一种TiO2@C负载PdRu直接甲醇燃料电池阳极催化剂及制备方法与流程

文档序号:12018946阅读:290来源:国知局
本发明涉及多孔空心TiO2@C负载PdRu直接甲醇燃料电池阳极催化剂及制备方法。

背景技术:
直接甲醇燃料电池(DirectMethanolFuelCell,DMFC)具有能耗少、能量密度高、甲醇来源丰富、价格便宜、系统简单、运行便捷和噪声低等优点,被认为是未来汽车动力和其它交通工具最有希望的化学电源,引起人们的广泛关注。DMFC最关键的材料之一是电极催化剂,它直接影响电池的性能、稳定性、使用寿命及制造成本。贵金属Pt在低温条件下(小于80℃)具有优异的催化性能,目前DMFC的电极催化剂均以Pt为主要成分,其中PtRu催化剂比纯Pt具有更强的抗CO中毒性能和更高的催化活性,被认为是目前DMFC最佳的催化剂,但是由于其价格昂贵、Ag易溶等缺陷,在DMFC中的利用率还达不到商业化的要求。人们进行了大量研究制备多元复合催化剂以提高其催化活性,提高抗CO毒化能力。如有报道制备了PtAgTiOX/C和Au/TiO2PtAg催化剂,TiO2复合可以减少催化剂中贵金属Pt的用量,提高催化性能和抗CO毒化能力,但这些催化剂中贵金属Pt的用量仍然很高,且催化剂以C为载体,C载体在实际应用过程中易氧化,影响催化剂的稳定性和电池的性能。多孔空心TiO2@C为载体制备直接甲醇燃料电池非铂阳极催化剂还未见报道。

技术实现要素:
本发明的目的在于提供一种可降低直接甲醇燃料电池催化剂成本,提高其稳定性、对甲醇的催化活性和抗CO毒化能力的直接甲醇燃料电池非铂阳极催化剂及制备方法。本发明的技术解决方案是:一种多孔空心TiO2@C负载PdRu直接甲醇燃料电池阳极催化剂,所述催化剂由多孔空心TiO2@C载体与PdRu纳米合金组成,其特征在于:多孔空心TiO2@C载体的含量为催化剂总质量的97~99%,多孔空心TiO2与C的质量比mTiO2:mC为1:1~3:7,PdRu纳米合金的含量之和为催化剂总质量的1~3%,PdRu的摩尔比nPd:nRu为7:3,1:1,或3:7;其中,所述多孔空心TiO2@C载体的制备方法如下:(1)多孔空心TiO2纳米球的制备:采用溶胶-凝胶法,将计算量的钛酸丁酯溶于一定量的无水乙醇,加入一定量的表面活性剂PEG-600和VulcanXC-72,搅拌下滴加无水乙醇、冰醋酸和去离子水的混合物,水解形成溶胶后继续搅拌,待形成凝胶后静置2-3天,80℃真空干燥8-10小时后得到的粉末研磨后在马弗炉中400-600℃空气焙烧3小时,制得多孔空心TiO2纳米球;制备溶胶时钛酸丁酯、无水乙醇、冰醋酸、去离子水的用量摩尔比为:n钛酸丁酯:n无水乙醇:n冰醋酸:n去离子水=1:20~40:1~2.5:2~6;PEG-600用量为钛酸丁酯、无水乙醇、去离子水和冰醋酸总体积的1%;VulcanXC-72的用量为钛酸丁酯完全水解最后生成TiO2理论量的30%;(2)多孔空心TiO2@C纳米载体的制备:称取一定量的VulcanXC-72加入到去离子水中,超声分散30分钟,剧烈搅拌下加入计算量的多孔空心TiO2纳米球,形成浆液,继续搅拌1小时,过滤,去离子水洗涤,80℃真空干燥,制得多孔空心TiO2@C纳米载体;其中多孔空心TiO2与C的质量比mTiO2:mC为1:1~3:7。本发明的有益效果在于:本发明以高比表面的多孔空心TiO2@C纳米载体与PdRu纳米合金复合形成多元催化剂。