半导体封装的制造方法、半导体封装方法和溶剂型半导体封装环氧树脂组合物的制作方法

文档序号:6986527阅读:332来源:国知局
专利名称:半导体封装的制造方法、半导体封装方法和溶剂型半导体封装环氧树脂组合物的制作方法
技术领域
本发明涉及半导体封装的制造方法、半导体封装方法和用于上述方法的溶剂型半导体封装环氧树脂组合物,更具体地说,涉及半导体芯片的安装方法和用于该方法的溶剂型半导体封装环氧树脂组合物。
背景技术
作为半导体芯片的安装方法,对应于封装的短小轻薄化的要求,倒装芯片安装正在增多。在倒装芯片安装中,进行了以下的被称为压接法的方法等首先将封装树脂供给到基板上后,将半导体芯片上的由金等金属构成的凸块热压接到电路基板上的通过镀金或镀锡焊料而成的被称为焊盘的部分,以同时进行利用凸块和焊盘的电连接以及封装树脂的固化。此外,近年来,还对叠层芯片(COC)方法、硅通孔(Through Silicon Via,TSV)方法等高密度安装方法进行了研究,在这些技术中也假设了同时进行封装树脂的固化和电连接,在所述叠层芯片(COC)方法中,在通过金属丝连接而搭载了半导体芯片的芯片上,层积连接其他芯片;在硅通孔(Through Silicon Via, TSV)方法中,在半导体芯片上形成贯通孔,以形成将芯片表面和芯片背面导通的电极,使用该电极将两个以上的半导体芯片层积连接。在这种情况下,以往主要采用了两种方法。即,使用向热固性树脂中混合作为片化剂的热塑性树脂而成的半导体封装用树脂片的方法;和,使用半导体封装用无溶剂型液状环氧树脂的方法。已知有各种半导体封装用无溶剂型液状环氧树脂组合物,例如,作为用于点封装半导体芯片的液状环氧树脂组合物,专利文献1中公开了一种液状环氧树脂组合物,其以甲基六氢邻苯二甲酸酐和烯丙基化苯酚线型酚醛清漆作为固化剂。另外,专利文献2中公开了一种使用了四氢邻苯二甲酸酐等酸酐的LSI封装用环氧树脂组合物,专利文献3中公开了一种含有甲基六氢邻苯二甲酸酐和酚化合物固化剂等的覆晶薄膜(chip on film)用液状环氧树脂组合物。作为半导体封装用树脂片,专利文献4中公开了一种含有环氧树脂、 酚树脂和大量的热塑性树脂而成的粘合树脂片。但是,根据使用半导体封装用无溶剂型液状环氧树脂组合物的方法,在高温下将芯片接合时,具有在未充分进行固化反应的液状树脂中会产生空隙的问题。此外,还存在由于液状树脂的流动而将空隙卷入的问题。另外,根据使用树脂片的方法,由于热塑性树脂的混合,环氧树脂的性能被稀释,存在封装剂性能降低的问题。此外,根据使用树脂片的方法, 对于高密度的布线,树脂片无法跟随其凹凸而变形,具有在凹凸的基部容易产生空隙的问题。现有技术文献专利文献专利文献1 日本特开平6-306143号公报专利文献2 日本特开2000-198831号公报
专利文献3 日本特开2008-7577号公报专利文献4 日本特开2004-161886号公报

发明内容
