Ga2O3系半导体元件的制作方法与工艺

文档序号:12557065阅读:197来源:国知局
Ga2O3系半导体元件的制作方法与工艺
本发明涉及Ga2O3系半导体元件。

背景技术:
作为现有的Ga2O3系半导体元件,已知有使用了形成在蓝宝石基板上的Ga2O3晶体膜的Ga2O3系半导体元件(例如,参照非专利文献1、2)。现有技术文献非专利文献非专利文献1:K.Matsuzakietal.ThinSolidFilms496,2006,pp.37-41.非专利文献2:K.Matsuzakietal.Appl.Phys.Lett.88,092106,2006.

技术实现要素:
然而,由于Ga2O3晶体和蓝宝石晶体的晶体结构完全不同,所以在蓝宝石基板上使Ga2O3晶体异质外延生长是非常困难的。因此,难以使用蓝宝石基板上的Ga2O3晶体膜形成高品质的Ga2O3系半导体元件。因此,本发明的目的在于提供高品质的Ga2O3系半导体元件。为了实现上述目的,本发明的一个方式提供[1]~[4]的Ga2O3系半导体元件。[1]一种Ga2O3系半导体元件,包括:具有第1导电型的β-Ga2O3基板,在上述β-Ga2O3基板上直接或介由其它膜而形成的β-Ga2O3单晶膜,在上述β-Ga2O3单晶膜上形成的源电极,在上述β-Ga2O3基板的与上述β-Ga2O3单晶膜相反侧的面上形成的漏电极,在上述β-Ga2O3单晶膜中形成的连接上述源电极的具有上述第1导电型的接触区域,在上述β-Ga2O3单晶膜上或在形成于上述β-Ga2O3单晶膜的槽内介由栅极绝缘膜形成的栅电极。[2]根据上述[1]中记载的Ga2O3系半导体元件,其中,上述源电极包含第1源电极和第2源电极,上述栅电极介由上述栅极绝缘膜形成在上述β-Ga2O3单晶膜上的上述第1源电极与上述第2源电极之间的区域,上述β-Ga2O3单晶膜具有上述第1导电型,上述接触区域包含分别连接上述第1源电极和第2源电极的第1接触区域和第2接触区域,具有分别包围上述第1接触区域和第2接触区域的、与上述第1导电型不同的第2导电型或高电阻的第1主体区域和第2主体区域。[3]根据上述[1]中记载的Ga2O3系半导体元件,其中,上述β-Ga2O3单晶膜介由具有上述第1导电型的其它β-Ga2O3单晶膜形成在上述β-Ga2O3基板上,上述β-Ga2O3单晶膜具有与上述第1导电型不同的第2导电型或不含有掺杂剂,上述栅电极介由上述栅极绝缘膜形成在上述槽内,上述接触区域包括分别位于上述栅电极的两侧的第1接触区域和第2接触区域。[4]根据上述[1]~[3]中任一项记载的Ga2O3系半导体元件,其中,上述第1导电型和第2导电型分别为n型和p型。根据本发明,能够提供高品质的Ga2O3系半导体元件。附图说明图1是第1实施方式涉及的Ga2O3系MISFET的截面图。图2是简要地表示第1实施方式涉及的MBE装置的构成的构成图。图3A是第1实施方式涉及的n型β-Ga2O3基板和n型β-Ga2O3单晶膜的截面图。图3B是第1实施方式涉及的n型β-Ga2O3基板和n型β-Ga2O3单晶膜的截面图。图4是第2实施方式涉及的Ga2O3系MISFET的截面图。图5是第3实施方式涉及的Ga2O3系MISFET的截面图。具体实施方式根据本发明的实施方式,能够利用同质外延生长法形成高品质的β-Ga2O3系单晶膜,利用该高品质的β-Ga2O3系单晶膜形成高品质的Ga2O3系半导体元件。以下,对该实施方式的一个例子进行详细说明。〔第1实施方式〕在第1实施方式中,对作为Ga2O3系半导体元件的具有平面栅极结构的Ga2O3系MISFET(MetalInsulatorSemiconductorFieldEffectTransistor)进行说明。(Ga2O3系半导体元件的构成)图1是第1实施方式涉及的Ga2O3系MISFET20的截面图。Ga2O3系MISFET20包括:在n型β-Ga2O3基板2上形成的n型β-Ga2O3单晶膜3,在n型β-Ga2O3单晶膜3上形成的源电极22a、22b,在n型β-Ga2O3单晶膜3上的源电极22a、22b之间的区域介由栅极绝缘膜26形成的栅电极21,分别在n型β-Ga2O3单晶膜3中的源电极22a、22b的下方形成的n型接触区域23a、23b,分别包围接触区域23a、23b的p型主体区域24a、24b,在n型β-Ga2O3基板2的与n型β-Ga2O3单晶膜3相反侧的面上形成的漏电极25。