半导体装置用接合引线的制作方法

文档序号:6923234阅读:74来源:国知局

专利名称::半导体装置用接合引线的制作方法
技术领域
:l明劲导体装置用接合引线。
背景技术
:当前,作为对半导体元件上的电极、和电路布线基板(引线框架(leadframe)、基板、带等)的布线的外部端子之间进行接合的接合引线,主要使用线径20~50|am程度的细线(接合引线)。接合引线的接合一般为超声波并用热压接方式,通用接合装置采用使接合引线通过其内部而用于连接的毛细管夹具等。在对接合引线的引线前端以电弧加热而加热熔化并通过表面张力形成了球体之后,在以150300。C的范围内加热过的半导体元件的电极上,压接接合该球部,之后,通过超声波压接直接使接合引线(bondingwire)接合于外部引线側。近年来,半导体安装的结构、材料、连接技术等迅速地多样化,例如,在安装结构中,除了现行的使用了引线框架的QFP(QuadFlatPackaging,四方扁平封装)之外,使用基板、聚酰亚胺带等的BGA(BallGridArray,球栅阵列)、CSP(ChipScalePackaging,芯片级封装)等新型方式实用化,要求进一步提高了环路(loop)性、接合性、批量生产使用性等的接合引线。相邻的接合引线的间隔变窄的窄间距化正在发展。作为对应于此的对接合引线的要求,要求细线化、高强度化、环路控制、接合性的提高等。环路形状由于半导体安装的高密度化变得复杂化。作为环路形状的分类,环路高度、接合引线的引线长度(跨度)成为指标。在最新的半导体中,如下情况有所增加在一个封装内部,使高环路与低环路、短跨度与长跨度等相反的环路形成混载。在对此以1种类型的接合引线而实现时,必需进行严格的接合引线的材料设计。接合引线的原材料至今主要采用高纯度4N系列(纯度>99.99质量%)的金。用于使高强度化、高接合等的特性提高,对微量的合金元素进行调整。最近,以提高接合部的可靠性的目的等,使添加元素浓度增加至1%以下的纯度2N(纯度〉99。/。)的金合金引线也已实用化。通过对添加于金的合金元素的种类、浓度进行调整,可以进行高强度化、可靠性的控制等。另一方面,由于合金化,也存在产生接合性下降、电阻增加等的弊病的情况,难以综合满足对接合引线所要求的多种特性。并且,因为金很昂贵,所以期望材料成本廉价的其他种类金属,开发以材料成本廉价、电传导性优的铜为原材料的接合引线。可是,在铜接合引线中,由于引线表面的氧化而接合强度下降、树脂封装时引线表面容易发生腐蚀成为问题。这也成为铜接合引线的实用化未*的原因。至此已实用化的接合引线特征为全部为单层结构。即使原材料为金、铜地改变,也都在内部均匀地包括合金元素,若以接合引线的引线剖面看则为单层引线结构。虽然也有在接合引线的引线表面形成薄的自然氧化膜、用于保护表面的有机膜等的情况,但是这些也限于最表面的极薄的区域(~几原子层级别)。用于相应于对接合引线所要求的多种需求,提出了在引线表面包覆其他金属的多层结构的接合引线。作为防止铜接合引线的表面氧化的方法,在专利文献l提出了以金、银、铂、把、镍、钴、铬、钛等的贵金属、耐腐蚀金属包覆铜的接合引线。并且,从球体形成性、镀液的劣化防止等之点,在专利文献2,提出了如下结构的接合引线以铜为主要成分的芯材、包括形成于该芯材上的铜以外的金属的异种金属层、及形成于该异种金属层之上包括熔点比铜高的耐氧化金属的包覆层。在专利文献3,提出了以铜为主要成分的芯材、在该芯材之上具有包括成分或组成一方不同或双方都不同的金属和铜的外表层、且该外表层为厚度0.001~0.02Mm的薄膜的接合引线。并且,即使是金接合引线,也大多提出多层结构。例如,在专利文献4,提出了在包括高纯度Au或Au合金的芯线的外周面包覆有包括高纯度Pb或Pb合金的包覆材料的接合引线。在专利文献5,提出了在包括高纯度Au或Au合金的芯线的外周面包覆有包括高纯度Pt或Pt合金的包覆材料的接合引线。在专利文献6,提出了在包括高纯度Au或Au合金的芯线的外周面包覆有包括高纯度Ag或Ag合金的包覆材料的接合引线。作为接合引线的以批量生产所使用的引线特性,期望通过接合工序中的环路控制变得稳定、接合性也有所提高、对接合引线在树脂封装工序的变形进行抑制、满足连接部的长期可靠性等的综合特性,能够应对最前端为窄间距、3维布线等的高密度安装。关于球体接合,当球体形成时形成正球性良好的球体、并在该球部与电极的接合部得到充分的接合强度很重要。并且,为了应对接合温度的低温化、接合引线的细线化等,也必需在将接合引线楔接于电路布线基板上的布线部的部位的接合强度、抗拉强度等。引线的表面性能、形状决定使用性能的情况居多,例如在批量生产使用中仅是伤痕(scratch)、毛刺的产生就成为问题。由于毛刺而存在与相邻的接合引线电短路的危险性,伤痕则成为损害接合引线的制造成品率、树脂封装时的引线变形等、接合引线的质量、可靠性的原因。并且,由于环路形状控制的稳定性的追求、接合性在低温下的提高等,无法适应对半导体制造工序的不良产生率以ppm量级进行管理的严格要求而达不到实用化。如此的面向半导体的多层结构的接合引线虽然实用化的期待很高,但是至今尚未实用化。一方面期待由多层结构带来的表面改性、高附加价值等,另一方面必须综合满足接合引线的生产性、质量、并且在接合工序的成品率、性能稳定性、进而半导体使用时的长期可靠性等。专利文献l:日本特开昭62-97360号公报;专利文献2:日本特开2004-64033号公才艮;专利文献3:日本特开2007-12776号公净艮;专利文献4:日本特开平4-79236号^^才艮;专利文献5:日本特开平4-79240号公才艮;专利文献6:日本特开平4-79242号^^才艮。在现有的单层结构的接合引线(以下,记为单层引线)中,为了改善抗拉强度、接合部的强度、可靠性等,虽然添加合金化元素有效,但是在特性提高方面担忧限度。在实现了多层结构的接合引线(以下,记为多层引线)中,期待比单层引线进一步提高特性而提升附加价值。作为带来高性能化的多层引线,例如,为了防止铜接合引线的表面氧化,可以在引线表面包覆贵金属、耐氧化性的金属。即使是金接合引线,通过在引线表面包覆高强度的金属或合金,也可期待降低树脂流动的效果。可是,对半导体安装的高密度化、小型化、薄型化等的需求进行考虑,本发明人进行了评估,判明在多层引线中,如后述的使用上的问题遗留许多。关于多层引线,由于在引线制造工序的拉丝加工、及在引线接合工序的复杂的环路控制等,在引线最终制品或半导体元件的连接中所使用的状态下,在引线表面容易产生伤痕、毛刺等成为问题。例如,在引线表面的伤痕中存在产生亚微米的微小槽的情况,在毛刺的不良例中,也存在刨花状的毛刺产生于多层引线的引线长度方向,该毛刺长度甚至为几百Mm的情况。由于表面伤痕、毛刺,环路形状变得不稳定,给多层引线造成损伤而强度下降,进而若毛刺接触于相邻的多层引线则引起短路不良,成为实用上的故障的原因。因为引线线径越细则关联于如此的表面伤痕、毛刺的不良发生的频率越发频繁,所以不利于窄间距连接,并且,因即使在高环路与低环路混用的等环路控制变得复杂也升高,向3维连接的适应变得困难。当形成低环路时表面损伤的发生频率趋向于增加。担忧如果这些不良不降低,则限定多层引线的实用范围。不仅担忧如此的直接的不良,而且也担忧由在引线表面产生伤痕、毛刺引起的间接的不良、或者成品率的降低等。例如,也存在如下情况在多层引线的引线制造的中间工序中暂时产生的伤痕、毛刺,即便在最终制品中无法检测,也因使表皮层的厚度变得不均匀、内部裂紋残留,使环路形状不稳定。并且,也存在如下情况难以在批量生产工序的环路外观检查中由光学显微镜进行检测,产生在环路的里侧的伤痕、毛刺等。如此的不良状况即使难以直接认清与伤痕、毛刺的因果关系,也会对制造成品率的降低等产生坏影响。虽然表面伤痕、毛刺的发生频率、现象等根据表皮层的原材料发生变化,但是至今未取得充分的对策。