发明要解决的课题本发明为了解决上述课题,目的在于提供一种能够抑制液状封装树脂中的空隙产生的新型方法和用于该方法的溶剂型半导体封装环氧树脂组合物。用于解决课题的方案本发明涉及一种半导体封装的制造方法,其特征在于,该方法包括以下工序工序 (1),将溶剂型半导体封装环氧树脂组合物涂布于选自由半导体芯片和电路基板组成的组中的第一部件(本说明书中,也简称为第一部件。);工序O),使溶剂从所涂布的所述组合物中挥发,干燥组合物;工序(3),隔着涂布并干燥的该组合物将第一部件和第二部件热压接,所述第二部件选自由半导体芯片和电路基板组成的组中,且与第一部件形成半导体芯片/电路基板的组合体或半导体芯片/半导体芯片的组合体(本说明书中,也简称为第二部件。)。以下,也简称为“本发明的制造方法”。本发明的其他方式中,涉及一种半导体封装方法,其特征在于,该方法包括以下工序工序(1),将溶剂型半导体封装环氧树脂组合物涂布于选自由半导体芯片和电路基板组成的组中的第一部件;工序O),使溶剂从所涂布的所述组合物中挥发,干燥组合物;工序(3 ‘),隔着涂布并干燥的该组合物将第一部件和第二部件热压接,所述第二部件选自由半导体芯片和电路基板组成的组中,且与第一部件形成半导体芯片/电路基板的组合体。以下,也简称为“本发明的封装方法”。另外,本发明还涉及一种溶剂型半导体封装环氧树脂组合物,其特征在于,其以环氧树脂(A)、作为固化剂的酚类酚醛清漆树脂(B)、潜在性固化促进剂(C')和溶剂(D)为必要成分,其中所述酚类酚醛清漆树脂(B)的酚羟基的摩尔数相对于所述环氧树脂(A)中的环氧基的摩尔数为0. 8 1. 2倍的比例。以下,也简称为“本发明的组合物”。发明效果对于本发明的制造方法和本发明的封装方法,通过上述构成,在封装前利用干燥使溶剂挥发,从而能够将以往的封装方法中无法使用的溶剂型环氧树脂组合物用作封装树脂。另外,不需要如使用树脂片时那样将树脂组合物片化的工序,此外没有添加作为片化剂大量使用从而导致固化物特性劣化的热塑性树脂,因而能够提供固化物性良好的环氧树脂组合物。另外,对于本发明的制造方法和本发明的封装方法,通过上述构成,与无溶剂型液状树脂封装剂相比,利用干燥能够提高封装时的树脂粘性,因此能够抑制与基板产生空隙。 另外,不会产生在粘贴树脂片时成为问题的布线间的空隙。


图1是利用本发明的制造方法、本发明的封装方法的倒装芯片安装的示意图。图2是对实施例1 (B图)和比较例1 (A图)的加热干燥前的封装树脂与半导体芯片的粘合状态进行显微镜观察的附图替代照片。图中,在比较例1(A图)的圆所包围的部分,片状树脂从芯片表面剥离。以下,详细说明本发明。
具体实施例方式本发明的制造方法和封装方法中,作为溶剂型半导体封装环氧树脂组合物,优选使用以环氧树脂(A)、作为固化剂的酚类酚醛清漆树脂(B)、固化促进剂(C)和溶剂(D)为必要成分的溶剂型半导体封装环氧树脂组合物,其中所述酚类酚醛清漆树脂(B)的酚羟基的摩尔数相对于所述环氧树脂(A)中的环氧基的摩尔数为0. 8 1. 2倍的比例。作为上述环氧树脂(A),可以使用通常用作封装用树脂的环氧树脂,例如,可以举出双酚A型环氧树脂、双酚F型环氧树脂、双酚AD型环氧树脂、萘型环氧树脂、联苯型环氧树脂、缩水甘油胺型环氧树脂、脂环式环氧树脂、二环戊二烯型环氧树脂、聚醚型环氧树脂、 硅酮改性环氧树脂等。这些环氧树脂可以单独使用,也可以组合使用两种以上。其中,优选为萘型环氧树脂、双酚A型环氧树脂、双酚F型环氧树脂、双酚AD型环氧树脂,更优选为双酚A型环氧树脂、双酚F型环氧树脂、萘型环氧树脂,从耐湿性的方面出发,进一步优选为萘型环氧树脂。上述酚类酚醛清漆树脂(B)是利用酸催化剂使酚类(用OH基取代了芳香族化合物的苯环的氢而成的化合物,例如苯酚、甲酚、萘酚、烷基苯酚、双酚、萜酚等。)和甲醛缩聚而成的物质,例如,可以使用在常温(25°C )下为固态的苯酚酚醛清漆树脂或萘酚酚醛清漆树脂。