C的复合以及PdRu合金沉积在载体表面能提高TiO2的导电性,C的复合以及PdRu合金沉积对TiO2的协同作用大大提高TiO2对甲醇的催化氧化性能,同时,甲醇氧化产生的CO等中间产物被吸附、转移到复合催化剂表面,并被直接深度氧化为最终产物CO2,另外,TiO2@C纳米载体稳定,不易被氧化。由于PdRu的价格远低于贵金属Pt,且在催化剂中其用量较小,因此可以大大降低催化剂的成本,提高催化剂的稳定性、催化活性和抗CO毒化能力。具体实施方式实施例1:(1)多孔空心TiO2纳米球的制备:采用溶胶-凝胶法。将计算量的钛酸丁酯溶于一定量的无水乙醇,加入一定量的表面活性剂PEG-600和VulcanXC-72,搅拌下滴加无水乙醇、冰醋酸和去离子水的混合物,水解形成溶胶后继续搅拌,待形成凝胶后静置2天,80℃真空干燥8小时后得到的粉末研磨后在马弗炉中400℃空气焙烧3小时,制得多孔空心TiO2纳米球。制备溶胶时钛酸丁酯、无水乙醇、冰醋酸、去离子水的用量摩尔比为:n钛酸丁酯:n无水乙醇:n冰醋酸:n去离子水=1:20~40:1~2.5:2~6。PEG用量为钛酸丁酯、无水乙醇、去离子水和冰醋酸总体积的1%。VulcanXC-72的用量为钛酸丁酯完全水解最后生成TiO2理论量的30%。(2)多孔空心TiO2@C纳米载体的制备:称取一定量的VulcanXC-72加入到去离子水中,超声分散30分钟,剧烈搅拌下加入计算量的多孔空心TiO2纳米球,形成浆液,继续搅拌1小时,过滤,去离子水洗涤,80℃真空干燥,制得多孔空心TiO2@C纳米载体。其中多孔空心TiO2与C的质量比mTiO2:mC为1:1。(3)将多孔空心TiO2@C纳米载体按50毫克/毫升的比例加入到乙二醇中,超声分散均匀,形成多孔空心TiO2@C分散液;(4)将Pd(NO3)2溶解到乙二醇中,形成5毫克Pd/毫升的Pd(NO3)2/乙二醇溶液;(5)将AgNO3溶解到乙二醇中,形成2毫克Ru/毫升的AgNO3/乙二醇溶液;(6)按最后合成的催化剂WPdRu=1%,摩尔比nPd:nRu为7:3的比例分别量取Pd(NO3)2/乙二醇溶液和AgNO3/乙二醇溶液,滴加到多孔空心TiO2@C分散液中,超声分散;(7)将NaOH溶解到乙二醇中,配制成NaOH浓度为2mol/L的NaOH乙二醇溶液;(8)将配制的NaOH乙二醇溶液滴加到步骤(6)得到的分散液中,调节pH值为8.5;(9)将KBH4溶解到乙二醇中配制成KBH4浓度为0.2mol/L的KBH4/乙二醇溶液;(10)搅拌,惰性气体保护,80℃下,向pH值为8.5的混合悬浮液中滴加KBH4/乙二醇溶液,反应2小时;(11)反应完毕后过滤,去离子水洗涤至滤出液中无氯离子和硫酸根离子,80℃真空干燥,制得催化剂。实施例2:(1)多孔空心TiO2纳米球的制备:采用溶胶-凝胶法。将计算量的钛酸丁酯溶于一定量的无水乙醇,加入一定量的表面活性剂PEG-600和VulcanXC-72,搅拌下滴加无水乙醇、冰醋酸和去离子水的混合物,水解形成溶胶后继续搅拌,待形成凝胶后静置3天,80℃真空干燥9小时后得到的粉末研磨后在马弗炉中500℃空气焙烧3小时,制得多孔空心TiO2纳米球。制备溶胶时钛酸丁酯、无水乙醇、冰醋酸、去离子水的用量摩尔比为:n钛酸丁酯:n无水乙醇:n冰醋酸:n去离子水=1:20~40:1~2.5:2~6。PEG用量为钛酸丁酯、无水乙醇、去离子水和冰醋酸总体积的1%。VulcanXC-72的用量为钛酸丁酯完全水解最后生成TiO2理论量的30%。(2)多孔空心TiO2@C纳米载体的制备:称取一定量的VulcanXC-72加入到去离子水中,超声分散30分钟,剧烈搅拌下加入计算量的多孔空心TiO2纳米球,形成浆液,继续搅拌1小时,过滤,去离子水洗涤,80℃真空干燥,制得多孔空心TiO2@C纳米载体。