在多层引线的发生频率比单层引线有所增加的情况多,此可认为在多层引线中在形成环路的工序的对应于表皮层的应力、变形等的负担变大,与引线制造工序的过程条件的不同等有关。当以多层引线形成环路时,环路的直线性下降,存在产生多层引线的倒伏、下垂、弯曲等的不良状况的情况。因该环路的直线性下降,使制造成品率降低成为问题。作为多层引线的球体接合部的不良状况,花瓣现象与偏芯现象为代表。所谓花瓣现象是指球体接合部的外周附近花瓣状地发生凹凸变形,从正圓性偏离,成为当接合于小的电极上时球体超出、引发接合强度的降低的不良的原因。所谓偏芯现象是指形成于引线前端的球部相对于引线轴非对称地形成,成为例如高尔夫球杆状的现象,在窄间距连接中成为当接合偏芯球体时发生与相邻的球体相接触的短路不良的问题。因为这些多层引线中的花瓣现象与偏芯现象的发生频率为比单层引线增多的倾向,为带来生产性的降低的一个原因,所以必需使引线接合工序的管理基准严格。在多层铜引线中,虽然能够期待使氧化比单层铜引线慢的效果,但是其效果由于表皮层或引线表面附近的组成、结构、厚度等而大大不同。多层铜引线的结构的优化变得重要。为了确保与金引线同等的作业性,例如,即使在大气中保存2个月程度之后,也必需保障楔式(wedge)接合性、环路形状等不会劣化。如果相比于单层铜引线的保存寿命则此需要几十倍的寿命延长,在以铜为主体的材料中要求相当严格的条件。
发明内容在本发明中,目的在于解决如上述的现有技术的问题,提供除了现有的基本性能以外还谋求引线表面的损伤、毛刺的抑制、环路形状的稳定化、良好的球体形成等的性能提高的半导体装置用接合引线。本发明人为了解决上述引线的表面伤痕、毛刺产生等的问题而对多层结构的接合引线进行了探讨的结果,发现作为特定的表皮层对前述表皮层的组织进行控制有效。本发明基于前述见解所作出,成为以下的构成的要旨。本发明的权利要求l中的半导体装置用接合引线特征为具有包括导电性金属的芯材、和在所述芯材上以与该芯材不相同的金属为主要成分的表皮层,所述表皮层的金属为面心立方晶格,所述表皮层的表面的晶面中的长度方向的晶体取向〈hkl〉中,<111>所占的比例为50%以上。本发明的权利要求2中的半导体装置用接合引线特征为在权利要求1的基础上,所述表皮层的表面的晶面中的长度方向的晶体取向〈hk^中,<111>和<100>所占的比例的总计为60%以上。本发明的权利要求3中的半导体装置用接合引线特征为在权利要求1或2的基础上,所述芯材的剖面的晶面中的长度方向的晶体取向<hkl>中,<111>和<100>所占的比例的总计为15%以上。本发明的权利要求4中的半导体装置用接合引线特征为在权利要求13的基础上,所述芯材的剖面的晶面中的引线长度方向的晶体取向〈hk^中,<111>和<100>所占的比例为30%以上。本发明的权利要求5中的半导体装置用接合引线特征为在权利要求14的基础上,关于所述表皮层的表面中的晶粒的平均尺寸,长度方向的平均尺寸相对于圆周方向的平均尺寸的比率为3以上。本发明的权利要求6中的半导体装置用接合引线特征为在权利要求15的基础上,所述表皮层的表面中的引线长度方向的晶体取向为<111>的晶粒的面积相对于引线表面的总面积的比例为30%以上。本发明的权利要求7中的半导体装置用接合引线特征为在权利要求l-6的基础上,构成所述表皮层的主要成分为Pd、Pt、Ru、Ag中的至少一种。本发明的权利要求8中的半导体装置用接合引线特征为在权利要求17的基础上,构成所述芯材的主要成分为Oi、Au中的至少一种。本发明的权利要求9中的半导体装置用接合引线特征为在权利要求18的基础上,在所述表皮层和所述芯材之间,具有包括与构成所述表皮层和所述芯材的主要成分不相同的成分构成的中间金属层。本发明的权利要求10中的半导体装置用接合引线特征为在权利要求19的基础上,所述表皮层的厚度为0.005-0.2Mm的范围。本发明的权利要求11中的半导体装置用接合引线特征为在权利要求110的基础上,在所述表皮层和芯材之间具有扩散层,该扩散层具有浓度梯度。本发明的权利要求12中的半导体装置用接合引线特征为在权利要求7~11的基础上,构成所述芯材的主要成分为Cu,以5300ppm的范围包括B、Pd、Bi、P、Zr中的l种以上。本发明的权利要求13中的半导体装置用接合引线特征为在权利要求7~11的基础上,构成所述芯材的主要成分为Cu,以5~10000ppm的范围包括Pd,构成所述表皮层的主要成分为Pd或Ag。本发明的权利要求14中的半导体装置用接合引线特征为在权利要求7~11的基础上,构成所述芯材的主要成分为Au,以58000ppm的范围包括Be、Ca、Ni、Pd、Pt中的l种以上。通过本发明的半导体装置用接合引线,能够抑制引线表面的伤痕、毛刺而改善表面性状。并且,能够提高环路的直线性、环路高度的稳定性。并且,能够促进半导体装置用接合引线的接合形状的稳定化。其结果,可以提供也适应于细线化、窄间距化、长跨度化、三维安装等最新的半导体安装技术的高性能的半导体装置用接合引线。图l是多层结构的接合引线(线径25iam)的EBSP测定结果(对在引线长度方向上取向为<111>取向的区域进行着色。以线表示晶界)具体实施例方式关于半导体装置用接合引线(以下,称为接合引线),对由包括导电性金属的芯材、和在该芯材之上以与芯材不相同的面心立方晶格的金属为主要成分的表皮层所构成的接合引线进行了探讨的结果,判明由于在接合引线的表面附近包括导电性金属,能够期待楔式接合性的提高等,相反在引线制造工序的拉丝加工、及在引线接合工序的复杂的环路控制等中的引线表面的伤痕、毛刺等的产生成为问题,环路形状的稳定性等不充分。因此,对向窄间距连接、3维连接的严格环路控制等的新需求的对应、也能够对应于细线的引线拉丝加工中的成品率的提高等的多层结构的接合引线进行了探讨的结果,发现作为特定的表皮层而对前述表皮层的组织进行控制有效。尤其是,通过着眼于至今基本不清楚的多层引线的表面的集合组织与引线接合的使用性能的关系,初次证实通过对特定的晶体取向进行控制,可以实现加工性、接合性、环路控制性等的综合性改善。更有效地发现表皮层与芯材的组织的组合等的控制有效。即,作为具有由导电性金属构成的芯材、和在该芯材之上以与芯材不相同的面心立方晶格的金属为主要成分的表皮层的接合引线,必需是特征如下的接合引线前述表皮层的表面的晶面中的长度方向的晶体取向4k^中,50%以上为<111>。如果是该接合引线,则可得到对在引线制造工序的拉丝加工、及在引线接合工序的复杂的环路控制等中的引线表面的伤痕、毛刺的产生进行抑制的高效果。如果构成表皮层的成分为面心立方晶格的金属,则既不存在加工时的降伏下降,加工性也良好,容易顺应拉丝加工、环路控制等的复杂的加工、弯曲等。由于接合引线的引线长度方向的晶体取向〈hk^之内,50%以上为<111>,可以综合改善表皮层的表面硬度、加工性、抗弯性等难以兼得的特性组,作为结果,能够抑制引线表面的伤痕、毛刺。面心立方晶格的金属的<111>取向为最稠密方向,该<111>取向越集中于表层,表面的机械特性越倾向于提高,例如提高硬度、抗弹性变形、耐塑性变形的耐性强、也提高韧性。如果晶体取向之内<111>取向所占的比例为50%以上,则可得到对引线表面的伤痕、毛刺进行抑制的充分效果。优选如果该<111>取向的比例为60%以上则可提高抑制毛刺的效果,即使引线长度为5mm以上的长跨度也能够减少毛刺、伤痕。更优选如果为70%以上则对伤痕进行抑制的效果进一步提高,例如,即使是环路高度为65Mm以下的低环路,也可以抑制毛刺、伤痕而形成稳定的环路(loop)。因为在多层引线中以不同的成分构成表层和芯材,所以分开对包覆引线表面的表层的组织进行控制比较容易。由该表面组织的控制引起的特性改善效果也高。在这一点上,与现有的单层引线的组织控制不同。在单层引线中,虽然能够对引线整体的集合组织及晶体取向进行管理,但是难以仅表面附近与引线内部分开进行组织控制。