作为固态的苯酚酚醛清漆树脂,没有特别限定,可以利用通常使用的苯酚酚醛清漆树脂类,具体地说,例如,可以举出苯酚酚醛清漆树脂、甲酚酚醛清漆树脂、芳烷基苯酚酚醛清漆树脂、联苯苯酚酚醛清漆树脂、萜酚酚醛清漆树脂等。另外,对固态的萘酚酚醛清漆树脂也没有特别限定,可以利用通常使用的萘酚酚醛清漆树脂,具体地说,例如,可以举出 α -萘酚酚醛清漆树脂、β -萘酚酚醛清漆树脂等。其中,从耐水性的观点来看,优选为萘酚酚醛清漆树脂。这些物质可以单独使用,也可以组合使用两种以上。关于上述环氧树脂(A)与酚类酚醛清漆树脂(B)的混合比,为酚羟基的摩尔数相对于所述(A)中的环氧基的摩尔数为0. 8 1. 2倍的比例,优选为0. 9 1. 1倍的比例。它们的混合量虽根据羟基当量而异,但若以每100重量份环氧树脂表示,通常优选酚类酚醛清漆树脂(B)为80 120重量份,更优选酚类酚醛清漆树脂(B)为90 110重量份。作为上述固化促进剂(C),例如,可以举出咪唑系促进剂、磷系固化促进剂、鳞盐系固化促进剂、双环式脒类及其衍生物、有机金属络合物、多元胺的脲化物等。另外,作为上述固化促进剂(C),可以优选举出潜在性固化促进剂(C')。作为这样的潜在性固化促进剂 (C'),例如,可以举出咪唑系促进剂、磷系促进剂等。这样的潜在性固化促进剂(C')中, 优选咪唑改性物的胶囊化物。固化促进剂(C)的混合量相对于100重量份环氧树脂(A)优选为0. 2 20重量份,更优选为2 10重量份。作为上述溶剂(D),没有特别限定,例如,可以举出丙酮、甲基乙基酮(ΜΕΚ)、甲基异丁基酮(MIBK)、环己酮等酮类,甲基溶纤剂、乙二醇二丁基醚、乙二醇丁醚醋酸酯等醚类。 其中,从加热固化时的挥发性和操作性的观点来看,优选为醚类。溶剂(D)的用量相对于100重量份树脂成分优选为10 80重量份,更优选为20 30重量份。若用量在该范围,则可以抑制酚类的析出、和聚合后的树脂中的溶剂残留。在上述溶剂型半导体封装环氧树脂组合物中,还可以混合无机填料。作为上述无机填料,例如,可以举出二氧化硅填料(例如,熔融二氧化硅、结晶二氧化硅等)、金属颗粒 (金、铜、焊料、银等)、石英玻璃粉末、碳酸钙、氢氧化铝等无机颗粒。其中,优选为二氧化硅填料,更优选为熔融二氧化硅。相对于100重量份树脂组合物固体成分,无机填料的混合量优选为30 80重量份,更优选为45 65重量份。另外,使用无机填料时,可以使用硅烷偶联剂。作为上述硅烷偶联剂,例如,可以举出3-环氧丙氧基丙基三甲氧基硅烷、3-环氧丙氧基丙基三乙氧基硅烷、2-(3,4-环氧环己基)乙基三甲氧基硅烷、2-(3,4-环氧环己基)乙基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷等,这些物质可以单独使用,也可以组合使用两种以上。只要不损害本发明的目的,则本发明的组合物中可以使用消泡剂、流平剂、颜料。关于本发明的组合物,通常,在以预定的比例混合各成分后,搅拌60 120分钟, 然后减压、脱泡后使用即可。对于本发明的制造方法和本发明的封装方法,在将溶剂型半导体封装环氧树脂组合物涂布于选自由半导体芯片和电路基板组成的组中的第一部件的工序(1)中,在半导体芯片或电路基板的接合面涂布溶剂型半导体封装环氧树脂组合物。该涂布例如利用印刷法、旋涂法、辊涂法等能够均勻涂布的方法即可。