得复合粉体材料;(2)催化:将复合粉体材料升温至800℃,保温5小时后,冷至18℃,研磨至粉体粒径为125μm,筛选,得所述的石墨烯协同亲水去油污功能陶瓷材料。实施例2所述的石墨烯协同亲水去油污功能陶瓷材料,由如下重量百分数的原料制成:无机矿物材料为贝壳粉。述的负离子粉的负离子释放量为1万个/cm3。其制备方法如下:(1)混料:将贝壳粉、负离子粉、碳酸钠、氧化锆、氧化钯、无机抗菌剂、氧化钛、氧化锌、氧化铈、氧化硼、氧化镁和氧化石墨烯放入球磨机中,球磨至粒径为50μm,得复合粉体材料;(2)催化:将复合粉体材料升温至600℃,保温4小时后,冷至10℃,研磨至粉体粒径为50μm,筛选,得所述的石墨烯协同亲水去油污功能陶瓷材料。实施例3所述的石墨烯协同亲水去油污功能陶瓷材料,由如下重量百分数的原料制成:所述的无机矿物材料为蒙脱石、高岭土和钾长石,三者的质量比为1:1:1。所述的负离子粉的负离子释放量为8万个/cm3。其制备方法如下:(1)混料:将无机矿物材料、负离子粉、碳酸钠、氧化锆、氧化钯、无机抗菌剂、氧化钛、氧化锌、氧化铈、氧化硼、氧化镁和氧化石墨烯放入球磨机中,球磨至粒径为200μm,得复合粉体材料;(2)催化:将复合粉体材料升温至1000℃,保温6小时后,冷至25℃,研磨至粉体粒径为200μm,筛选,得所述的石墨烯协同亲水去油污功能陶瓷材料。对比例1原料除未加氧化石墨烯,其余条件均与实施例1相同。制备方法同实施例1。本发明对实施例制备的石墨烯协同亲水去油污功能陶瓷材料进行了以下测试试验:1、处理水指标试验将50g本发明实施例1制得的石墨烯协同亲水去油污功能陶瓷材料与对比例1制备的材料分别放入到500ml纯净水中,对不同时间段的ph值和tds值进行测试,测试结果见表1。ph测试用上海三信仪表厂生产的sx711型便携式ph测试笔。tds测试用导电固体颗粒tds测试仪mp515(韩国公司生产)。表1浸泡水质测试结果2、抗菌检测将本发明实施例1制得的石墨烯协同亲水去油污功能陶瓷材料与对比例1制备的材料进行抗菌率对比,按gb16981《消毒与灭菌效果的评价方法与标准》和gb/t28116《抗菌骨质瓷器》进行检验。本发明实施例1制得的产品对金黄色葡萄球菌和大肠杆菌的抗菌率(24小时)都有所提升。具体结果见表2。表2抗菌检测结果金黄色葡萄球菌抗菌率大肠杆菌抗菌率对比例1材料94%95%实施例1材料98%99%3、安全性检测经山东省疾病预防控制中心检测,本发明实施例1制得的石墨烯协同亲水去油污功能陶瓷材料按《国家生活饮用水卫生规范要求》的19项指标检测,除了ph值超标外,其它18项指标完全复合规范要求。因本发明材料主要利用对水提高碱性与油污皂化反应,所以ph提高是本发明材料的功能之一。4、核磁共振检测委托复旦大学分析测试中心对材料进行了核磁共振检测,经测试本发明实施例1制备的石墨烯协同亲水去油污功能陶瓷材料核磁共振频率为45hz,具有较强的活化水效果。5、与水接触角通过测量本发明实施例1制备的石墨烯协同亲水去油污功能陶瓷材料处理水的接触角,发现具有超级亲水性,水在餐具表面的接触角为7.5°,如图1所示。6、易洁性测试将本发明实施例1制备的石墨烯协同亲水去油污功能陶瓷材料制成具有亲水去油污性能的油切颗粒球。制备方法如下:(1)按以下质量百分比配料:石墨烯协同亲水去油污功能陶瓷材料30%、氧化硅30%、氧化铝20%、碳酸钙10%、余量为羧甲基纤维素;混合、研磨至粉体粒径为500μm,得复合陶瓷材料;(2)将复合陶瓷材料用成球机成型,成型过程不断喷洒水;(3)将步骤(2)成型后的复合陶瓷材料在600℃烧制5小时,筛选,得具有亲水去油污性能的油切颗粒球。