因而,在多层引线的表层的组织控制中,要求多层独自的考虑方法,无法适用单层引线的引线剖面中的集合组织及晶体取向的管理。如果表皮层的表面的晶面中的长度方向的晶体取向〈hk^之内,<111>与<100>所占的比例的总计为60%以上,则降低环路高度的不匀,在高速动作的环路的稳定控制变得容易。在通常的引线连接工序中,进行通过毛细孔的接合引线放出、收回等的复杂的动作。这使接合引线以几十毫秒的量级的相当高速进行出入的动作。虽然<111>与<100>各自的取向的具体效果、关系并不明确,但是可认为通过降低接合引线与毛细管的滑动阻抗,环路高度稳定化。如果换言之,则在如此的滑动性及使环路高度稳定化中,有效将<111>与<100>以外的晶体取向抑制得低。如果表皮层中的<111>与<100>所占的比例的总计为60%以上,则以引线长度为3mm以下的一般跨度,可得到使环路高度稳定化的高的效果。优选如果为80%以上,则即使在引线长度为5mm以上的长跨度中也可得到使环路高度稳定化的高的12效果。并且,作为由提高<111>与<100>所占的比例带来的效果,通过抑制成膜后的加工、热处理的工序中的膜厚的不均匀性,也有利于表皮层的厚度的均匀化。如果芯材的剖面中的引线长度方向的晶体取向〈hk^之内,<111>与<100>所占的比例的总计为15%以上,则能够抑制产生球体接合部严重偏离正圆的异常变形的不良状况。该异常变形为与相邻的电极的电短路的直接原因等在球体接合中最为担忧的不良状况之一。作为异常变形的判断基准的目标,将球体接合部的长轴尺寸与短轴尺寸之比为1.3倍以上的椭圆状的形状判断为不良状况。例如仅以低的产生率突发产生也会阻碍引线接合的生产性。优选如果<111>与<100>所占的比例的总计为30%以上,则能够降低球体接合部的外周附近发生凹凸变形的小的花瓣不良,使球体接合部接近正圆而稳定化。如果正圆性良好则有利于接合面积的缩小,接合工序的制造管理变得容易,或者能够提高窄间距接合的生产性。球部的凝固组织也很能反映芯材的组织,证实升高芯材的晶体取向〈hkl〉之内<111>与<100>所占的比例是有效的。关于如此的芯材的晶体取向的控制,证实了相对于在单层引线中效果并不充分,在多层引线中可得到高的效果。虽然关于其原因并未完全阐明,但是可推侧为因为通过在多层引线的球体熔化中首先在表皮层、其次在芯材阶段性熔化,芯材的组织对球部的组织产生大的影响。该作用效果在通常的球体尺寸的情况下,证实有更高的效果。例如,在对初始球径/引线直径之比为1.9~2.2的通常尺寸的球体进行接合的情况下,能够降低球体接合部中的各向异性、花瓣状等的形状不良,提高正圆性。对由压缩变形、超声波施加引起的球部的变形行为进行了调查的结果,关于球体接合形状而证实与其说与表皮层的组织的相关小,不如说芯材的组织起支配作用。在此,如果芯材中的<111>与<100>所占的比例的合计不足15%,则球体接合时的异常变形发生的频率变高,并且,如果不足30%,则球体在接合时发生花瓣状、椭圆状的变形的频率变高,存在变成不良状况的情况。引线的组织对球体变形的影响以多层引线一方显著,与单层引线的组织的影响不同的情况多。优选如果芯材中的<111>与<100>所占的比例的合计为50%以上,则能够使小径球体的接合形状稳定化。例如,在对初始球径/引线直径之比为1.51.7的范围的小径球体进行接合的情况下,通过提高球体接合部的正圆性,即使在电极间隔为40|im以下的窄间距接合中也可得到良好的球体接合形状。虽然芯材中的<111>与<100>所占的比例的合计并无特别上限,但是如果为85%以下则有制造时的控制比较容易的优点。通过组合如此的芯材的组织、和前述的表皮层的组织而能够期待相乘作用,可以同时改善环路形状的控制、球体变形的稳定性。即,优选如下多层结构的接合引线表皮层的表面的晶面中的长度方向的晶体取向<111^>之内,50%以上为<111>,且,芯材的剖面中的长度方向的晶体取向〈hkl〉之内,<111>与<100>所占的比例为40%以上。由此,在最近以作为3维安装的代表例的叠层有多片芯片的叠层芯片连接、BGA、CSP所使用的相邻的接合引线的环路高度在60~500Mm的范围大不相同的多段连接(Multi-TierBonding)等中,能够改善接合引线的综合特性。在至此的说明中,以能够测定的晶体取向为基准,关于特定的取向所占的比例带来的作用、效果进行说明。今后如果为了适应窄间距化而开展细线化,则通过表面的影响度增加,对晶体取向引起的效果以接合引线的表面为基准进行了整理的一方可以正确地掌握实用的效果。具体地,作为表皮层的表面的晶面中的长度方向的晶体取向〈hk^之内,50%以上为<111>的多层结构的接合引线,进一步优选表皮层的表面中的引线长度方向的晶体取向为<111>的晶粒的面积,相对于引线表面的总面积的比例为30%以上。由此,使环路形状稳定化的效果升高,其中即使在直径细线化为22Mm以下的接合引线中环路特性也稳定化,并在伤痕、毛刺的减少上有效。在线径为22jum以下的细接合引线中,由于拉丝加工变形的增大等,因难以测定的晶体取向的区域增加,仅在能够测定的晶体取向之内的<111>的取向的比例趋向于无法正确地掌握环路特性的区域有所增加。因此,如果表皮层的表面中的<111>晶粒的面积相对于引线表面的总面积的比例(面积比率)为适当的比例(适当的面积比率),则即使是细线也可得到良好的特性。该面积比率为30%以上的理由为如果晶体取向之内即使50°/。以上为<111>但面积比率不足30%,若采用线径22Mm以下的接合引线进行窄间距连接则不能抑制伤痕、毛刺。优选如果该面积比率为40%以上,则即〗吏对直径18Mm以下的细线进4于连接,也能够减少环路形成时的伤痕、毛刺。进一步优选如果该面积比率为50%以上,则因为对在直径18ym以下的细线的伤痕、毛刺进行抑制的效果进一步提高,所以在40iam以下的窄间距连接中也有利。如果作为表皮层的表面的晶面中的长度方向的晶体取向〈hk^之内、50%以上为<111>的多层结构的接合引线,为进一步特征如下的多层结构的接合引线关于表皮层的表面中的晶粒的平均尺寸,长度方向的平均尺寸相对于圆周方向的平均尺寸之比(晶体粒径的纵横比)为3以上,则能够提高接合引线形成环路时的直线性。当接合引线通过从毛细管前端的孔放出、返回而形成环路时,由于与毛细管内壁的摩擦等,因产生由接合引线倒伏、弯曲引起的巻曲不良、由下垂引起的接合不良等,成品率下降。在对如此的不良进行抑制而提高环路直线性时发现提高表皮层的表面中的晶体粒径的纵横比有效。如果纵横比提高,则在引线长度方向上长的晶粒形成纤维状组织,有利于在形成环路时降低残留于接合引线的应变、变形不勻。如果纵横比为3以上,则可得到提高环路直线性的充分效果。优选如果纵横比为5以上,则在直径25jum以下而引线长度5mm以上的长跨度中也可得到良好的环路直线性。进一步优选如果纵横比为10以上,则即使在引线长度为7mm以上的长跨度中提高环路直线性的效果也可升高。所谓成为表皮层的主要成分的面心立方晶格的金属,为与作为芯材的主要成分的导电性金属不同的金属,优选在接合引线的接合性的改善方面有效果,在接合引线的防氧化方面也有效的金属。具体地,Pd、Pt、Ru、Rh、Ag为候选,进而如果重碎见实用性、成本性能等,则更优选Pd、Pt、Ru、Ag的至少一种金属。在此的所谓主要成分为浓度具有50mol。/。以上的元素。Pd存在与封装树脂的紧贴性、向电极的接合性充分,质量管理也容易等的优点。Pt比较容易使球体形状稳定化。Ru质硬而容易形成致密的膜,材料成本也比较低廉。Rh虽然抗氧化性等性能良好,但是因为材料成本昂贵,所以期待薄膜化等今后的研讨。Ag因为质软,所以抑制由形成有表皮层的引线的拉丝加工引起的伤痕等比较容易,因为材料成本也廉价,所以在重视成本的半导体等方面有用。