电路基板可以是选自由树脂基板、陶瓷基板和硅基板组成的组中的至少1种。作为上述树脂基板,没有特别限定,可以举出通常用于树脂基板的基板,例如,可以举出环氧树脂基板(包括玻璃环氧基板)、氟树脂基板、双马来酰亚胺三嗪基板等,另外,也可以是柔性树脂基板(例如,聚酰亚胺树脂基板等)。另外,上述电路基板可以是在陶瓷、硅上涂布树脂等的有机无机复合基板。涂布量为封装所需要的量,且为不会过多的所需最少量。通常,涂布厚度为5 50 μ m左右。接下来,在使溶剂从所涂布的所述组合物中挥发而干燥组合物的工序O)中,使溶剂型环氧树脂组合物干燥,在该阶段实质上不发生树脂固化反应。优选利用加热干燥来进行干燥。加热干燥的条件因树脂组合物的成分的种类而异,不能一概而论,通常,作为干燥温度,优选为60 180°C,更优选为60 120°C。另外,作为干燥时间,优选为30秒 30 分钟。或者,也可以在室温(18 左右,优选为25°C。)下进行通风干燥。关于工序 ⑵中干燥后的树脂,例如,为硅基板的情况下,可以进行切割加工。因此,在工序⑵之后可以实施以下工序对于在工序(1)中将硅晶片作为第一部件来涂布树脂组合物并干燥而得到的物质进行切割,将其切断成片状。本发明的制造方法中,接着,实施工序(3)隔着涂布并干燥的该组合物将第一部件和第二部件热压接,所述第二部件选自由半导体芯片和电路基板组成的组中,且与第一部件形成半导体芯片/电路基板的组合体或半导体芯片/半导体芯片的组合体。即,本发明的制造方法中,第一部件和第二部件可以是半导体芯片/电路基板的组合体,或者是半导体芯片/半导体芯片的组合体。前者的情况例如对应于利用倒装芯片连接法将半导体芯片安装到电路基板上的情况。后者的情况例如对应于利用COC方法、TSV方法等高密度安装方法的情况,在所述COC方法中,在通过金属丝连接而搭载了半导体芯片的半导体芯片上, 层积连接其他半导体芯片;在所述TSV方法中,在半导体芯片上形成贯通孔,以形成将半导体芯片表面和半导体芯片背面导通的电极,使用该电极在半导体芯片上层积连接其他半导体芯片。另外,本发明的封装方法中,实施工序(3')隔着涂布并干燥的该组合物将第一部件和第二部件热压接,所述第二部件选自由半导体芯片和电路基板组成的组中,且与第一部件形成半导体芯片/电路基板的组合体。工序C3)或工序(3')的热压接工序通常形成半导体芯片彼此之间的电连接或半导体芯片与电路基板的电连接。此时,通常,第一部件或第二部件上形成的金、铜、焊料等金属制的凸块与所对应的第二部件或第一部件上形成的被称为焊盘的电路部位例如通过机械连接、超声波连接、金-锡共晶连接等方法而连接起来。同时,在第一部件和第二部件之间存在的涂布并干燥后的溶剂型半导体封装环氧树脂组合物被加热固化。作为压接温度, 通常为150 300°C,优选为200 280°C,更优选为220 250°C。压接温度优选高于干燥温度。作为压接时间,通常为0.5 10秒,优选为0.5 5秒。此时,通过加热,工序(2) 中干燥固化的树脂组合物熔融或软化。作为此时的该组合物的复弹性模量E*的大小,使用动态粘弹性测定装置在剪切速度为6. ^rad/s的条件下测定时(以下角速度相同。),在 25°C至150°C的温度范围,优选为5001 以上,上限优选为10000001 以下,更优选为500 lOOOOOPa,进一步优选为500 lOOOOPa。