Ga2O3系MISFET20是源电极和漏电极分别设置在元件的上下的、电流在纵向流过的纵型半导体元件。如果对栅电极21施加阈值以上的电压,则在p型主体区域24a、24b的栅电极21下的区域形成通道,电流从源电极22a、22b流向漏电极25。n型β-Ga2O3基板2含有Si、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Sn、Ge、Pb、Mn、As、Sb、Bi、F、Cl、Br或I等n型掺杂剂。n型β-Ga2O3基板2例如具有100~600μm的厚度。另外,n型β-Ga2O3基板2例如含有5×1018~1×1020/cm3浓度的n型掺杂剂。就n型β-Ga2O3基板2的主面而言,对晶面指数没有特别限定,优选是从(100)面仅旋转50°~90°的角度的面。即,优选在β-Ga2O3基板2中,主面与(100)面所成的角θ(0<θ≤90°)为50°以上。作为从(100)面旋转50°~90°的面,例如存在(010)面、(001)面、(-201)面、(101)面以及(310)面。n型β-Ga2O3基板2的主面是从(100)面仅旋转50°~90°的角度的面的情况下,在n型β-Ga2O3基板2上使β-Ga2O3系晶体外延生长时,能够有效抑制β-Ga2O3系晶体的原料从n型β-Ga2O3基板2再蒸发。具体而言,使β-Ga2O3系晶体在生长温度500℃生长时再蒸发的原料的比例为0%时,n型β-Ga2O3基板2的主面是从(100)面旋转50°~90°的面的情况下,能够将再蒸发的原料的比例抑制到40%以下。因此,能够将供给的原料的60%以上用于β-Ga2O3系晶体的形成,从β-Ga2O3系晶体的生长速度、制造成本的观点考虑而优选。β-Ga2O3晶体具有单斜晶系的晶体结构,其典型的晶格常数为a=12.23、b=3.04、c=5.80、α=γ=90°、β=103.7°。在β-Ga2O3晶体中,以c轴为轴使(100)面旋转52.5°时与(310)面一致,旋转90°时与(010)面一致。另外,以b轴为轴使(100)面旋转53.8°时,通过旋转方向与(101)面或(-201)面一致,当使(100)面向使其旋转53.8°时(101)面表现的旋转方向旋转76.3°时与(001)面一致。另外,n型β-Ga2O3基板2的主面也可以是从(010)面仅旋转37.5°以下的角度的面。此时,能够使n型β-Ga2O3基板2与i型β-Ga2O3单晶膜3的界面陡峭,并且能够高精度地控制i型β-Ga2O3单晶膜3的厚度。n型β-Ga2O3单晶膜3是利用后述方法在n型β-Ga2O3基板2上形成的单晶膜。n型β-Ga2O3单晶膜3含有Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi、F、Cl、Br、I等n型掺杂剂。n型β-Ga2O3单晶膜3的厚度例如为10~500nm。另外,n型β-Ga2O3单晶膜3例如含有1×1015~1×1019/cm3浓度的n型掺杂剂。应予说明,可以在n型β-Ga2O3基板2与n型β-Ga2O3单晶膜3之间形成其它膜。作为该其它膜,例如,可形成n型掺杂剂的浓度比n型β-Ga2O3单晶膜3高、根据情况比n型β-Ga2O3基板2高的n型β-Ga2O3单晶膜。此时,在n型β-Ga2O3基板2上通过同质外延生长形成其它膜,在其它膜上通过同质外延生长形成n型β-Ga2O3单晶膜3。栅电极21、源电极22a、22b以及漏电极25例如由Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等金属、包含这些金属中的2种以上的合金或ITO等导电性化合物、导电性聚合物形成。作为导电性聚合物,可使用在聚噻吩衍生物(PEDOT:聚(3,4)-乙撑二氧噻吩)中掺杂聚苯乙烯磺酸(PSS)而成的导电性聚合物、在聚吡咯衍生物中掺杂TCNA而成的导电性聚合物等。