即,优选表皮层为以Pd、Pt、Ru的导电性金属之至少一种为主要成分的纯金属、或以该导电性金属为主要成分的合金。如果为纯金属则有抗氧化性、接合性的提高等容易的优点,如果为合金则有通过抗拉强度、弹性系数的上升对树脂封装时的引线变形进行抑制的优点。在此的上述所谓纯金属相当于在表皮层的一部分包括具有99moiy。以上的浓度的层、或者除了扩散层以外表皮层的平均浓度为80mol。/。以上。上述合金为含有50mol。/o以上的Pd、Pt、Ru中至少一种的金属的合金。构成芯材的导电性金属优选Cu、Au、Ag为候选,如果重视实用性,则以Cu、Au之内至少一种为主要成分。Cu材料成本低廉,电传导性高,在形成球时如果喷吹隔离气体则也容易形成良好的球体等操作性也比较良好。Au有抗氧化性强、在形成球体时不需要隔离气体,接合时的变形也良好,容易确保接合性等的优点。Ag虽然导电性优良,但是拉丝加工稍难,必需优化制造技术。另一方面,Cu、Au也有作为单层接合引线用原材料的使用实缋多的优点。如果芯材为以导电性金属为主要成分的合金,则也存在有利于由引线强度的增加带来的细线化、或接合可靠性的提高等的情况。在Cu合金的情况下,通过以5~300ppm的范围包括B、Pd、Bi、P的一种以上,由于接合引线的抗拉强度、弹性系数的增加等,可得到使在跨度达5mm程度的长跨度的直线性提高的效果。在提高上述的添加作用中证实了相对于在Cu的单层引线中并不充分,应用于芯材的主要成分为Oi的多层引线一方可得到高的效果。即,通过芯材为以S300ppm的范围包括B、Pd、Bi、P的Cu合金,表皮层以Pd、Pt、Ru之至少一种为主要成分,前述表皮层的表面的晶面中的长度方向的晶体取向〈hk^之内、<111>所占的比例为50%以上,提高在长跨度的直线性的效果进一步升高。作为该理由可以认为由于对晶体取向进行了控制的表皮层和包括合金元素的芯材的相乘效果,直线性提高。如果为如下多层结构的接合引线前述表皮层的表面的晶面中的长度方向的晶体取向〈hk^之内、<111>所占的比例为50%以上,构成表皮层的主要成分为Pd或Ag,构成芯材的主要成分为Cu,在芯材中以510000ppm的范围包括Pd,则容易综合满足伤痕、毛刺的抑制、环路的形状及高度的稳定化、球体接合部的压接形状的稳定化等。通过在引线制造的热处理工序中,在芯材/表皮层的界面附近,当芯材中的Pd与表皮层中的Pd、Ag互相扩散时使Pd浓度的变化均匀且緩慢的相乘作用,可得到使环路的顶面附近的剥离、毛刺减少的作用、或降低环路的倒伏、弯曲等的形状不匀的高的作用。因为该浓度变化不仅对引线整体而且对受球体熔化的热影响的颈部也有效,所以对环路高度的稳定化也有效。并且,虽然在Cu的芯材与Pd的表皮层的组合中,存在当球体熔化时Cu与Pd、Ag的混合不均匀而产生球体形状变形的情况,但是通过在芯材中包括Pd,可提高使球体接合部的形状正圆化的效果。关于在此包括于芯材的Pd浓度,如果为5ppm以上则证实上述效果,优选如果为200ppm以上则改善效果更加显著。关于该Pd浓度的上限,如果为10000ppm以下则能够抑制由球体的固化引起的芯片损伤,优选如果为8000ppm以下则进一步提高抑制芯片损伤的效果,也有利于窄间距连接。在Au合金的情况下,如果以5~8000ppm的范围包括Be、Ca、Ni、Pd、Pt的一种以上,则有同样的效果,容易确保良好的直线性。即,优选芯材为以5~8000ppm的范围包括Be、Ca、Ni、Pd、Pt的一种以上的Au合金,表皮层以Pd、Pt、Ru之至少一种为主要成分,前述表皮层的表面的晶面中的长度方向的晶体取向〈hk^之内、<111>所占的比例为50%以上。在多层结构的接合引线的构成中,因在表皮层与前述芯材之间,具有包括与构成前述表皮层和前述芯材的主要成分不同的成分的中间金属层,对前述的表皮层的晶体方向的取向进行控制变得更加有利。因为在表皮层的形成中有时受基底的晶体取向的影响,对形成于芯材之上的中间金属层的晶体取向进行控制的一方比对芯材的晶体取向进行控制比较容易。具体地,优选与表皮层的金属相同的面心立方晶格的金属作为中间金属层。尤其是,更优选表皮层的金属的晶格常数与中间金属层的金属的晶格常数接近。即,优选如下特征的多层结构的接合引线在前述表皮层与前述芯材之间,具有包括与构成前述表皮层及前述芯材的主要成分不同的成分的中间金属层。作为添加中间金属层的效果,由于表皮层与芯材的紧贴性的提高等,能够提高作为楔式(wedge)接合部的接合强度的指标之一的剥离强度。在此,在剥离强度的测定中,能够以对在楔接合附近的牵引强度进行测定的简便的方法代替。从而,通过中间金属的插入而剥离强度能够增加。在此,中间金属层的成分应当为与表皮层及芯材的成分的组合而选定,优选如上述的金属成分,尤其是,更优选Au、Pd、Pt。更优选在表皮层/芯材的主要成分的组合为Pd/Cu的情况下,如果中间金属层的主要成分为Au,则有利于表皮层的晶体取向的控制,进而在表皮层/中间金属层/芯材的各自的界面的紧贴性也比较好。并且,在表皮层/芯材的主要成分的组合为Pd/Au的情况下,如果中间金属层的主要成分为Pt,则有利于晶体取向的控制与表皮层的组成、膜厚的均匀性。如果表皮层的厚度为0.005-0.2jum的范围,也有利于前述的表皮层的晶体取向的控制,也容易综合满足接合性、环路控制等的要求特性。因为如果厚度为0.005iam以上,则可得到对晶体取向进行了控制的表皮层的充分的效果,若超过0.2iam,则由球部的合金化引起的固化变得显著,当接合时存在对芯片产生裂紋等的损伤的问题的情况。优选如果表皮层的厚度为0.010.15jiim的范围,则即使在复杂的环路控制中也不会降低速度,能够稳定地形成希望的环路形状。更优选如果为0.0200.1pm的范围,则容易维持接合引线的使用性能,并得到提高膜形成工序的处理效率等稳定的膜质。如果中间金属层的厚度为0.0050.2um的范围,则容易对表皮层的晶体取向进行控制,并且提高界面与芯材的紧贴性,也能够对应于复杂的环路控制。优选如果为0.010.1jum的范围,则容易确保膜厚的均匀性、再现性。在此,表皮层与芯材的边界为构成表皮层的导电性金属的检测浓度的总计50mol。/o的部位。因而,在本发明而言的所谓表皮层为从构成表皮层的导电性金属的检测浓度的总计50mol。/。的部位的表面、即构成表皮层的导电性金属的检测浓度的总计50mol%以上的部位。本发明中的晶体取向优选晶体取向相对于接合引线的长度方向的角度差为1S。以内。通常,即使着眼于某方向的晶体取向,各个晶体也具有某程度的角度差,并且,由于试样准备、晶体取向的测定法等的实验法也产生若干误差。在此,如果角度差的范围为15。以内,则具有各自的晶体取向的特性,也能够有效地利用对接合引线的诸特性的影响度。关于25Mm径向程度的微细线的表面的集合组织,至今尚不太清楚,尤其是,关于微细线的多层引线的最表面的集合组织的报告例也少。如接合引线地,在对比较软质而线径细的金属线中的集合组织高精度地进行测定中,必需高度的测定技术。在集合组织的测定法中,根据有利于微小地集中测定区域、得到仅最表面的信息,能够采用最近开发的后方电子散射图形(ElectronBackScattingPattern,以下称为EBSP)。通过由EBSP法进行的集合组织的测定,即使是如接合引线的细线,也能够对其表面或剖面的集合组织高精度地、且具有充分的再现性地进行测定。通过本测定方法,关于接合引线的微细组织,能够对亚微米的微细晶粒的晶体取向、引线表面的晶体取向的分布等高精度再现好地进行测定。在EBSP法中,通常,在试样的凹凸、曲面大的情况下,难以对晶体取向进行高精度测定。可是,如果优化测定条件则可以进行高精度的测定、分析。具体地,将接合引线直线状地固定于平面,并对该接合引线的中心附近的平坦部以EBSP法进行测定。关于测定区域,如果以引线长度方向的中心为轴而圆周方向的尺寸为线径的50%以下、长度方向的尺寸为100jLim以下,则除了精度之外还可提高测定效率。