作为本发明的树脂组合物在干燥固化后通过加热而熔融或软化时的粘度,若复弹性模量的最低值为500Pa以上,则能够抑制空隙的产生和热压接时的空隙的卷入。若通过加热使该组合物的温度上升,则复弹性模量的值降低,但伴随着加热,组合物的固化反应进行,其结果,在某一温度以上、即通常25°C至150°C的温度范围,粘度增大。上述温度范围中的E*的大小的最低值优选为500Pa以上。但是,实际上, 80°C下的复弹性模量的大小为500Pa以上且1000000Pa以下、进而500 500001 也是优选的,进一步优选为500 lOOOOPa。复弹性模量的测定可以在25°C至150°C的温度下、以 5°C/分钟的升温速率、应变量0.1%、剪切速度6. ^rad/s的条件进行。工序(3)之后,根据需要可以实施后固化的工序。以倒装芯片安装的情况为例,对本发明中的安装工序进行说明。如图1所示,首先,如[1]所示,在形成了电路7的基板3上的配置半导体芯片的面,通过印刷法或旋涂法涂布本发明的组合物2(工序(1))。然后,如[2]所示,通过加热使所涂布的组合物干燥,形成固态状2’ (工序O))。然后,如[3]所示,利用夹具1将半导体芯片4配置于预定位置, 使金、铜、焊料等金属的凸块5与基板的焊盘7 (焊盘优选通过镀敷等设置了锡、焊料。)接触,并且一边加热、加压(图中,用P表示),一边使封装树脂2’固化,同时完成电连接(工序(3))。作为加压条件,通常为2 50g/凸块,优选为5 30g/凸块。此外,根据期望, 也可以进行后固化。作为后固化的温度、时间条件,优选为120 180°C,更优选为120 150°C,优选为0.5 5.0小时,更优选为1.0 3.0小时。此时,如[4]所示,为了良好地进行封装,优选角部(7 4 > 7卜)高度不超过半导体芯片的上表面,并且包覆半导体芯片周围的电极。为了均勻地包覆半导体芯片周围的电极,优选形成无凹凸的形状均勻的角部 6。需要说明的是,图1中,在工序(1)中将本发明的组合物涂布于基板上,但不限于此,也可以将本发明的组合物涂布于半导体芯片上。实施例以下,示出实施例,对本发明进行更详细的说明,但本发明不限于这些例子。实施例1 5和比较例1、2
以表1所示的各成分和组成(重量份)分别混合,在25°C下混合,分别制备均勻的组合物。关于混合量,分别以当量比计一并示出相对于环氧基的摩尔数的酚羟基的摩尔数。 对于比较例1的组合物,在120°C干燥3分钟使其片化,得到片状封装树脂(厚度30 μ m)。 关于比较例2的组合物,将各成分混合而得到。复弹性模量E*的测定测定实施例1 5和比较例1的干燥后的组合物的复弹性模量E*的大小(Pa)。比较例2的组合物在未固化状态下测定。测定如下进行。即,在25°C至150°C的温度下,使用动态粘弹性测定装置以5°C /分钟的升温速率、应变量0. 1%、剪切速度6. 28rad/s进行测定。表1中示出了 80°C下的E*的大小。另外,实施例1的角部均勻地包覆了芯片周围的电极,形成了无凹凸的形状均勻的角部。比较例2的组合物的固化后的在下述电路基板上,为了使实施例1 5和比较例1的树脂组合物量分别为10mg, 分别印刷实施例1 5的组合物,通过光学显微镜从上部确认封装树脂在基板上的粘合情况。然后在120°C加热干燥3分钟。比较例1的片状封装树脂配置于电路基板上,通过光学显微镜从上部确认了粘合状态。均以下述基准进行评价。