用于车辆发动机的冷却装置的制作方法

文档序号:5251630阅读:402来源:国知局
专利名称:用于车辆发动机的冷却装置的制作方法
技术领域
本发明涉及一种车辆发动机的冷却装置,尤其是用于汽车发动机的冷却技术,这种发动机包括一个废气再循环单元和一个中间冷却器中的至少一个。
对于一个汽车发动机,设置一个EGR(废气再循环)单元,用于将一部分废气重新导回入发动机,从而降低废气中的NOx,而且在涡轮增压器和进气歧管之间设置一个中间冷却器,用于冷却进气和废气。由于EGR和中间冷却器被分别暴露在高温废气中,所以采用一种液体冷却系统,其中冷却剂由发动机泵循环流动,中间冷却器和EGR发出的热量带给散热器,从而冷却中间冷却器和EGR。
如上所述,由于发动机泵用在EGR和中间冷却器的冷却中,所以当发动机停止时,发动机泵也必然停止。在这种情况下,EGR和中间冷却器的温度增加,因此在停止后立即其间的冷却剂沸腾,而且金属元件暴露在高温下,结果导致寿命降低。
本发明的一个目的是解决采用传统技术所带来的问题,并提供一种用于车辆发动机的冷却装置,其能提高废气再循环单元和中间冷却器中的至少一个的寿命。
为实现上述目的,本发明的用于车辆发动机的冷却装置包括一个车辆发动机,该发动机具有一个废气再循环单元和一个涡轮增压器中间冷却器中的至少一个;一个散热器和一个循环冷却剂的电泵,该电泵将中间冷却器和废气再循环单元中的至少一个产生的热量带给散热器。
采用本发明,当车辆发动机停止之后,电泵继续运转一定的时间,因此由散热器冷却的冷却剂引入EGR和中间冷却器中的至少一个中,以提供冷却,从而迅速降低温度。于是当达到低温时,电泵停止运转。
根据本发明的第二个方面,散热器、电泵、中间冷却器和废气再循环单元按顺序设置在冷却剂循环回路中,冷却剂由电泵依次供给中间冷却器和废气再循环单元,以冷却中间冷却器和废气再循环单元。


图1是表示本发明的一种复式动力车的布置示意图;图2是一种冷却装置的一个实施例的简图,该装置用于本发明的车辆发动机;图3是安装在复式动力车中的一个HPVM的透视图;图4是复式动力车的流程图;图5是一个示意图,表示安装在复式动力车中的一个空气调节器的制冷剂路径;图6是表示复式动力车中的冷却剂流动的示意图;下面是对本发明的一种发动机冷却装置的一个实施例的描述,其中采用一种复式动力车作为例子。
首先是一个复式动力车的概略图。近来,伴随着改善大气环境和环境问题的要求,引进一种低污染车辆和可替换能源车辆的需求逐渐增加。采用一个电动机和一个发动机作驱动源的复式动力车是可替换能源车辆的有力的候选者之一。在高速行驶期间,复式动力车由一个发动机驱动,在低速行驶期间,复式动力车由一个电池作为电源的驱动电机驱动。在发动机驱动期间,通过驱动一个发电机给电池充电。
如图1所示,标号1代表一个复式动力车,在车辆前部配备有一个驱动单元2(被冷却的装置),其有一个封装在其中的电动机2a以驱动前轮,在车辆后部配备有一个发动机3(车辆发动机)以驱动后轮。作为发动机3的一个例子,可以是一个柴油机或一个汽油涡轮增压发动机。但是发动机并不局限于这些,一个自然吸气的发动机(naturally aspirated engine)也是可以的。复式动力车1在低速行驶时,用驱动电机2a作驱动源,通过切换驱动源到发动机3,复式动力车1以超过一定速度的高速行驶。出于安装空间的原因和考虑到空气阻力,电动机2a设置在车辆前部,发动机3设置在车辆后部。也可以有这种情况,即发动机3和电动机2a同时作为驱动源致动。