优选如果圆周方向的尺寸为线径的40%以下、长度方向的尺寸为40Mm以下,则由于测定时间的缩短而进一步提高测定效率。优选在以EBSP法进行高精度的测定中,因为能够以1次进行测定的区域受限,所以进行3处以上的测定,得到对不匀进行了考虑的平均信息。优选以不接近测定部位、能够在圆周方向观察不同的区域的方式,选定测定部位。例如,在线径25jum的接合引线的测定中,采用尽量改变引线朝向地固定于平板上的接合引线,以该引线轴为中心在圆周方向8jum、在长度方向30|am的尺寸作为一次的测定区域,通过离开lmm以上进行3处的测定,可以得到引线表面的晶体取向的平均性信息。但是测定的区域、部位的选定并不限于此,优选对测定装置、引线状态等进行考虑而优化。并且,在对芯材的晶体取向进行测定的情况下,在引线的长度方向的垂直剖面或与长度方向并行而引线中心附近的平行剖面的哪方都可以进行测定。优选垂直剖面的一方容易得到要求的研磨面。优选当通过机械研磨制作剖面时,为了减轻研磨面的残留变形而通过蚀刻去除表层。在通过EBSP法进行的测定结果的分析中,通过利用装备于装置的分析软件,能够对各方向的晶粒相对于上述的引线表面的测定面积的面积所占的面积比、或在测定区域之中以能够识别晶体取向的晶粒或区域的总面积为母集团而各晶体取向所占的比率等进行计算。在此对晶体取向的面积进行计算的最小单位可以是晶粒、或晶粒内的一部分微小区域。关于晶粒的尺寸也能够对以长度方向与圆周方向的平均尺寸等进行计算。当制造本发明的接合引线时,需要在芯材的表面形成表皮层的工序,和对表皮层、扩散层、芯材等的结构进行控制的加工、热处理工序等。在将表皮层形成于芯材的表面的方法中,存在电镀法、蒸镀法、熔融法等。在电镀法中,电解电镀、非电解电镀法可以分开使用。在电解电镀中,电镀速度快,与基底的紧贴性也好。电解电镀虽然也可以为1次电镀处理,但是能够区分为称为急骤电镀的薄附电镀、与在其后使膜生长的本电镀,通过分成这些多个工序而进行,更加有利于膜质的稳定化。在非电解电镀中所使用的溶液,可分类为置换型与还原型,虽然在膜薄的情况下仅置换型电镀也很充分,但是在形成厚的膜的情况下在置换型电镀之后阶段性地实施还原型电镀有效。非电解法虽然装置等简便、容易,但是比电解法需要时间。在蒸镀法中,能够利用溅射法、离子注入法、真空蒸镀等的物理吸附,和等离子体CVD等的化学吸附。都为干式,无需膜形成后的清洗,不存在清洗时的表面污染等的担心。关于实施电镀或蒸镀的阶段,以目标线径形成导电性金属的膜的方法,和在粗径的芯材进行膜形成之后、直到目标线径进行多次拉丝的方法都有效。在前者的最终线径的膜形成中,制造、质量管理等简便,在后者的膜形成与拉丝的组合中,有利于使膜与芯材的紧贴性提高。作为各自的形成法的具体例,可以是如下方法在目标线径的细线,在电解电镀溶液之中边连续地扫掠(sweep)引线边进行膜形成的方法;或者,在电解或非电解的电镀溶液中浸渍粗线而形成了膜后,拉丝引线而达到最终线径的方法等。在此,在以前述的最终线径形成表皮层的最终电镀法中,在成膜后仅为热处理工序。并且,在粗径的芯材进行膜形成的粗径电镀法中,需要使直至目标线径的加工工序与热处理工序组合。在形成了表皮层之后的加工工序中,根据目的而选择、分开使用滚压、型锻(X工一i少,)、模(夂<又)拉丝等。通过加工速度、加压率或模减面率等,对加工组织、位错、晶界的缺陷等进行控制也会影响表皮层的组织、紧贴性等。仅单纯地以对引线进行了成膜、加工及加热,尚无法对在表皮层的表面及内部的集合组织的晶体取向进行控制。即使直接原样应用在通常的引线制造中所用的最终线径的加工矫正退火,也由于表皮层与芯材的紧贴性的降低而环路控制变得不稳定,难以对引线长度方向的表皮层的均质性、在引线剖面的表皮层、扩散层等的分布进行控制。因此,通过综合性地组21合表皮层的成膜条件、拉丝工序中的减面率、速度等的加工条件、热处理工序的定时、温度、速度、时间等的优化等,可以稳定地控制表皮层的集合组织。在引线的压延、拉丝的工序中形成加工组合组织,在热处理工序中进行还原、再结晶而形成再结晶集合组织,这些集合组织相互关联,最终决定表皮层的集合组织及晶体取向。在使表皮层的晶体取向在<111>进行取向时,利用加工集合组织更加有效。通过在成膜后优化拉丝加工的处理条件,能够提高向<111>取向的取向率。虽然由前述拉丝加工引起的向<111>的取向率因加工前的组成等引线条件而异,但是用于使前述的表层的<111>取向率为50%以上,例如,使加工率上升至80。/o以上有效。优选通过使加工率为95%以上在接合引线整体提高使<111>取向率上升的效果。在热处理工序中,1次或多次实施热处理有效。热处理工序可分类为膜刚形成后的退火、在加工中间的退火、和在最终线径的润饰退火,重要的是选择、分开使用它们。根据在哪一加工阶段进行热处理,而最终的表皮层、在表皮层与芯材的界面的扩散行为等发生变化。在一例中,通过以在电镀处理后的加工中途实施中间退火、进而对引线进行拉丝、并以最终线径实施润饰退火的工序进行制作,与不实施中间退火的工序相比较,有利于在表皮层/芯材的界面形成扩散层而使紧贴性提高。作为热处理法,通过边连续地扫掠引线边进行热处理、且使作为一般性热处理的炉内温度并不固定、而在炉内取得温度梯度,容易批量生产具有本发明的特征的表皮层及芯材的接合引线。在具体的事例中,存在局域性地导入温度梯度的方法、使温度在炉内变化的方法等。在要对接合引线的表面氧化进行抑制的情况下,边使N2、Ar等的惰性气体流进炉内边进4亍力口热也有效。在熔融法中,作为使表皮层或芯材的任一熔化而浇铸的方法,存在如下优点通过在以10100mm程度的粗径对表皮层与芯材进行了连接之后进行拉丝而生产性优的优点;相比于电镀、蒸镀法而表皮层的合金成分设22计容易,强度、接合性等的特性改善也容易等的优点。在具体的工序中,可分为以下方法在预先制作的芯线的周围,浇铸熔化了的导电性金属而形成表皮层的方法;和采用预先制作的导电性金属的中空圆柱,通过在其中央部浇铸熔化金属而形成芯线的方法。优选在后者的中空圆柱的内部浇铸芯材的一方,容易在表皮层中稳定形成芯材的主要成分的浓度梯度等。在此,如果使预先制作的表皮层中少量包括铜,则在表皮层的表面的铜浓度的控制变得容易。并且,在熔融法中,虽然也可以省略用于使Cii扩散于表皮层的热处理作业,但是通过用于对表皮层内的Cu的分布进行调整而实施热处理也预料进一步改善特性。进而,在利用如此的熔化金属的情况下,也可以对芯线及表皮层之内、至少一方以连续铸造进行制造。通过该连续铸造法,相比于上述的浇铸方法,可简化工序,而且也可以使线径变细而使生产性提高。当采用芯材的主要成分为铜的多层铜引线进行接合时,需要形成球体时的隔离气体,采用以110%的范围包括H2的N2混合气体、或纯N2气体。在现有的单层的铜引线中,推荐由5%112+]\2所代表的混合气体。另一方面,在多层铜引线中,因为即使采用廉价的纯N2气体也可得到良好的接合性,所以比作为标准气体的5。/。H2+N2气体,能够降低运转成本。优选N2气体的纯度为99.95%以上。即,优选如下接合方法边将纯度99.95%以上的N2气体喷吹引线前端或其周围边使电弧;改电产生而形成球部,并对该球部进行接合。并且,通过在表皮层与芯材之间形成扩散层能够使紧贴性提高。所谓扩散层为通过芯材与表皮层的主要成分相互扩散所形成的区域,具有该主要成分的浓度梯度。通过形成扩散层能够使芯材与表皮层的紧贴性提高而对环路控制、接合时的表皮层的剥离进行抑制,进而通过具有浓度梯度,比导电性金属在表皮层整体为均匀浓度的情况,能够使受到复杂的塑性变形的环路时的控制中的引线变形稳定化。并且相对于前述的通过将表皮层的表面的<111>取向提高为50。/。以上而抑制伤痕、毛刺的效果,也证实如果存在具有浓度梯度的扩散层则该效果进一步提高。优选扩散层内的浓度梯度,向深度方向的浓度变化的程度每ljum为10moiy。