一种油脂中没食子酸丙脂的拉曼光谱快速检测方法与流程

文档序号:17350987发布日期:2019-04-09 21:10阅读:515来源:国知局
一种油脂中没食子酸丙脂的拉曼光谱快速检测方法与流程

本发明涉及一种油脂中没食子酸丙酯的检测方法,尤其涉及一种油脂中没食子酸丙脂的拉曼光谱快速检测方法,涉及表面增强拉曼应用领域。



背景技术:

没食子酸丙酯(pg)亦称棓酸丙酯,属于人工合成的油溶性抗氧化剂。油溶性抗氧化剂均属酚类化合物,除pg外还包括丁基羟基茴香醚(bha)、二丁基羟基甲苯(bht)、叔丁基对苯二酚(tbhq)等,它们能够提供氢原子与油脂自动氧化所产生的游离基相结合,形成相对稳定的结构,阻断油脂的链式自动氧化过程,从而达到抗氧化的目的。

我国《食品添加剂使用卫生标准》(gb2760-2014)规定:没食子酸丙酯可用于脂肪,油和乳化脂肪制品、熟制坚果与籽类及其罐头、胶基糖果、油炸面制品、方便米面制品、饼干、腌腊肉制品类,风干、烘干、压干等水产品、固体复合调味料及膨化食品,其最大使用量为0.1g/kg。

现行食品安全国家标准《食品中9种抗氧化剂的测定》(gb5009.32-2016)中阐述了三种油脂中pg的检测方法:高效液相色谱法、液相色谱串联质谱法和比色法。其中高效液相色谱法和液相色谱串联质谱法灵敏度高,检出限分别为2mg/kg、0.05mg/kg;但前处理过程复杂(油脂先通过乙酸乙酯和环己烷提取,再通过凝胶渗透色谱管净化后旋转蒸发,经乙腈定容后过膜,方能上机检测),操作耗时,对人力和仪器的要求较高。比色法前处理较为简单(石油醚溶解油脂后,经乙酸铵反复反萃取,提取液与显色剂反应后显色待测),操作相对简便,但定量限较高(25mg/kg),且无法对假阳性结果进行验证和剔除。

因此,为了满足pg在油脂中简单、快速、廉价、高灵敏度等方面的检测需求,有必要对现有油脂中pg的检测方法进行改进。



技术实现要素:

本发明所要解决的技术问题是提供一种油脂中没食子酸丙脂的拉曼光谱快速检测方法,能够快速、灵敏地识别油脂中的没食子酸丙酯,前处理简单、分辨率强,在食品快速检测领域具有广阔的应用空间。

本发明为解决上述技术问题而采用的技术方案是提供一种油脂中没食子酸丙脂的拉曼光谱快速检测方法,包含如下步骤:s1)样品前处理:取1体积的油脂,加入0.2-20体积与油脂互溶的有机溶剂混匀,再加入0.1-20体积的金属离子溶液,振荡混合后静置分层,取水相层待测;s2)没食子酸丙酯的拉曼检测:在拉曼检测池中,加入上述s1中水相层待测样品,再加入金属纳米粒子和无机凝聚剂,混匀进行拉曼检测。

进一步地,所述步骤s1中的油脂为花生油、菜籽油、大豆油、核桃油、葵花油、玉米油、橄榄油、茶油、棕榈油和猪油的一种或其调和油。

进一步地,所述步骤s1中的有机溶剂为戊烷、己烷、环己烷、庚烷、辛烷、石油醚、二氯甲烷和乙酸乙酯中的一种或其混合溶剂。

进一步地,所述步骤s1中金属离子溶液为铬、锰、铁、钴、镍、铜、锌、锡、锑、铅、铋和银离子溶液中的一种或其混合溶液。

进一步地,所述步骤s1金属离子溶液的浓度范围为1mmol/l至其饱和溶液。

进一步地,所述步骤s2中金属纳米粒子包含以金或银为主要材料制备的纳米粒子。

进一步地,纳米金的合成过程如下:将50ml0.01%的氯金酸加热至沸腾,迅速加入0.5ml1%柠檬酸钠,高速搅拌30min,冷却至室温;纳米银的合成过程如下:将50ml1mmol/l的硝酸银加热至沸腾,迅速加入0.5ml1%柠檬酸钠,高速搅拌30min,冷却至室温。