标号5代表一个电池(被冷却的装置),其是电动机2a的电源,标号6代表一个电动发电机单元(被冷却的装置),用于将发动机3的动力转化为电能并将电能储存在电池5中。一个发电机(未示出)安装在电动发电机单元6中,通过将发动机3的动力传递给发电机而产生电能。而且,通过用电能驱动发电机,电动发电机单元6具有将储存在电池5中的电能转化为驱动力的功能。这里此例中的电池5是一个高温电池,它在一个高温范围内(例如80℃~90℃)是稳定的,具有高的工作效率。作为一个高温电池的例子,用例如铜、镍或银的一种卤素作正极,金属锂(或者一种诸如钙、镁的活性金属也是可以的)作负极,用一种有机物,例如碳酸丙烯作电解液。
标号50代表一个I/C(中间冷却器)EGR系统(被冷却的装置)。该系统50具有一个EGR(废气再循环)单元50a和一个中间冷却器50b。也就是说,如图2所示,发动机3具有一个EGR(废气再循环)单元50a,以将一部分废气重新导回入发动机3,从而降低废气中的NOx。此外一个中间冷却器50b设置在涡轮增压器100和进气歧管104之间,用于降低进气温度。此处,涡轮增压器100的中间冷却器50b和EGR50a均为液体冷却型。
另外,如图1所示,标号8代表一个用于冷却发动机3的第一散热器,9代表一个和第一散热器8一起设置的第二散热器。第二散热器9用于冷却驱动电机2a、电动发电机单元6和I/C EGR系统50。第一散热器8和第二散热器9如此构造,以使热量通过一个用于冷却散热器的风扇10排放到大气中。而且,设置一个电池热交换器11(冷却剂加热装置),用于从发动机3传递热量到电池5。
此处将对实施例的特征部分进行描述。如图2所示,第二散热器9的冷却剂出口和中间冷却器50b的冷却剂入口由一个冷却剂通道102(管)连接,一个电泵53(中间冷却器的冷却剂泵)设置在冷却剂通道102中,以便泵送冷却剂。中间冷却器50b的冷却剂出口和EGR 50a的冷却剂入口,由一个冷却剂通道103(管)连接。而且,EGR 50a的冷却剂出口和散热器9的冷却剂入口,由一个冷却剂通道103(管)连接,因此构成一个冷却剂回路105。
当车辆发动机3运转时(运行状态),电泵53也处于运行状态,因此已经被散热器9冷却的冷却剂进行循环并依次供给中间冷却器50b和EGR50。然后,当车辆发动机3停止后,电泵53继续运行一定的时间,因此已被第二散热器9冷却的冷却剂继续循环,以冷却中间冷却器50b和EGR50,并快速降低其温度。当达到一个低的温度时,电泵53停止。也就是说,即使车辆发动机3停止,电泵53也不停止,而是继续运行一定的时间,因此在停止后,在传统情况下处于高温的发动机、EGR和中间冷却器被立即快速冷却,因此高温不会出现,从而使其寿命提高。使冷却剂以先中间冷却器50b后EGR 50a的顺序流动,这是为了较EGR 50a更有效地冷却中间冷却器50b。
下面对安装在复式动力车1中的一个空气调节装置(此后称作一种空气调节器)进行描述。
在图1中,标号12代表一个压缩机单元,用于压缩一种致冷剂,13代表一个热交换器,14代表一个风扇,用于将空气吹入热交换器,13,15代表一个模件,称为一个HPVM(热泵通风模件)。热交换器13设置在车体的右侧,便于与外界进行热交换,通过风扇14强迫热量与外界空气进行交换。HPVM 15布置在车体后部的中央并连接到一个管道16,管道16沿车体下部的一条中心线延伸到车体的前部。如图3所示,管道16呈圆筒形,并在管道16的中部和前部分别设有空气出口部位17和18。
现在对HPVM 15进行详细描述。
图3是HPVM 15的一个透视图,图4是空气调节器的一个流程图。
在图3中,HPVM 15的构成具有一个壳体15a,一个内部空气入口21,一个外部空气入口22,一个排气口23和一个用于将HPVM连接到管道16的连接部分24。