以上。优选如果每0.1jum为5mol。/o以上,则不损表皮层与芯材的不同的物性,能够期待高的相互利用的效果。优选扩散层的厚度为0.002-0.2jum的范围。这是因为如果扩散层的厚度不足0.002jum则效果小,以分析也难以进行识别;若超过0.2um,则对表皮层的組织产生影响,难以稳定地形成前述的晶体取向。用于对该扩散层进行控制,利用热处理有效。如前述地,通过使热处理与加工组合而对扩散的进展度进行控制,可以在引线的圆周方向或长度方向均匀地形成期望的扩散层。关于表皮层、芯材等的浓度分析,从接合引线的表面通过溅射等边深入于深度方向边进行分析的方法、或者进行在引线剖面的线分析或点分析的方法等有效。前者虽然在表皮层薄的情况下有效,但是若变厚则过于花费测定时间。后者的在剖面的分析虽然在表皮层厚的情况下有效,并且,优点为在剖面整体的浓度分布、在多处的再现性的证实等比较容易,但是在表皮层薄的情况下精度有所下降。也可以倾斜研磨接合引线、使扩散层的厚度扩大而进行测定。在剖面中,虽然线分析比较简便,但是在希望使分析的精度提高时,使线分析的分析间隔变窄、进行集中于界面附近的区域进行观察的点分析也有效。在用于这些浓度分析的分析装置中,能够利用电子束微观分析法(EPMA)、能量离散型X射线分析法(EDX)、奥格分光分析法(AES)、透射型电子显微镜(TEM)等。尤其是AES法因为空间分辨率高,所以在最表面的薄的区域的浓度分析中有效。并且,在平均性组成的调查等中,也可以从表面部阶段性地溶解于酸等,从包括于该溶液中的浓度而求溶解部位的组成。在本发明中,不必以前述全部的分析方法所得到的浓度值都满足本发明的规定范围,只要以l种分析方法所得到的浓度值满足本发明的规定范围则可得到其效果。实施例以下,关于实施例进行说明。作为接合引线的原材料,用于芯材的Cu、Au、Ag釆用纯度约99.99质量%以上的高纯度的原材料,在用于表皮层或中间金属层的Au、Pt、Pd、Ru、Rh的原材料中准备纯度99.9质量%以上的原材料。当以细至某线径的引线为芯材、在该引线表面形成不同的金属的层时,进行电解电镀法、非电解电镀法、蒸镀法、熔融法等,实施热处理。利用了以下方法以最终的线径形成表皮层的方法;和在以某线径形成了表皮层之后,进一步通过拉丝加工变细至最终线径的方法。电解电镀液、非电解电镀液使用以半导体用途所市售的电镀液,蒸镀采用溅射法。预先准备直径约151500|am的引线,通过蒸镀、电镀等覆盖该引线表面,并拉丝(拉伸)至最终线径1550jum,最后实施热处理以去除加工变形而拉丝值变成5~15%的范围。相应于需要,在模拉丝至线径25200Mm之后,实施扩散热处理,进一步实施拉丝加工。拉丝用模的减面率以每1个模515%的范围而准备,通过这些模的组合,对引线表面的加工变形的导入等进行了调整。拉丝速度在20500m/min之间优化。在利用熔融法的情况下,采用了在预先制作的芯线的周围浇铸熔化的金属的方法、和在预先制作的中空圆柱的中央部浇铸熔化的金属的方法。之后,进行锻造、滚压、模拉丝等的加工和热处理,制造出引线。关于本发明的引线的热处理,边连续地扫掠引线边进行了加热。利用了局域性地导入温度梯度的方式、使温度在炉内变化的方式等。例如,利用了改造过的热处理炉以能够将炉内温度分割为3种进行控制。在温度分布的一例中,从引线的插入口朝向出口,得到高温—中温—低温、或中温—高温—低温的分布,各自的加热长度也进行了管理。与温度分布配合,引线扫掠速度等也进行了优化。在热处理的气氛中,以对氧化进行抑制的目的也利用了N2、Ar等的惰性气体。气体流量在0.0002~0.004m3/min的范围进行调整,并对炉内的温度控制也进行了利用。作为进行热处理的定时,分开使用如下情况在对拉丝后的引线实施热处理后形成表皮层的情况,和在加工前、加工中途、或刚形成了表皮层之后等之内进行1次或2次以上热处理的情况。关于由形成了表皮层之后的压延、拉丝产生的加工水平,能够以成膜时的引线与最终线径的面积比率进行计算的累积的加工率而整理。在该加25工率(%)不足30%的情况下以Rl进行了标记,在30%以上不足70%以R2进行了标记,在70%以上不足95%以R3进行了标记,在95%以上以R4进行了标记。在对表皮层的表面组织进行控制时,需要对材质、组成、厚度等的材料因子,膜形成条件,和加工、热处理条件等过程因子进行优化。在实施例中,作为使表皮层的表面中的长度方向的<111>比率增加的对策,提高加工率、使初期的膜厚变薄、使热处理低温化等有效。作为一例,如果上述加工率为R2R4。则比较容易使<111>比率增加。在另一方的比较例中,用于使<111>比例降低,降低加工率、以高温或长时间实施热处理有效。关于引线表面的组织观察,在接合引线的表层中的表面的某区域中,通过EBSP法对晶体取向进行了测定。在测定试样的准备中,尽量互相改变引线朝向地将35根接合引线固定于平板上。观察区域成为包括引线轴的四边形的区域,以尺寸在圆周方向为510jum、在长度方向为10~50jum作为一次的测定区域。测定部位为310处,互相离开0.5mm以上而选定。测定点的间隔以0.010.2jam的间隔进行了实施。在芯材的组织观察中,采用对接合引线的剖面进行研磨、并通过化学蚀刻降低了表面的加工变形的试样,通过EBSP法对晶体取向进行了测定。剖面虽然以垂直于引线长度方向的剖面为主进行了测定,但是对试样状态、再现性等进行研究并相应于需要,在平行于引线长度方向而通过中心轴的剖面也实施了测定。在EDSP测定数据的分析中利用了专用软件(TSL制OIManalysis等)。对在测定区域的晶体取向进行分析,并求出其内<111>、<100>取向等的晶粒的比例。以接合引线的长度方向为基准而决定方向,并甚至包括各自的晶体取向的角度差为15°以内的。关于该晶粒的比例的计算方法,求出以下2中类型以测定区域的整体面积为母集团进行计算的各方向的比例(以下,称为面积比率);和以测定区域内的可靠性为基准而仅以能够识别的晶体取向的面积为母集团进行计算的各取向的比例(以下,称为取向比率)。在求后者的取向比率的过程中,晶体取向无法测定的部位、或者即使能够测定而取向分析的可靠性低的部位除外地进行了计算。在此,所谓可靠性存在由分析软件预备参数的情况,优选利用例如ConfidentialIndex(CI值)、ImageQuality(IQ值)等多种参数,根据试样状态、分析目的等而选定判断基准。在引线表面的膜厚测定中采用由AES进行的深度分析,在晶界的浓化等元素分布的观察中进行了通过AES、EPMA等的面分析、线分析。在由AES进行的深度分析中,边以Ar离子溅射边在深度方向上进行测定,在深度的单位中以SK)2换算进行了表示。接合引线中的导电性金属浓度通过ICP分析、ICP质量分析等进行了测定。在接合引线的连接中,使用市售的自动引线接合机,进行了球体/楔式接合。通过电弧放电在引线前端制作球体,将其接合于硅基板上的电极膜,并将引线另一端楔式接合于引出端子上。用于对球体形成时的氧化进行抑制的隔离气体主要采用了纯N2气体。气体流量在0.001~0.01m3/min的范围进行了调整。接合对方使用了作为硅基板上的电极膜的材料的厚度1Um的Al合金膜(Al-l%Si-0.5%Cu膜、Al-0.5。/。Cu膜)。另一方面,在楔式接合的对方,采用了在表面镀Ag(厚度24jam)的引线框架。还有,关于向BGA基板上的Au/Ni/Cu的电极的接合性,也证实采用一部分引线试样,可得到与前述引线框架同样的效果。在引线表面的伤痕、毛刺等的评估中,通过所接合的环路的外观观察进行了调查。也能够包括在引线制造工序中发生的伤痕、毛刺等环路形成前的影响而评估。线径为25nim。以引线长度2mm的通用跨度与5mm的长跨度的2种类型,形成高度的目标值为100250jam的梯形环路,并分别对1000根接合引线通过投影机进行了观察。