另外,栅电极21可以具有由不同的2种金属构成的2层结构,例如Al/Ti、Au/Ni、Au/Co。栅极绝缘膜26由SiO2、AlN、SiN、Al2O3、β-(AlxGa1-x)2O3(0≤x≤1)等绝缘材料形成。其中,由于β-(AlxGa1-x)2O3能够在β-Ga2O3晶体上作为单晶膜生长,所以能够形成界面态少的良好的半导体绝缘膜界面,栅极特性比使用其它绝缘膜时良好。接触区域23a、23b是在n型β-Ga2O3单晶膜3中形成的n型掺杂剂的浓度高的区域,分别连接源电极22a、22b。接触区域23a、23b中含有的n型掺杂剂和n型β-Ga2O3单晶膜3中主要含有的n型掺杂剂可以相同,也可以不同。主体区域24a、24b含有Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等p型掺杂剂。主体区域24a、24b是p型的区域、或通过电荷补偿具有i型那样的性质的高电阻区域。(Ga2O3系MISFET的制造方法)作为β-Ga2O3系单晶膜的制造方法,有PLD(PulsedLaserDeposition)法、CVD(ChemicalVaporDeposition)法、溅射法、分子束外延(MBE;MolecularBeamEpitaxy)法等,但在本实施方式中,采用使用了MBE法的薄膜生长法。MBE法是在被称为束源炉的蒸发源中加热单体或化合物的固体,以通过加热生成的蒸气为分子束而供给到基板表面的晶体生长方法。图2是表示β-Ga2O3系单晶膜的形成中使用的MBE装置的一个例子的构成图。该MBE装置1具备:真空槽10,支撑在该真空槽10内以保持n型β-Ga2O3基板2的基板支架11,用于对保持于基板支架11的n型β-Ga2O3基板2进行加热的加热装置12,按构成薄膜的原子或分子设置的多个束源炉13(13a、13b),用于加热多个束源炉13的加热器14(14a、14b),向真空槽10内供给氧系气体的气体供给管15以及用于排出真空槽10内的空气的真空泵16。基板支架11可介由轴110利用未图示的马达旋转地构成。第1束源炉13a中填充有Ga粉末等β-Ga2O3系单晶膜的Ga原料。该粉末的Ga的纯度优选为6N以上。第2束源炉13b中填充有作为供体掺杂的n型掺杂剂的原料的粉末。在第1束源炉13a和第2束源炉13b的开口部设有快门。在基板支架11安装预先制作的n型β-Ga2O3基板2,在该n型β-Ga2O3基板2上一边添加n型掺杂剂一边使β-Ga2O3晶体同质外延生长,由此形成n型β-Ga2O3单晶膜3。该n型β-Ga2O3基板2例如按如下顺序制作。首先,利用EFG法制作添加了Si等n型掺杂剂的n型β-Ga2O3单晶锭。应予说明,添加的元素不限于Si,例如,置换Ga位点时,可以使用Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Sn、Ge、Pb、Mn、As、Sb或Bi。另外,置换氧位点时,可以使用F、Cl、Br或I。添加Si时,在原料粉末中混合SiO2粉末。为了使n型β-Ga2O3基板2具有良好的导电性,可以添加0.05mol%以上的SiO2。n型β-Ga2O3单晶锭的供体浓度例如为5×1018~1×1020/cm3。另外,也可以利用FZ法制作n型β-Ga2O3单晶锭。将制成的锭以所希望的晶面指数为主面的方式切片加工成例如1mm左右的厚度而进行基板化。然后,在磨削研磨工序中加工成100~600μm左右的厚度。接下来,将按上述顺序制作的n型β-Ga2O3基板2安装于MBE装置1的基板支架11。接下来,使真空泵16运转,将真空槽10内的气压减压至1×10-8Pa左右。然后,利用加热装置12加热n型β-Ga2O3基板2。应予说明,n型β-Ga2O3基板2的加热通过加热装置12的石墨加热器等发热源的辐射热介由基板支架11热传导到n型β-Ga2O3基板2来进行。n型β-Ga2O3基板2被加热到规定的温度后,从气体供给管15向真空槽10内供给氧系气体。