内部空气入口21与车辆驾驶室连通,外部空气入口22和排气口23与车辆驾驶室外部连通。
而且,如图4所示,HPVM 15具有一个内部空气/外部空气转换风门30,用于确定是车辆驾驶室内部的空气(内部空气)还是车辆驾驶室外部的空气(外部空气)被吸入,一个风扇31,用于通过内部空气/外部空气转换风门30导入空气,一个热交换器33,用于在导入的空气和致冷剂之间交换热量,一个空气混合风门34,用于分流一部分热交换的空气,和一个加热器芯35,用于加热分流的空气。
通过打开或关闭内部空气/外部空气转换风门30,可以选择一种内部空气循环操作,用于从内部空气入口21吸入内部空气(见图3),并将空气送到管道16,或者选择一种外部空气循环操作,用于从外部空气入口22吸入外部空气(见图3),并将空气送到管道16,以及将内部空气从排气口23排出(见图3)。
加热器芯35是一个热交换器,用于接收大量的来自发动机3的高温冷却剂,如下所述,并加热导入的空气流。这辅助地用于空气调节器的加热操作(热泵操作)中。空气混合风门34根据其开启程度用来调节被分流到加热器芯35的导入空气的量。然后导入的空气从管道16的出口部位17和18吹到车辆驾驶室中。
通过压缩机单元12将致冷剂供给热交换器33和热交换器13来实现加热操作或致冷操作。图5表示压缩机单元12。
如图5所示,压缩机单元12包括作为主要元件的一个压缩机41,一个节流阻件42,一个四通阀43和一个蓄电池44。上述热交换器13和33通过一条致冷剂通道45连接在这些各自的装置之间,以形成一个致冷剂回路。
通过发动机3或电动发电机单元6将驱动力传递到压缩机41。压缩机41具有压缩致冷剂、排放及传送致冷剂如一种高温和高压气态致冷剂到四通阀43的功能,其中致冷剂在蒸发器中已经吸收了热量并被汽化。通过切换四通阀43,改变从压缩机41排出的高温和高压气态致冷剂的流动方向,导致致冷或加热操作的转换。而且,节流阻件42具有减压和膨胀高温和高压液态致冷剂、以给出一种低温和低压液态致冷剂的功能。这采用一个毛细管或一个膨胀阀。设置蓄电池44以除去包含在气态致冷剂中的液体成份,因此防止一部分未被蒸发器完全蒸发的液态致冷剂直接进入压缩机41。
对于上述致冷剂回路,在加热操作中,通过从外部空气吸收热量,低温和低压液态致冷剂在热交换器33(在冷却过程中作为一个冷凝器使用)中蒸发和汽化,以成为一种低温低压气态致冷剂,然后送入压缩机41并压缩为一种高温和高压气态致冷剂。此后,在热交换器13(在冷却过程中作为一个蒸发器使用)中,气态致冷剂释放热量以加热空气,并冷凝和液化,之后它通过节流阻件42膨胀而变为一种低温和低压液态致冷剂,并再循环到热交换器33。在这种情况下,热交换器33作为一个蒸发器使用并冷却加热介质。而且,热交换器13用作一个冷凝器并加热致冷剂。
在冷却操作中,通过向外部空气释放热量,供给热交换器33的高温和高压气态致冷剂冷凝和液化。然后通过节流阻件42膨胀,并送入热交换器13进行蒸发和汽化,之后送入压缩机41并再循环到热交换器33。在这种情况中,热交换器33用作一个冷凝器,热交换器13用作一个蒸发器。也就是说,通过切换四通阀,设置在空气调节器中的冷却装置的热交换器中的一个用作一个蒸发器,以显示一种冷却能力,也可以用作一个冷凝器,以起到一个加热器的作用。当用作一个蒸发器时,可能进行冷却、干燥和温度调节,而当用作一个加热器时,它可以代替加热器芯使用。因此,即使当发动机的冷却水的温度低而没有加热效果时,也能显示加热能力。而且,对于用电能而不是用发动机驱动的情况下,紧接着启动发动机后,这种辅助的加热操作自然具有足够的加热能力。