伤痕观察以环路的外侧为中心,毛刺观察以发生频率多的球体接合部附近的颈部为中心进行观察,对尺寸为10jum以上的伤痕进行了计数。并且,作为低环路评估,形成环路高度的目标值约为65Mm的低的环路,并同样地观察了伤痕、毛刺的发生。一般地,因为引线长度越长、或者环路高度越低,越增加引线表面摩擦的程度,所以成为更加严格的评估。在毛刺4根以上伤痕也显著的情况下判断为存在问题而以x符号表示;在虽然毛刺为13根的范围、但是伤痕发生多、担忧对毛细管堵塞等的影响的情况下,判断为需要改善而以A符号表示;在毛刺为13根的范围、不存在视为问题的大伤痕发生的情况下,因为引线表面比较良好所以以O符号表示;在毛刺并未产生、伤痕也不显著的情况下判断为稳定良好以O符号表示。在伤痕、毛刺的判定中,因为担忧由于观察者的个人判断而多少受到影响,所以由2人以上的观察者进行评估,以平均信息进行了分级。在细线中的引线表面的伤痕、毛刺的评估中,采用了线径为22jnm与18Mm的2种。以引线长度2mm,形成高度的目标值为70~200|am的梯形环路,并分别对1000根接合引线通过投影机进行了观察。伤痕、毛刺等的判定基准采用了与前述相同的基准。用于对所接合的环路的直线性进行评估,以引线间隔(跨度)为2mm的普通跨度、5mm的长跨度、7mm的超长跨度3种进行了接合。线径为25Mm。对30根接合引线通过投影机从上方进行观察,相对于连接球型侧与楔型侧的接合部的直线,对最远离接合引线的部位的偏离作为弯曲量进行了测定。该弯曲量的平均如果不足1根线径量则判断为良好并以O符号表示,如果为2根量以上则因为不良所以以A符号表示,如果为其中间,则因为通常没有问题所以以符号表示。关于在接合工序的环路形状稳定性,以引线长度5mm的长跨度,环路高度变成200250um地连接30根梯形环路,并通过高度的标准偏差进行了评估。线径为25jLim。在高度测定中使用光学显微镜,并以位置为环路的最顶点的附近、和环路的中央部的2处进行了测定。如果环路高度的标准偏差为线径的1/2以上,则判断为偏差(variation)大;如果不足1/2则判断为偏差小而良好。在以该基准为基础进行判断、且3处偏差都小的情况下,判断为环路形状稳定,并以O符号进行表示;在偏差大的部位为1处的情况下,因为比较好所以以O符号表示;在2处的情况下以A符号表示;在3处偏差都大的情况下以x符号表示。在压接球部的接合形状的判定中,对200个所接合的球体进行观察,对形状的正圆性、异常变形不良、尺寸精度等进行了评估。线径为20/am。以如下情况的2种类型分别进行了评估形成初期球径/线径的比率为1.9-2.2的普通尺寸的球体的情况;和比率为1.51.7的小径球体的情况。如果从正圆偏离的各向异性、花瓣状等的不良球体形状为5根以上则判定为不良而以x符号表示;从正圆偏离的不良球体形状存在24根的情况分类为二类,如果异常变形发生l根以上则因为希望以批量生产的改善所以以A符号表示,如果不产生异常变形则因为可以使用所以以A符号表示;如果不良球体形成为1根以下则因为良好所以以O符号表示。在剥离接合强度的评估中,采用了楔式接合部的牵引(pull)试验。线径为25iam,跨度为2mm。此处,在以比引线长度的3/4接近楔式接合部的位置,使挂于环路的钩移动于上方,对接合引线的断裂强度进行了测定。因为剥离强度也受接合引线的线径、环路形状、接合条件等所左右,所以利用了并非绝对值、而是剥离强度/引线牵引强度的相对比率(Rp)。如果Rp为20%以上则因为楔式接合性良好所以以0符号表示;如果为15%以上而不足20%则判断为无问题而以0符号表示;如果为10%以上而不足15%则判断为存在产生不良状况的情况而以A符号表示;如果为10%以上则因为在批量生产工序存在问题所以以x符号表示。用于对环路形成中的表皮层与芯材的紧贴性进行评估,从上方对环路以光学显孩i镜进行观察而调查了表皮层的剥离的产生。采用线径25iam、跨度3mm的普通环路,环路数观察了400根。以剥离数进行比较,如果为零则判断为良好而以O符号表示;如果为l-4根则因为虽然在通常的使用中并无问题但是存在寻求改善的情况所以以A符号表示;如果为5根以上则因为在批量生产工序存在问题所以以x符号表示。在AES分光分析的深度分析中,证实在表皮层与芯材之间具有浓度梯度的扩散层,在该扩散层的厚度为0.002~0.2jum的范围的情况下,在表1中的"扩散层,,栏以O符号进行了表示。在对芯片的损伤的评估中,在将球部接合于电极膜上之后,蚀刻去除电极膜,以SEM观察了对绝缘膜或硅芯片的损伤。电极数观察了400处。在没有看见损伤的情况下以O符号记载;在2个裂紋以下的情况下判断为无问题级别而以A符号记载;在3个裂紋以上的情况下判断为担忧级别而以x符号进行记载。在表1及表2,表示本发明中的接合引线的实施例与比较例。表l<table>tableseeoriginaldocumentpage30</column></row><table>B國國編gg薩g國gg国gggg田g国g田g国ggg田园园国园g园gg园园i园S國國ij國S表2k培w萄械难唇s*豕权利要求1中的接合引线为实施例139,权利要求2中的接合引线相当于实施例2~14、16、18~39,权利要求3中的接合引线相当于实施例1~30、33~39,权利要求4中的接合引线相当于实施例1~7、1013、1517、19~30、33~39,权利要求5中的接合引线相当于实施例19、12~14、16、17、19~24、2639,权利要求6中的接合引线相当于实施例15、921、2339,权利5000<<MOOOOOOOOOOO<000000000000000VVVVVVoooo0>oooo◎◎ooooooooooooooooooooooooHV111111111H111*:裙$刮被.汰I^1IPIIPII^1I^1I^1111I^1I@lI^1I^1I^1I^1I^1111I^1Ig>151I^1I@lI^1f),€网网V网网V嫂汰婆尊芸31要求7中的接合引线相当于实施例1~10、1239,权利要求8中的接合引线相当于实施例1~22、24~39,权利要求9中的接合引线相当于实施例2530,权利要求10中的接合引线相当于实施例1~32、34~39,权利要求11中的接合引线相当于实施例1~9、1131、3339,权利要求12中的接合引线相当于实施例2、8、9、12、27、33、34,权利要求13中的接合引线相当于实施例8、3437、39,权利要求14中的接合引线相当于实施例17、19、20、22、30。在比较例16中,表示不满足权利要求1的情况下的结果。在图1中,表示在实施例4的接合引线的表面、EBSP测定结果的一例。从引线长度方向的晶体取向为<111>取向,对角度差15°以内的区域进行着色,并对角度差15。以上的晶界进行了线显示。图1中的<111>面积比率为88%。关于各自的权利要求的代表例,对评估结果的一部分进行说明。实施例139的多层结构的接合引线证实了由于本发明中的表皮层的表面中的长度方向的晶体取向之内<111>所占的比例(<111>取向比率)为50%以上,引线表面的伤痕、毛刺有所减少。另一方面,在关于表皮层的表面中的<111>取向比率不足50%的多层结构的接合引线的比较例1~6中,即使在通常的环路形成中也证实了多的伤痕、毛刺。作为优选事例证实了在表皮层的<111>取向比率为60%以上的实施例2~5、8、9、11、13、14、16、18~21、23、24、26、27、29、31、3537、39中,即使长跨度也能够降低伤痕、毛刺;进而在表皮层的<111>取向比率为70%以上的实施例35、9、11、14、20、21、23、26、29、35中,即使在低环路的严格条件下也可抑制伤痕、毛刺的不良状况。实施例214、16、1839的多层结构的接合引线证实了由于本发明上,可抑制以跨度3mm的在通常的环路条件下的环路高度的偏差而稳定。