将对比例1材料采用上述方法进行制备,除将石墨烯协同亲水去油污功能陶瓷材料替换为对比例1材料外,其余参数和条件均相同。应用重量法测试易洁性。将采用实施例1石墨烯协同亲水去油污功能陶瓷材料制备的具有亲水去油污性能的油切颗粒球置于龙头净水器滤芯内,并将龙头净水器安装到水龙头上待用。测试前将陶瓷餐具试片(50mm×50mm×8mm)用无水乙醇和蒸馏水依次在超声波清洗器中清洗10min,取出后用蒸馏水再冲洗5min,在烘箱中以110℃烘干至恒重,取出后放置干燥器中冷却。将定量油污涂抹于待检陶瓷餐具试片上,静置一定时间后,用安装的龙头净水器冲洗,干燥后称量,计算试片表面单位面积的油污残余量,测试结果见表3。其中s1、s2为测试陶瓷餐具试片。按照以下测试步骤进行测试:①测量烘干后的陶瓷餐具试片重量,记为w0。②用胶头滴管均匀地将30滴色拉油滴于陶瓷餐具试片工作面上,静置10min使油稳定铺展。③将涂有色拉油的试片置于45°角的试片托上,用25℃的蒸馏水进行冲洗,出水口直径1.5cm,出水口至试片冲洗端高度为30cm,流量为50ml/s,冲洗时间为1min。④将冲洗后的试片置于110℃烘箱内烘干至恒重,取出后放置干燥器中冷却,称试片重量并记为w1。⑤计算试片表面单位面积油污残余量a。式中:a——试片表面单位面积油污残余量,单位为克每平方米(g/m2);w0——预处理后试片重量,单位为克(g);w1——试验清洗后试片重量,单位为克(g);s——试片工作面积,单位为平方厘米(cm2)。表3易洁性测试结果为了更好的验证所述油切颗粒球的改善水的去油污性能,我们借鉴了国家标准《日用瓷器易洁性检测方法》里的重量检测法,该国家标准笔者作为起草人全程参与了标准制订工作。瓷器易洁性评价标准见表4。表4瓷器易洁性评价标准项目名称易清洁ⅰ较易清洁ⅱ不易清洁ⅲ表面油污残余量a(g/m2)a≦0.500.50<a≦1.0a≥1.0*易洁性评价标准数据源自国家标准gb/t31859-2015《日用瓷器易洁性检测方法》。7、低温清洗测试为了验证水温低时本发明材料的清洗效果。我们将水温用冰箱降低到5-8度(该温度为:未采用加热设备的家庭厨房冬天水管出水温度)。还是应用重量法测试易清洗性。将对比例1材料和实施例1材料分别置于龙头净水器滤芯内,在同样条件下分别测试易清洗性。测试结构见表5。表5水温低时易清洗性测试结果8、表面张力测试本发明专利采用石墨烯协同增效,制备的材料表面具有较强的能量波。能量波可以活化水,减小水分子缔合度,降低水的表面张力。由于油酸分子中的(-cooh)、(-ch2-)、(-ch3)、(-ch=ch-)等官能团可以共振吸收波长5.75-15.04μm的远红外辐射而振动加剧。通过这两个协同作用使油/水界面膜强度增大,大幅降低油水界面张力,促进了油水互溶现象的发生,去油污性也随之提高。研究测试了对比例1材料与本发明实施例1材料对去离子水的表面张力及油水界面张力的影响,测试仪器为dataphysicsdcat-30e,测试条件为25℃,1个大气压。测试结果见表6。表6去离子水的表面张力及油水界面张力,mn·m-1seγow对比例1材料75.1211.65实施例1材料73.5510.289、远红外线测试经测试,石墨烯协同亲水去油污功能陶瓷材料具有显著的发射远红外线效果,远红外线发射率达到92%,如图2。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1