对于上述结构,为了安全操作,要求上述驱动单元2和电动发电机单元6的温度不高于65℃。而且,从蓄能效率的观点看,电池5的温度为85±5℃是理想的。为了满足这种要求,在复式动力车1中,冷却剂的温度如下控制。
如图6所示,形成使冷却剂在发动机3、电池5、I/C EGR系统50、驱动单元2、电动发电机单元6、第一散热器8,第二散热器9和电池热交换器11之间流动的预定流动通路。
发动机3由第一散热器8冷却,电池5、I/C EGR系统50、驱动单元2和电动发电机单元6由第二散热器9冷却。
下面对流动路径进行详细描述。
I/C EGR系统50、驱动单元2和电动发电机单元6由第二散热器9提供的冷却剂冷却。
首先,冷却剂从第二散热器9的出口侧进入流动通道51。在一个分支点P1,冷却剂分流到I/C EGR系统50侧和驱动单元2及电动发电机单元6侧。
分流到I/C EGR系统50一侧的冷却剂,通过一个设在流动通道b1中的中间冷却器的冷却剂泵(电泵)53提供给I/C EGR系统50,在冷却了I/CEGR系统50中的装置系统后,经过一个流动通道52,冷却剂再循环到第二散热器9。此时,通过中间冷却器的冷却剂泵53给冷却剂一个流动速度,以使冷却剂在流动通道b1中流动。
另一方面,分流到驱动单元2及电动发电机单元6一侧的冷却剂在一个分支点P2再进行分流,之后通过一个牵引冷却剂泵(循环量控制装置)54,一部分冷却剂再次分流。一部分分流到驱动单元2侧的一个流动通道b2,另一部分分流到电动发电机单元6侧的一个流动通道b3。分流后的冷却剂分别提供给驱动单元2及电动发电机单元6,与提供给I/C EGR系统50的冷却剂类似,用于冷却装置系统,然后通过流动通道52再循环到第二散热器9。此时,通过牵引冷却剂泵54给冷却剂一个流动速度,以使冷却剂在流动通道b2和b3中流动。
此时,驱动单元2设置在车体的前部,如图1所示。另一方面,电动发电机单元6和第二散热器9设置在车体的后部。即流动通道b2比流动通道b3长,并有一个较大的冷却剂流动阻力。因此,当必须使冷却剂流过驱动单元2和电动发电机单元6时,在电动发电机单元6侧的流速比在驱动单元2侧的流速大,导致不稳定的平衡。为了解决这个问题,一个流量调节阀55设置在流动通道b3中,以保持和流动通道b2的流速平衡。
在分支点P2分流的另一路冷却剂流动到流动通道b4中的电池5一侧,一个电池冷却剂泵(循环量控制装置)57设置在流动通道b4中。
在电池冷却剂泵57前面的一个交汇点P4,与被发动机3发出的热量加热的高温冷却剂汇合。高温冷却剂将在后面描述。流速预先进行调节,因此汇合后,冷却剂达到一个预定温度(85±5℃)。
此后,将冷却剂供给电池5,并排出到出口流动通道b5,同时保持电池5在上述预定的温度范围内。冷却剂在一个分支点P3分流,以流过通道b6和b7。如此构造使流动通道b6经过电池热交换器11,并在交汇点P4连接流动通道b4,流动通道b7连接流动通道52,并再循环到第二散热器9。一个流量调节阀60设置在流动通道b6中,一个流量调节阀61设置在流动通道b7中。流量调节阀将在以后描述。
在流动通道b6中流动的冷却剂在电池热交换器11中由发动机3产生的热量加热。更详细地说,在电池热交换器11中,热量在流动通道b6和流动通道b10之间交换,通道b10在发动机3和电池热交换器11之间循环冷却剂。由于被发动机3加热的流动通道b10中的冷却剂的温度高于流动通道b6中的冷却剂的温度(85±5℃),所以流动通道b6中的冷却剂被加热变为高温冷却剂,并在交汇点P4与流动通道b4中的低温冷却剂汇合。