优选在该取向比率为80%以上的实施例35、711、14、16、20、21、23、26、29、30、31、35、36、39中,即使是跨度5mm的长跨度也能够使环路高度稳定化。实施例17、10~13、15~17、1930、3339的多层结构的接合引线证30%以上,在通常的球体尺寸下,能够减少球体接合部的花瓣不良、使形状稳定化。优选在该取向比率为50%以上的实施例3、7、10、11、1921、23、24、26、29、30、35、37、39中证实了,即使是严格接合条件下的小径球体,球体接合部的正圆性也有所提高。实施例19、12~14、16、17、19~24、26~39的多层结构的接合引线证实了由于本发明中的表皮层的表面中的晶粒的平均尺寸的长度方向/圓周方向的纵横比为3以上,在通常条件的3mm跨度中,环路的直线性良好。优选在该纵横比为5以上的实施例25、7、8、13、14、16、2024、26、27、29、30、31、35~38中证实了,即使是严格接合条件的5mm的长跨度,也能够提高直线性。进一步优选在该纵横比为10以上的实施例35、14、21、24、26、29、36中证实了,即使是严格环路条件的7mm的超长跨度,也能够提高直线性。实施例15、921、2329的多层结构的接合引线证实了由于本发明中的表皮层的表面中的引线长度方向的晶体取向为<111>的晶粒的面积相对于引线表面的比例(<111>面积比率)为30%以上,以线径22iam的细线,引线表面的伤痕、毛刺有所减少。优选<111>面积比率为40%以上的实施例3~5、11、14、16、18、20、21、23、26、29、30、31、33~36、39进一步证实了即使是细至18iam的极细线,也能够抑制伤痕、毛刺。进一步优选在<111>面积比率为50。/。以上的实施例4、5、20、21、29、35中证实了,以18Mm的极细线进一步抑制伤痕、毛刺的效果。实施例2530的多层结构的接合引线证实了由于本发明中的前述的<111>取向比率为50%以上,且在表皮层与芯材之间具有中间金属层,提高在楔式接合部的剥离强度。实施例1~30、33~39的多层结构的接合引线证实了由于本发明中的芯材的剖面中的对<111>与<100>合计的取向比率为15%以上,以通常的球体尺寸,能够减少球体接合部的异常变形,使形状稳定化。实施例1~32、34~39的多层结构的接合引线,由于本发明中的表皮层的厚度为0.0050.2|am的范围,降低芯片损伤而良好。作为比较,在实施例33中证实了因为表皮层的厚度超过0.2jum,所以芯片损伤有所增加。实施例19、1131、31~39的多层结构的接合引线证实了在本发明中,因为具有扩散层,该扩散层在表皮层与芯材之间具有浓度梯度,所以不会在环路上方存在剥离而表皮层的紧贴性良好。实施例2、8、9、12、27、33、34的多层结构的接合引线证实了在本发明中,由于构成芯材的主要成分为Cu,以5300ppm的范围包括B、Pd、P、Zr的l种以上,跨度5mm程度的环路的直线性有所提高。同样地,实施例17、19、22、30证实了在本发明中,由于构成芯材的主要成分为Au,以5~8000ppm的范围包括Be、Ca、Ni、Pd的1种以上,直线性有所提高。在此关于改善跨度5mm程度的环路的直线性的作用,前述的长度方向/圆周方向的纵横比为5以上也有效,也存在难以识别由上述的合金成分的添加产生的效果的情况。另一方面,在实施例9、12、17、19、33中证实了虽然纵横比不足5,但是通过包括上述的合金成分,能够改善跨度5mm程度的直线性。实施例8、34~37、39的多层结构的接合引线证实了在本发明中,由于构成前述芯材的主要成分为Cu,以510000ppm的范围包括Pd,构成前述表皮层的主要成分为Pd或Ag,可得到高的使环路的顶面附近的剥离、毛刺减少的效果。优选在实施例8、3537、39中,因为Pd浓度为200ppm以上,所以上述效果更加显著。并且,在实施例8、34~36、39中证实了因为Pd的包括量为58000ppm的范围,所以可抑制芯片损伤。在本发明中,涉及数值范围的"以上,,和"以下"都包括本值,例如"50。/。以上,,是指大于等于50%。权利要求1.一种半导体装置用接合引线,其具有包括导电性金属的芯材、和在所述芯材上以与该芯材不相同的金属为主要成分的表皮层,其特征在于所述表皮层的金属为面心立方晶格,所述表皮层的表面的晶面中的长度方向的晶体取向&lt;hkl&gt;中,&lt;111&gt;所占的比例为50%以上。2.根据权利要求l所述的半导体装置用接合引线,其特征在于所述表皮层的表面的晶面中的长度方向的晶体取向〈hkl〉中,<111>和<100>所占的比例的总计为60%以上。3.根据权利要求1或2所述的半导体装置用接合引线,其特征在于所述芯材的剖面的晶面中的长度方向的晶体取向〈hk^中,<111>和<100>所占的比例的总计为15%以上。4.根据权利要求13中的任何一项所述的半导体装置用接合引线,其特征在于所述芯材的剖面的晶面中的引线长度方向的晶体取向〈hk^中,<111>和<100>所占的比例为30%以上。5.根据权利要求14中的任何一项所述的半导体装置用接合引线,其特征在于关于所述表皮层的表面中的晶粒的平均尺寸,长度方向的平均尺寸相对于圆周方向的平均尺寸的比率为3以上。6.根据权利要求15中的任何一项所述的半导体装置用接合引线,其特征在于所述表皮层的表面中的引线长度方向的晶体取向为<111>的晶粒的面积相对于引线表面的总面积的比例为30%以上。7.根据权利要求16中的任何一项所述的半导体装置用接合引线,其特征在于构成所述表皮层的主要成分为Pd、Pt、Ru、Ag中的至少一种。8.根据权利要求l-7中的任何一项所述的半导体装置用接合引线,其特征在于构成所述芯材的主要成分为Cu、Au中的至少一种。9.根据权利要求18中的任何一项所述的半导体装置用接合引线,其特征在于在所述表皮层和所述芯材之间,具有包括与构成所述表皮层和所述芯材的主要成分不相同的成分的中间金属层。10.根据权利要求1~9中的任何一项所述的半导体装置用接合引线,其特征在于所述表皮层的厚度为0.0050.2jum的范围。11.根据权利要求110中的任何一项所述的半导体装置用接合引线,其特征在于在所述表皮层和芯材之间具有扩散层,该扩散层具有浓度梯度。12.根据权利要求711中的任何一项所述的半导体装置用接合引线,其特征在于构成所述芯材的主要成分为Cu,以5300ppm的范围含有B、Pd、Bi、P、Zr的1种以上。13.根据权利要求711中的任何一项所述的半导体装置用接合引线,其特征在于构成所述芯材的主要成分为Cu,以510000ppm的范围含有Pd,构成所述表皮层的主要成分为Pd或Ag。14.根据权利要求711中的任何一项所述的半导体装置用接合引线,其特征在于构成所述芯材的主要成分为Au,以5~8000ppm的范围含有Be、Ca、Ni、Pd、Pt的1种以上。全文摘要本发明涉及半导体装置用接合引线。本发明的目的在于提供引线的表面性状、环路的直线性、环路高度的稳定性、引线的接合形状的稳定化优良也适用于细线化、窄间距化、长跨度化、三维安装等的半导体安装技术的高性能的接合引线。作为具有包括导电性金属的芯材、和在该芯材上以与芯材不相同的面心立方晶格的金属为主要成分的表皮层的半导体装置用接合引线,特征为所述表皮层的表面中的长度方向的晶体取向<hkl>中,<111>所占的比例为50%以上。文档编号H01L21/60GK101689519SQ20088002402公开日2010年3月31日申请日期2008年12月2日优先权日2007年12月3日发明者宇野智裕,山田隆,木村圭一申请人:新日铁高新材料株式会社;株式会社日铁微金属
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1