接下来,对于各例,将半导体芯片和电路基板接合封装后,通过下述方法评价有无空隙。结果示于表1。接合封装条件如下所述。进而,对于各例,通过下述方法评价粘合强度。结果示于表1。比较例2的组合物的情况下,将IOmg的树脂组合物置于基板上,并使其固化(固化条件M0°C、5秒),评价接合后有无空隙。另外,图2示出了与半导体芯片的粘合状态的附图替代照片。图2中的圆所包围的部分表示封装树脂从半导体芯片上剥离了的部位。其中,A图为比较例1,B图为实施例1。压接条件240°C、5秒、加压IOg/凸块后固化150°C、1小时 电路基板35mm X 35mm X 0. 6mm的环氧FR基板。Au焊盘表面涂布了无1 焊料。芯片7.3mm X 7. 3mm XO. 2mm (金凸块数 544)粘合情况的观察对于干燥前的样品,通过光学显微镜从上部观察封装树脂和基板的粘合状态。判断基准如下所述。〇封装树脂中未观察到空隙,或者片状树脂无间隙地粘合到芯片表面Δ 封装树脂的一部分存在空隙,或者片状树脂与芯片表面之间一部分形成了间隙X 封装树脂全体中存在空隙,或者在片状树脂与芯片表面之间间隙以很宽的范围形成空隙的观察对于接合后的样品,通过顶显微镜考察封装树脂有无空隙。判断基准如下所述。〇封装树脂中未观察到空隙Δ 封装树脂的一部分存在空隙X 封装树脂全体中存在空隙粘合强度(N/mm2)以120°C /3分钟的固化条件在PET膜上形成厚度为20 μ m的粘合剂层后,与PET膜一起切割成2X2mm。接着,从PET膜上剥离粘合剂层,将其夹在表面涂布了聚酰亚胺(PIX 1400日立化成杜邦制造)的2个硅芯片O X 2mm的硅芯片和5 X 5mm的硅芯片)之间,以 2400C /10N/5秒进行热压接后,以150°C /1小时的条件进行后固化,制作试验片。将该试验片放置于85°C /湿度85%的恒温高湿槽中M小时后,测定260°C下的粘合强度。对于比较例2的组合物,也同样地测定粘合强度。表中的用语的含义如下。环氧树脂(1) :1,6- (2,3_环氧丙氧基)萘环氧树脂O)双酚A型二缩水甘油醚酸酐三芳烷基四氢邻苯二甲酸酐酚醛清漆树脂(1)苯酚酚醛清漆树脂(软化点70 120°C )酚醛清漆树脂O)萘酚酚醛清漆树脂(软化点70 120°C )二氧化硅填料(1)平均粒径0. 5 μ m(球状熔融二氧化硅)二氧化硅填料O)平均粒径2. 0 μ m (球状熔融二氧化硅)硅烷偶联剂环氧硅烷片化剂苯氧基树脂固化促进剂咪唑系固化促进剂(胶囊型潜在性固化促进剂)溶剂⑴环戊酮溶剂O)乙二醇丁醚醋酸酯[表 1]
权利要求
1.一种半导体封装的制造方法,其特征在于,该方法包括以下工序工序(1),将溶剂型半导体封装环氧树脂组合物涂布于选自由半导体芯片和电路基板组成的组中的第一部件;工序O),使溶剂从所涂布的所述组合物中挥发,以干燥组合物;工序( ,隔着涂布并干燥的该组合物将第一部件和第二部件热压接,所述第二部件选自由半导体芯片和电路基板组成的组中,并且,所述第二部件与第一部件形成半导体芯片/ 电路基板的组合体或半导体芯片/半导体芯片的组合体。
2.如权利要求1所述的制造方法,其中,在工序(2)中,在60°C 180°C进行加热干燥。
3.如权利要求1或2所述的制造方法,其中,在工序(2)中,加热干燥30秒 30分钟。
4.如权利要求1 3的任一项所述的制造方法,其中,电路基板为选自由树脂基板、陶瓷基板和硅基板组成的组中的至少1种。