以这种方式,高温冷却剂和低温冷却剂在交汇点P4汇合,因此给电池5提供上述具有预定温度的冷却剂。通过由上述流量调节阀60和61调节高温冷却剂的量,控制提供给电池5的冷却剂的温度。
另一条通向发动机3的流动通道b11独立于上述流动通道b10设置,以在第一散热器8和发动机3之间循环冷却剂。而且,设置流动通道b12,以便在加热器芯35和发动机3之间循环冷却剂。
从发动机3排出的冷却剂在一个分支点P5进行分流,从而流过通道b10、b11和b12,并分别流过蓄电池热交换器11、第一散热器8和加热器芯35,之后在交汇点P6汇合,并再循环到发动机3。
一个发动机冷却剂泵69设置在发动机3进口侧的流动通道中,以使冷却剂在流动通道b10~b12中流动。而且,在流动通道b10和b12中分别设有流量调节阀71和73,在流动通道b11中设有一个温度自动调节器72。
第一散热器8和上述第二散热器9平行设置,由于流经第一散热器8的冷却剂有一个较高的温度,一个抽(吸)型散热器冷却风扇10设置在第一散热器8的下游侧,因此流经第二散热器9的空气通过第一散热器8。
下面是对上述空气调节器操作过程的描述。
如上所述,复式动力车1以低速行驶时,用驱动电机2a作驱动源,复式动力车1以超过一定速度的高速行驶时,切换驱动源到发动机3。因此,空气调节器的驱动源也不同于传统车辆空气调节器的驱动源。
首先,当复式动力车1由发动机3驱动时,在空气调节过程中,压缩机单元12由发动机3发出的动力驱动,以便在热交换器13和33中循环致冷剂。发动机3也传递动力到电动发电机单元6,电动发电机单元6通过一个电动机(未示出)产生电能,并将电能储存在电池5中。
对于HPVM 15,风扇31通过内部空气/外部空气转换风门30将内部或外部空气导入,将空气吹入热交换器33。导入的空气热量与热交换器33中的致冷剂进行热交换,因此它被加热(在加热操作中),或被冷却(在冷却操作中)。
空气加热后借助空气混合调节器34导入管道16或加热器芯35,送到加热器芯35的导入空气由发动机3的废气热量再次加热并送入管道16。
另一方面,当电动机2a驱动并且发动机3停止时,操作过程如下。即用储存在电池5中的电能,电动发电机单元6驱动封装在其中的发电机。驱动力传递到压缩机单元12,因此在热交换器13和33之间循环致冷剂。当发动机3驱动时,其他操作类似于上述。
下面是对冷却剂循环的描述。如图6所示,从第二散热器9排出的冷却剂通过流动通道51分配给各个装置,在分支点P1和P2分流。也就是说,循环到电池5的冷却剂量由电池冷却剂泵57确定,循环到I/C EGR系统50的冷却剂量由中间冷却器的冷却剂泵53(电泵)确定,循环到驱动单元2和电动发电机单元6的冷却剂量由牵引冷却剂泵54决定。
下面分别对发动机3驱动和电动机2a驱动时的冷却剂循环进行描述。
当使用发动机3驱动时,那么对于传统的发动机车辆,用发动机冷却剂泵69使冷却剂在发动机3和第一散热器8之间循环,因此冷却发动机3。而且,用中间冷却器的冷却剂泵53也使冷却剂在I/C EGR系统50中循环。
对于电动发电机单元6,当封装在其中的发电机驱动时,冷却剂进行循环。也就是说,在用发动机3的驱动力储存电能的情况下,和在发动机3停止时操作空气调节器的情况下,用牵引冷却剂泵54使冷却剂循环到电动发电机单元6,由此冷却电动发电机单元6。
另一方面,当通过电动机2a运行时,用牵引冷却剂泵54使冷却剂循环到驱动单元2,由此冷却驱动单元2。