将氧系气体供给到真空槽10内后,经过真空槽10内的气压稳定所需要的时间(例如5分钟)后,边使基板支架11旋转边分别利用第1加热器14a和第2加热器14b加热第1束源炉13a和第2束源炉13b,使Ga和n型掺杂剂蒸发,作为分子束照射到n型β-Ga2O3基板2的表面。例如,第1束源炉13a被加热到900℃,Ga蒸气的束等效压力(BEP;BeamEquivalentPressure)为1×10-4Pa。这样,在n型β-Ga2O3基板2的主面上边添加Sn等n型掺杂剂边使β-Ga2O3晶体同质外延生长,形成n型β-Ga2O3单晶膜3。β-Ga2O3晶体的生长温度例如为700℃。应予说明,作为Sn以外的n型掺杂剂,置换Ga位点时,可以使用Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi等,置换氧位点时,可以使用F、Cl、Br、I等。n型掺杂剂的添加浓度例如从1×1015~1×1019/cm3的范围选择。应予说明,n型β-Ga2O3单晶膜3也可以利用PLD(PulsedLaserDeposition)法、CVD(ChemicalVaporDeposition)法等形成。图3A和图3B是本实施方式涉及的n型β-Ga2O3单晶膜3的截面图。n型β-Ga2O3单晶膜3在n型β-Ga2O3基板2的主面2a上利用上述MBE法形成。图3A表示使β-Ga2O3晶体同质外延生长期间,通过连续添加n型掺杂剂而形成的n型β-Ga2O3单晶膜3。n型β-Ga2O3单晶膜3的供体浓度例如为1×1015~1×1019/cm3,特别优选为1×1015~1×1018/cm3。该供体浓度可以通过成膜时的第2束源炉13b的温度进行控制。图3B表示使β-Ga2O3晶体同质外延生长期间,通过以一定周期间歇性地添加n型掺杂剂而形成的n型β-Ga2O3单晶膜3。此时,使用Sn作为n型掺杂剂。具体而言,通过操作第2束源炉13b的快门,从而从第2束源炉13b间歇地产生Sn蒸气,间歇地向β-Ga2O3晶体添加Sn。Sn的添加优选间歇实施2次以上。此时,即使不实施退火处理,也能够对n型β-Ga2O3单晶膜3赋予与Sn添加量相应的导电性。由于图3B的n型β-Ga2O3单晶膜3是在成膜时间歇地添加Sn,所以具有在不添加Sn的时间生长的第1层4(4a、4b、4c)和在添加Sn的时间生长的第2层5(5a、5b、5c)。第2层5的Sn浓度可以通过成膜时的第2束源炉13b的温度进行控制。第1层4理想的是不含有Sn而仅含有从第2层5扩散的微量的Sn。因此,第1层4的Sn浓度比第2层5的Sn浓度低。n型β-Ga2O3单晶膜3中的平均Sn浓度例如为1×1014~3×1018/cm3,特别优选为1×1015~1×1018/cm3。例如,第1层4a、4b、4c的厚度为3~20nm,第2层5a、5b、5c的厚度为0.2~1nm。第1层4a、4b、4c的厚度大于20nm时,第2层5a、5b、5c的间隔过大而n型的效果可能不明显。另一方面,第2层5a、5b、5c的厚度大于1nm时,有可能Sn从第2层5a、5b、5c向第1层4a、4b、4c的扩散量过多而间歇的n型的效果不明显。应予说明,n型β-Ga2O3单晶膜3的最下层(与n型β-Ga2O3基板2的主面2a接触的层)可以是第1层4,也可以是第2层5。另外,第1层4和第2层5的层数不受限定。形成n型β-Ga2O3单晶膜3后,通过向n型β-Ga2O3单晶膜3离子注入Mg等p型掺杂剂,从而形成主体区域24a、24b。应予说明,注入的离子不限于Mg,例如,置换Ga位点时,可以使用H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl或Pb。另外,置换氧位点时,可以使用N或P。p型掺杂剂注入后进行退火处理,使注入所致的损伤恢复。应予说明,主体区域24a、24b的形成方法不限于离子注入,也可以利用热扩散法。此时,通过在n型β-Ga2O3单晶膜3的想要形成主体区域24a、24b的区域上接触Mg等金属,实施热处理,从而使Mg等掺杂剂在n型β-Ga2O3单晶膜3中扩散。接下来,通过在n型β-Ga2O3单晶膜3的主体区域24a、24b内离子注入Sn等n型掺杂剂,从而形成接触区域23a、23b。