5.如权利要求1 4的任一项所述的制造方法,其中,在工序(3)中,将金属制凸块和焊盘接合。
6.如权利要求1 5的任一项所述的制造方法,其中,在工序(3)中,在25°C至150°C 的温度范围,使用动态粘弹性测定装置以6. 28rad/s的剪切速度测定的该组合物的复弹性模量E*的大小为500Pa以上。
7.如权利要求1 6的任一项所述的制造方法,其中,使用以环氧树脂(A)、作为固化剂的酚类酚醛清漆树脂(B)、固化促进剂(C)和溶剂(D)为必要成分的溶剂型半导体封装环氧树脂组合物,其中所述酚类酚醛清漆树脂(B)的酚羟基的摩尔数相对于所述环氧树脂 (A)中的环氧基的摩尔数为0. 8倍 1. 2倍的比例。
8.如权利要求7所述的制造方法,其中,使用醚类作为溶剂(D)。
9.一种半导体封装方法,其特征在于,该方法包括以下工序工序(1),将溶剂型半导体封装环氧树脂组合物涂布于选自由半导体芯片和电路基板组成的组中的第一部件;工序O),使溶剂从所涂布的所述组合物中挥发,以干燥组合物;工序(3'),隔着涂布并干燥的该组合物将第一部件和第二部件热压接,所述第二部件选自由半导体芯片和电路基板组成的组中,并且,所述第二部件与第一部件形成半导体芯片/电路基板的组合体。
10.一种溶剂型半导体封装环氧树脂组合物,其特征在于,该组合物以环氧树脂(A)、 作为固化剂的酚类酚醛清漆树脂⑶、潜在性固化促进剂(C')和溶剂(D)为必要成分,其中所述酚类酚醛清漆树脂(B)的酚羟基的摩尔数相对于所述环氧树脂(A)中的环氧基的摩尔数为0.8倍 1.2倍的比例。
11.如权利要求10所述的组合物,其中,环氧树脂(A)为选自由萘型环氧树脂、双酚A 型环氧树脂和双酚F型环氧树脂组成的组中的至少1种。
12.如权利要求10或11所述的组合物,其中,酚类酚醛清漆树脂(B)为选自由苯酚酚醛清漆树脂、芳烷基苯酚酚醛清漆树脂、萘酚酚醛清漆树脂和萜酚酚醛清漆树脂组成的组中的至少1种。
13.如权利要求10 12的任一项所述的组合物,其中,该组合物还含有无机填料,所述无机填料相对于100重量份的树脂组合物固体成分为30重量份 80重量份。
14.如权利要求10 13的任一项所述的组合物,其中,使用醚类作为溶剂(D)。
全文摘要
本发明涉及一种半导体封装的制造方法,其为能够抑制封装树脂中的空隙产生的新型方法,该方法包括以下工序工序(1),将溶剂型半导体封装环氧树脂组合物涂布于选自由半导体芯片和电路基板组成的组中的第一部件,所述溶剂型半导体封装环氧树脂组合物以环氧树脂(A)、酚类酚醛清漆树脂(B)、固化促进剂(C)和溶剂(D)为必要成分,其中所述酚类酚醛清漆树脂(B)的酚羟基的摩尔数相对于所述(A)中的环氧基的摩尔数为0.8~1.2倍的比例;工序(2),使溶剂从所涂布的所述组合物中挥发,干燥组合物;工序(3),隔着涂布并干燥的该组合物将第一部件和第二部件热压接,所述第二部件选自由半导体芯片和电路基板组成的组中,且与第一部件形成半导体芯片/电路基板的组合体或半导体芯片/半导体芯片的组合体。
文档编号H01L25/18GK102282660SQ201080004116
公开日2011年12月14日 申请日期2010年1月8日 优先权日2009年1月9日
发明者矶部友基, 野村和宏 申请人:长瀬化成株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1