其中多孔空心TiO2与C的质量比mTiO2:mC为2:3。(3)将多孔空心TiO2@C纳米载体按80毫克/毫升的比例加入到乙二醇中,超声分散均匀,形成多孔空心TiO2@C分散液;(4)将Pd(NO3)2溶解到乙二醇中,形成8毫克Pd/毫升的Pd(NO3)2/乙二醇溶液;(5)将AgNO3溶解到乙二醇中,形成3毫克Ru/毫升的AgNO3/乙二醇溶液;(6)按最后合成的催化剂WPdRu=2%,摩尔比nPd:nRu为1:1的比例分别量取Pd(NO3)2/乙二醇溶液和AgNO3/乙二醇溶液,滴加到多孔空心TiO2@C分散液中,超声分散;(7)将NaOH溶解到乙二醇中,配制成NaOH浓度为2mol/L的NaOH乙二醇溶液;(8)将配制的NaOH乙二醇溶液滴加到步骤(6)得到的分散液中,调节pH值为10;(9)将KBH4溶解到乙二醇中配制成KBH4浓度为0.4mol/L的KBH4/乙二醇溶液;(10)搅拌,惰性气体保护,80℃下,向pH值为10的混合悬浮液中滴加KBH4/乙二醇溶液,反应2小时;(11)反应完毕后过滤,去离子水洗涤至滤出液中无氯离子和硫酸根离子,100℃真空干燥,制得催化剂。实施例3:(1)多孔空心TiO2纳米球的制备:采用溶胶-凝胶法。将计算量的钛酸丁酯溶于一定量的无水乙醇,加入一定量的表面活性剂PEG-600和VulcanXC-72,搅拌下滴加无水乙醇、冰醋酸和去离子水的混合物,水解形成溶胶后继续搅拌,待形成凝胶后静置3天,80℃真空干燥10小时后得到的粉末研磨后在马弗炉中400℃空气焙烧3小时,制得多孔空心TiO2纳米球。制备溶胶时钛酸丁酯、无水乙醇、冰醋酸、去离子水的用量摩尔比为:n钛酸丁酯:n无水乙醇:n冰醋酸:n去离子水=1:20~40:1~2.5:2~6。PEG用量为钛酸丁酯、无水乙醇、去离子水和冰醋酸总体积的1%。VulcanXC-72的用量为钛酸丁酯完全水解最后生成TiO2理论量的30%。(2)多孔空心TiO2@C纳米载体的制备:称取一定量的VulcanXC-72加入到去离子水中,超声分散30分钟,剧烈搅拌下加入计算量的多孔空心TiO2纳米球,形成浆液,继续搅拌1小时,过滤,去离子水洗涤,80℃真空干燥,制得多孔空心TiO2@C纳米载体。其中多孔空心TiO2与C的质量比mTiO2:mC为3:7。(3)将多孔空心TiO2@C纳米载体按100毫克/毫升的比例加入到乙二醇中,超声分散均匀,形成多孔空心TiO2@C分散液;(4)将Pd(NO3)2溶解到乙二醇中,形成10毫克Pd/毫升的Pd(NO3)2/乙二醇溶液;(5)将AgNO3溶解到乙二醇中,形成4毫克Ru/毫升的AgNO3/乙二醇溶液;(6)按最后合成的催化剂WPdRu=3%,摩尔比nPd:nRu为3:7的比例分别量取Pd(NO3)2/乙二醇溶液和AgNO3/乙二醇溶液,滴加到多孔空心TiO2@C分散液中,超声分散;(7)将NaOH溶解到乙二醇中,配制成NaOH浓度为2mol/L的NaOH乙二醇溶液;(8)将配制的NaOH乙二醇溶液滴加到步骤(6)得到的分散液中,调节pH值为12;(9)将KBH4溶解到乙二醇中配制成KBH4浓度为0.5mol/L的KBH4/乙二醇溶液;(10)搅拌,惰性气体保护,80℃下,向pH值为12的混合悬浮液中滴加KBH4/乙二醇溶液,反应2小时;(11)反应完毕后过滤,去离子水洗涤至滤出液中无氯离子和硫酸根离子,120℃真空干燥,制得催化剂。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1