应予说明,注入的离子不限于Sn,例如,置换Ga位点时,可以使用Ti、ZR、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb或Bi。另外,置换氧位点时,可以使用F、Cl、Br或I。注入浓度例如为1×1018/cm3~5×1019/cm3。注入深度为30nm以上即可。注入后,将注入区域的表面用氢氟酸蚀刻10nm左右。也可以使用硫酸、硝酸、盐酸等进行。然后,在氮环境下实施800℃以上30min以上的退火处理,使注入损伤恢复。在氧环境下进行退火处理时,使处理温度为800℃~950℃,处理时间为30min以上即可。应予说明,接触区域23a、23b的形成方法不限于离子注入,也可以利用热扩散法。此时,通过在n型β-Ga2O3单晶膜3的想要形成接触区域23a、23b的区域上接触Sn等金属,实施热处理,从而使Sn等掺杂剂在n型β-Ga2O3单晶膜3中扩散。然后,形成栅极绝缘膜26、栅电极21,源电极22a、22b以及漏电极25。〔第2实施方式〕在第2实施方式中,对作为Ga2O3系半导体元件的具有沟槽栅极结构的Ga2O3系MISFET进行说明。(Ga2O3系MISFET的构成)图4是第2实施方式涉及的Ga2O3系MISFET30的截面图。Ga2O3系MISFET30包含:在n型β-Ga2O3基板2上形成的n型β-Ga2O3单晶膜3,在n型β-Ga2O3单晶膜3上形成的无掺杂β-Ga2O3单晶膜6,被栅极绝缘膜36覆盖并埋入无掺杂β-Ga2O3单晶膜6中的栅电极31,分别在无掺杂β-Ga2O3单晶膜6中的栅电极31的两侧形成的接触区域33a、33b,在无掺杂β-Ga2O3单晶膜6上形成的与接触区域33a、33b连接的源电极32,在n型β-Ga2O3基板2的与n型β-Ga2O3单晶膜3相反侧的面上形成的漏电极35。Ga2O3系MISFET30是源电极和漏电极分别设置在元件的上下的、电流在纵向流动的纵型半导体元件。如果对栅电极31施加阈值以上的电压,则在无掺杂β-Ga2O3单晶膜6中的栅电极31的两侧的区域形成通道,电流从源电极32流向漏电极35。栅电极31、栅极绝缘膜36、源电极32、漏电极35分别由与第1实施方式的栅电极21、栅极绝缘膜26、源电极22(22a、22b)、漏电极25相同的材料形成。无掺杂β-Ga2O3单晶膜6是不含有掺杂剂的高电阻的β-Ga2O3单晶膜。有时因晶体缺陷等具有弱导电性,但由于电阻足够高,所以在不对栅电极31施加电压的情况下电流不会从源电极32流向漏电极35。无掺杂β-Ga2O3单晶膜6例如具有0.1~100μm的厚度。接触区域33(33a、33b)含有与第1实施方式的接触区域23(23a、23b)相同的n型掺杂剂。(Ga2O3系MISFET的制造方法)首先,经过与第1实施方式相同的工序形成n型β-Ga2O3基板2和n型β-Ga2O3单晶膜3。接下来,利用MBE法,不添加掺杂剂地在n型β-Ga2O3单晶膜3上使β-Ga2O3单晶生长,形成无掺杂β-Ga2O3单晶膜6。无掺杂β-Ga2O3单晶膜6的具体形成方法例如是从n型β-Ga2O3单晶膜3的形成方法中省略了注入n型掺杂剂的工序的方法。接下来,通过在无掺杂β-Ga2O3单晶膜6内离子注入Sn等n型掺杂剂,从而形成接触区域。应予说明,注入的离子不限于Sn,例如,置换Ga位点时,可以使用Ti、ZR、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb或Bi。另外,置换氧位点时,可以使用F、Cl、Br或I。注入浓度例如为1×1018/cm3~5×1019/cm3。注入深度为30nm以上即可。注入后,将注入区域的表面用氢氟酸蚀刻10nm左右。也可以使用硫酸、硝酸、盐酸等进行。然后,在氮环境下实施800℃以上30min以上的退火处理,使注入损伤恢复。在氧环境下进行退火处理时,使处理温度为800℃~950℃,处理时间为30min以上即可。应予说明,接触区域的形成方法不限于离子注入,也可以利用热扩散法。