此时,当发动机3停止时,不必冷却I/C EGR系统50。因此,不必运行中间冷却器的冷却剂泵53。有这种情况,即当该泵完全停止时,通过另一个泵的驱动使冷却剂回流。例如,在这种情况,即中间冷却器的冷却剂泵53停止,牵引冷却剂泵54运行时,中间冷却器的冷却剂泵53允许回流,于是从驱动单元2或电动发电机单元6排出的冷却剂不流向动力元件散热器9,而流向I/C EGR系统50。因此出现这种情况,即通过分支点P1沿一条路径再循环到牵引冷却剂泵54。
为了防止这种情况,即使不需要冷却I/C EGR系统50,也要运行中间冷却器的冷却剂泵53到上述回流不会出现的程度。
也就是说,即使发动机停止,电泵也不停止,而是继续运行一定的时间。结果由于这种操作,停止后在传统情况下处于高温的中间冷却器和EGR紧接着被迅速冷却,因此高温不会出现,从而寿命提高。
同样地,即使不需要冷却驱动单元2和电动发电机单元6,也要运行牵引冷却剂泵54到回流不会出现的程度。
而且,不管是发动机3驱动还是电动机2a驱动,电池5总是保持在一个预定的温度。电池冷却剂泵57根据电池5的温度变化运行,因此高温冷却剂和低温冷却剂在汇交点P4混合,以继续维持循环到电池5的冷却剂的温度在一预定值,其中高温冷却剂已经通过流量控制阀60和61对流量进行了调节。
对于上述实施例,给出了一种复式动力车作为具有EGR和中间冷却器的车辆的例子。但是,车辆并不限于这种,可以是一种标准车辆。而且,不局限于包含EGR和中间冷却器都被冷却的设置,通过用电泵循环冷却剂可以冷却其中的一个。
对于本发明,由于如上所述构造,当车辆发动机停止时,电泵的运行在停止后持续一定的时间,以使由散热器冷却的冷却剂导入EGR和中间冷却器中的至少一个,以提供冷却,从而迅速降低温度。当达到低温时,电泵停止。也就是说,即使发动机停止,电泵也不停止,而是继续运行一定的时间,因此停止发动机后,在传统情况中处于高温的EGR和中间冷却器中的至少一个紧接着被迅速冷却,因此没有出现高温,从而提高寿命。
根据本发明的第二个方面,散热器、电泵、中间冷却器和废气再循环单元在冷却剂循环回路中顺序设置,冷却剂由电泵依次提供给中间冷却器和废气再循环单元,从而按照较高温度的顺序冷却中间冷却器和废气再循环单元。
权利要求
1.一种用于车辆发动机的冷却装置包括一个车辆发动机,其设有一个废气再循环单元和一个涡轮增压器中间冷却器中的至少一个;一个散热器;以及一个电泵,用于循环冷却剂,以将所述中间冷却器和所述废气再循环单元中的至少一个产生的热量带给所述散热器。
2.如权利要求1所述的用于车辆发动机的冷却装置,其中所述散热器,所述电泵,所述中间冷却器和所述废气再循环单元在所述冷却剂循环回路中顺序设置,所述冷却剂由所述电泵依次提供给所述中间冷却器和所述废气再循环单元。
全文摘要
本发明提供了一种用于车辆发动机的冷却装置,其能提高废气再循环单元和中间冷却器中的至少一个的寿命。该发动机具有废气再循环单元(EGR)和用于涡轮增压器的中间冷却器,中间冷却器中的至少一个提供一个散热器,一个电泵,它用于循环冷却剂,以将废气再循环单元(EGR)和中间冷却器中的至少一个产生的热量带给散热器。当发动机停止时,电泵继续运行一定时间,因此由散热器冷却的冷却剂循环到EGR和中间冷却器中的至少一个,以提供冷却作用,从而迅速降低温度。当达到低温时,电泵停止运行。
文档编号F01P5/10GK1277928SQ0012020
公开日2000年12月27日 申请日期2000年6月7日 优先权日1999年6月7日
发明者松田宪儿, 水谷宽, 格雷戈里·A·梅杰, 琼·比安 申请人:三菱重工业株式会社, 通用汽车公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1