进一步地,所述步骤s2中无机凝聚剂为钠盐、钾盐、镁盐、钙盐、氯化铝和铁盐溶液中的一种或其混合溶液。

进一步地,所述步骤s2中无机凝聚剂的浓度为10mmol/l至其饱和浓度。

进一步地,所述步骤s2中待测液、金属纳米粒子和无机凝聚剂按体积份数加入比例为1:0.2-5:0-2。

本发明对比现有技术有如下的有益效果:本发明提供的油脂中没食子酸丙脂的拉曼光谱快速检测方法,利用金属离子(m)对油脂中没食子酸丙酯(pg)的络合作用,形成水溶性的pg-m-pg络合物,使原本不易进入水相的pg能够以pg-m-pg络合物形式被水相萃取和富集。在没食子酸丙酯的表面增强拉曼散射检测方法中,由于pg-m-pg络合物分子的拉曼截面散射大于pg分子的拉曼散射,结合金属纳米粒子对探针分子的拉曼增强效应,可以获得更高的拉曼信号。两种方法结合形成的油脂中没食子酸丙酯的快速检测方法,前处理简单、高效,检测灵敏度高、分辨率强,在食品快速检测领域具有广阔的应用空间。

附图说明

图1为pg标准品在785nm激发波长的拉曼信号图;

图2为本发明实施例1大豆油中不同pg浓度梯度的检测信号图;

图3为本发明实施例2中不同油脂样品基质中pg的检测信号图。

具体实施方式

下面结合附图和实施例对本发明作进一步的描述。

本发明提供的技术方案如下:

s1)样品前处理:取1体积的油脂,加入0.2-20体积的与油脂可以互溶有机溶剂混匀,再加入0.1-20体积的金属离子溶液,振荡混合后静置分层,取水相层待测。加入有机溶剂是为了让油脂极性发生变化,而后,金属离子溶液能将油脂中的pg萃取出来。如果有机溶剂太低,改变极性能力太低,起不到改变油脂极性的作用;如果太高,有机溶剂就稀释了样品,影响后续测试精度和灵敏度。经过大量实验研究,发现在0.2-20倍区间的效果较好。金属离子的作用是为了螯合pg分子,如果金属离子浓度太低,起不到螯合和萃取的作用,浓度太高,影响络合的形态。经实验发现,金属离子的体积倍数在0.1-20倍为较佳范围。

s2)没食子酸丙酯的拉曼检测:在拉曼检测池中,加入上述s1中水相层待测样品,再加入金属纳米粒子和无机凝聚剂,混匀进行拉曼检测。

进一步地,所述s1中,1体积的油脂可以是花生油、菜籽油、大豆油、葵花油、玉米油、橄榄油、茶油、棕榈油、猪油以及上述各种油脂的调和油。

进一步地,所述s1中,与油脂可以互溶有机溶剂包括:戊烷、己烷、环己烷、庚烷、辛烷、石油醚、二氯甲烷、乙酸乙酯等一切可与油脂互溶有机溶剂以及上述有机溶剂之间的混合溶剂。优先选择己烷、环己烷、庚烷、石油醚及其混合溶液。

进一步地,所述s1中,金属离子溶液或金属离子溶液的主要成分包含铬、锰、铁、钴、镍、铜、锌、锡、锑、铅、铋、银等离子和铵根离子及其上述金属离子互配溶液。优先选择铁、钴、铜、锌、锡等离子。

进一步地,所述s1中,金属离子溶液的浓度范围为1mmol/l至其饱和溶液。优先选择1-100mmol/l,具体视金属盐的溶解度及其与pg之间的络合程度而定。

进一步地,所述s2中,金属纳米粒子包含以金或银为主要材料制备的纳米粒子。纳米金的合成:将50ml0.01%的氯金酸加热至沸腾,迅速加入0.5ml1%柠檬酸钠,高速搅拌30min,冷却至室温。纳米银的合成:将50ml1mmol/l的硝酸银加热至沸腾,迅速加入0.5ml1%柠檬酸钠,高速搅拌30min,冷却至室温。