此时,通过在无掺杂β-Ga2O3单晶膜6的想要形成接触区域的区域上接触Sn等金属,实施热处理,从而使Sn等掺杂剂在无掺杂β-Ga2O3单晶膜6中扩散。接下来,对包括无掺杂β-Ga2O3单晶膜6的表面的接触区域的区域实施干式蚀刻而形成槽,在该槽中埋入被栅极绝缘膜36覆盖的栅电极31。在此,通过形成槽而将接触区域划分为接触区域33a、33b。具体而言,例如,利用堆积法和蚀刻加工在槽的底面和侧面上形成栅极绝缘膜36,在其上利用堆积法和蚀刻加工形成栅电极31,最后利用堆积法和蚀刻加工形成栅电极31上的栅极绝缘膜36。然后,形成源电极32和漏电极35。〔第3实施方式〕第3实施方式是形成p型β-Ga2O3单晶膜来代替无掺杂β-Ga2O3单晶膜6,在这方面与第2实施方式不同。对于与第2实施方式相同的方面,省略或简化说明。(Ga2O3系MISFET的构成)图5是第3实施方式涉及的Ga2O3系MISFET40的截面图。Ga2O3系MISFET40包含:在n型β-Ga2O3基板2上形成的n型β-Ga2O3单晶膜3,在n型β-Ga2O3单晶膜3上形成的p型β-Ga2O3单晶膜7,被栅极绝缘膜覆盖并埋入p型β-Ga2O3单晶膜7中的栅电极31,分别在p型β-Ga2O3单晶膜7中的栅电极31的两侧形成的接触区域33a、33b,在p型β-Ga2O3单晶膜7上形成的与接触区域33a、33b连接的源电极32,在n型β-Ga2O3基板2的与n型β-Ga2O3单晶膜3相反侧的面上形成的漏电极35。Ga2O3系MISFET40是源电极和漏电极分别设置在元件的上下的、电流在纵向流动的纵型半导体元件。如果对栅电极31施加阈值以上的电压,则在p型β-Ga2O3单晶膜7中的栅电极31的两侧的区域形成通道,电流从源电极32流向漏电极35。p型β-Ga2O3单晶膜7含有Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等p型掺杂剂。p型β-Ga2O3单晶膜7例如具有0.1~100μm的厚度。另外,p型β-Ga2O3单晶膜7例如含有1×1015~1×1019/cm3浓度的p型掺杂剂。由于Ga2O3系MISFET40使用作为p型层的p型β-Ga2O3单晶膜7作为通道层,所以阈值电压比第2实施方式的Ga2O3系MISFET30高。p型β-Ga2O3单晶膜7是通过在n型β-Ga2O3单晶膜3上边添加Mg等p型掺杂剂边使β-Ga2O3单晶生长而形成的。应予说明,添加的离子不限于Mg,例如,置换Ga位点时,可以使用H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl或Pb。另外,置换氧位点时,可以使用N或P。(实施方式的效果)根据本实施方式,能够使用同质外延生长法形成高品质的β-Ga2O3单晶膜,能使用该β-Ga2O3单晶膜形成高品质的Ga2O3系半导体元件。另外,由于这些Ga2O3系半导体元件使用高品质的β-Ga2O3单晶膜作为通道层,所以具有优异的工作性能。应予说明,本发明不限于上述实施方式,可以在不脱离发明的主旨的范围内实施各种变形。例如,在上述实施方式中,以Ga2O3系半导体元件为n型半导体元件进行了说明,但也可以是p型半导体元件。此时,各部件的导电型(n型或p型)全部相反。另外,可以在不脱离发明的主旨的范围内任意组合上述实施方式的构成要素。以上,说明了本发明的实施方式,但上述中记载的实施方式不限定专利申请要求保护的范围涉及的发明。另外,应该注意实施方式中说明的特征的所有组合未必是用于解决发明课题的手段所必需的。产业上的可利用性本发明提供高品质的Ga2O3系半导体元件。符号说明1…MBE装置,2…n型β-Ga2O3基板,3…n型β-Ga2O3单晶膜,6…无掺杂β-Ga2O3单晶膜,7…p型β-Ga2O3单晶膜,20、30、40…Ga2O3系MISFET,21、31…栅电极,22a、22b、32…源电极,25、35…漏电极,26、36…栅极绝缘膜,23a、23b、33a、33b…接触区域,24a、24b…主体区域。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1