进一步地,所述s2中,无机凝聚剂为钠盐、钾盐、镁盐、钙盐、氯化铝、铁盐溶液或其混合溶液中一种。

进一步地,所述s2中,无机凝聚剂的浓度为10mmol/l至其饱和浓度。

进一步地,所述s2中,待测液、金属纳米粒子和无机凝聚剂加入比例按体积份数比为1:0.2-5:0-2,待测液、金属纳米粒子和无机凝聚剂以等比例混合为佳,是否添加无机凝聚剂视待测液与金属纳米粒子的凝聚情况而定。具体来说,金属纳米离子浓度太低,起不到拉曼散射表面增强功能,金属纳米离子浓度太高,就会一定程度的稀释样品,所以金属纳米离子浓度不能太低,也不能无限的高。

无机凝聚剂的作用类似,太低的话,起不到凝聚的效果,太高,会出现过凝聚的现象,也会影响拉曼散射的信号,经大量的实验研究,1:0.2-5:0-2这个范围内为较佳范围。

本发明提出水相中金属离子络合萃取油相中有机物的方法,使油脂在有机相溶解后,通过一步萃取步骤,能够特异、高效地富集到探针分子;结合表面增强拉曼技术,采用金属纳米粒子对探针分子实现特异性的信号增强,能够成功避开基质干扰并得到探针分子的拉曼增强信号。本发明方法适用范围广,前处理操作简便快捷,检测灵敏度高、分辨率好。本发明在标准品中pg检出限高达1μg/kg,油脂样品中pg检出限可达到0.05mg/kg,与国标测定方法中最为灵敏的液相色谱串联质谱法达到的检出限相当;图1为pg标准品在785nm激发波长的拉曼信号图,横坐标是拉曼位移,纵坐标是拉曼信号,其特征峰位移在768,814,863,1239,1338(cm-1)。

此外,本发明方法可用于不同基质的油脂样品的检测,整个实验流程可在2分钟内完成,检出限在0.05-1mg/kg范围内,因而是一种针对油脂中没食子酸丙酯的高效快速、灵敏可靠的检测方法。

实施例1

某品牌大豆油中,不同加标浓度pg的检测,其步骤如下:

s1)标准溶液制备:称取pg标准品0.01g(精确至0.0001g),用乙酸乙酯溶解并定容至10ml,浓度为1000mg/l,此为pg标准储备溶液;移取200μlpg标准储备溶液,用石油醚稀释并定容至1ml,浓度为200mg/l,此为pg标准中间溶液。

s2)标准系列溶液制备:分别移取pg标准中间溶液0μl、10μl、50μl、100μl,用石油醚稀释并定容至1ml,此时pg标准系列溶液浓度分别是0mg/l、2mg/l、10mg/l、20mg/l。

s3)样品加标:在2ml离心管中分别加入10μl上述pg标准系列溶液,加入大豆油190μl,充分混匀,此时加标浓度依次为0mg/l、0.1mg/l、0.5mg/l、1mg/l。

s4)前处理:在上述加标样品离心管中,加入800μl环己烷,混匀,再加入800μl0.1mol/l的三氯化铁溶液,振荡混匀10秒,静置分层后取下层水相作为待测液。

s5)检测:在拉曼检测池中,加入200μl上述待测液,再加入100μl金纳米粒子,混匀后在785nm激发波长拉曼下检测,检测结果如图2所示。

实施例2

不同品类油脂中,加标浓度为1mg/lpg的检测,其步骤如下:

s1)标准溶液制备:称取pg标准品0.01g(精确至0.0001g),用乙酸乙酯溶解并定容至10ml,浓度为1000mg/l,此为pg标准储备溶液;移取200μlpg标准储备溶液,用石油醚稀释并定容至10ml,浓度为20mg/l,此为pg标准中间溶液。

s2)样品加标:在2ml离心管中,加入475μl不同品类油脂样品,然后依次加入25μl上述20mg/lpg标准中间溶液,混匀,加标浓度均为1mg/l。

s3)前处理:在上述油脂离心管中,加入500μl正庚烷,混匀,再加入500μl0.05mol/l硫酸铜溶液,振荡混匀10秒,静置分层后取下层水相作为待测液。

s4)检测:在拉曼检测池中,加入100μl上述待测液,依次加入200μl金纳米粒子和50μl0.1mol/l氯化钠溶液,混匀后在785nm激发波长拉曼下检测,检测结果如图3所示。

虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作些许的修改和完善,因此本发明的保护范围当以权利要求书所界定的为准。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1