一种二硫化锡/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池与流程

文档序号:11870696阅读:1045来源:国知局
一种二硫化锡/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池与流程

本发明涉及一种无机纳米材料技术领域,特别涉及一种二硫化锡/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池。



背景技术:

目前能源衰竭问题日益突出,急需寻找到合适的储能工具。近年来,由于环境污染和能源医乏,各国都在努力寻找新的绿色环保可持续发展的能源。锂离子电池是迄今为止通用性最强、适应性最广的二次电池,具有能量密度高、循环寿命长、工作电压高等优点。

采用石墨烯复合材料作为锂离子电池电极材料,主要是利用其优良的导电性能,提高电极材料的倍率性能和导电率。同时,石墨烯独特的二维结构,可以对纳米材料进行负载,包覆,编织,从而形成疏松的网状结构,这种结构既可以缓冲材料在充放电过程中的体积膨胀,又可以防止材料在充放电过程中的聚集,从而提高循环性能。

二硫化锡具有较高的理论比容量,是一种很有潜力的锂离子电池负极材料。发明专利CN102412394A公开了一种制备层状二硫化锡二氧化硅核壳纳米棒的方法,核壳纳米结构缓冲锡基材料的体积膨胀,有利于提高层状二硫化锡纳米棒的循环性能。将二硫化锡与石墨烯简单复合能够提高其作为负极材料的稳定性。但石墨烯作为锂离子电池负极材料也存在一些问题:石墨烯很容易由于范德华力再重新堆积到一起,影响锂离子在石墨烯中的传输,进而导致石墨烯的倍率性能下降。因此对不同方法制备石墨烯材料的结构参数及表面官能团、结构缺陷、异质原子如氮、氧、氢等如何影响其电化学储锂性能需要深入研究,特别是石墨烯作为负极材料在充放电过程中容量衰减及电压滞后的原因尚需深入理解。在石墨烯复合材料方面,目前报道的绝大多数石墨烯复合材料仍然是石墨烯和活性材料的简单混合,在多次充放电后,活性材料可能与石墨烯分离,从而导致锂离子电池性能下降。



技术实现要素:

鉴于现有技术存在的不足,本发明所要解决的技术问题是提供一种二硫化锡/石墨烯纳米复合材料的制备方法、锂离子电池负极、锂离子电池。本发明利用价格低廉原料制备得到三维柱状还原氧化石墨烯,通过浸泡、复合、洗涤、干燥,得到了由片状二硫化锡与石墨烯复合的纳米材料。本发明针对提高二硫化锡作为电极材料的循环稳定性等技术难题,提供了一种工艺简单、产率高、成本低的石墨烯复合材料制备方法。

本发明采用的技术方案是:

一种二硫化锡/石墨烯纳米复合材料的制备方法,步骤包括:

A、水热工序:将氧化石墨分散在水中超声制得氧化石墨烯溶液,向溶液中加入硫酸,再超声分散均匀制得混合液,然后将混合液转移至反应釜中在160~260℃下反应18~30小时,取出洗涤,得到三维柱状还原氧化石墨烯,反应条件优选在190~220℃下反应20~24小时;

所述步骤A中氧化石墨通过改进Hummers法合成,具体方法为:分别称取5.0g石墨和3.75g NaNO3放入1L的烧杯中,机械强力搅拌,缓慢加入150mL的浓硫酸,搅拌0.5小时,再缓慢加入20g的KMnO4,0.5小时加完,继续搅拌20小时后,反应物粘度增大,停止搅拌,得到浆糊状紫红色物质。放置5天后,分别缓慢加入500mL去离子水和30mL H2O2,此时溶液颜色变为较明显的亮黄色,待溶液充分反应后,离心、洗涤,得到氧化石墨。

所述步骤A中混合液里氧化石墨烯的浓度为0.75~1.5g/L,优选1.0~1.25g/L;

所述步骤A中混合液里硫酸的浓度为0.8~1.7mol/L,优选1.2~1.4mol/L。

B、复合工序:将锡盐、硫源溶于有机溶剂中,配成混合溶液,然后将三维柱状还原氧化石墨烯投入上述溶液中,在5~45℃下浸泡1天以上,优选浸泡1~3天;最后将混合溶液和三维柱状还原氧化石墨烯转移至水热反应釜中,在140~260℃下反应18~36小时,优选在160~220℃下反应22~30小时,产物经洗涤和干燥后,得到二硫化锡与三维多孔还原氧化石墨烯复合材料即二硫化锡/石墨烯纳米复合材料。

所述步骤B中锡盐选自四氯化锡、氯化亚锡中的一种或两种,锡盐在混合溶液中的浓度为0.05~0.20mol/L,优选0.06~0.08mol/L;

所述步骤B中硫源选自硫代乙酰胺、硫脲中的一种或两种,硫源在混合溶液中的浓度为0.15~0.80mol/L,优选0.24~0.32mol/L;

所述步骤B中三维柱状还原氧化石墨烯在混合溶液中的浓度为0.1~4.0mg/mL,优选0.6~1.2mg/mL;

所述步骤B中有机溶剂选自乙二醇、异丙醇中的一种或两种,优选异丙醇;

所述步骤B中干燥为真空干燥,真空干燥温度30~80℃,干燥时间3~8小时,优选在40~60℃下干燥4~5小时。

一种锂离子电池负极,由二硫化锡/石墨烯纳米复合材料制成;

一种锂离子电池,由包括二硫化锡/石墨烯纳米复合材料制成的锂离子电池负极制成。

本发明利用水热法合成三维柱状还原氧化石墨烯,将其浸泡在锡盐、硫源的有机溶液中,以水热工序中的三维柱状还原氧化石墨烯为模板,通过溶剂热法使得二硫化锡在石墨烯表面直接进行原位生长,经过洗涤,干燥获得片状二硫化锡/石墨烯复合材料,该材料应用于锂离子电池负极材料,有效地提高材料的稳定性以及导电性,提升电池性能,具有循环稳定性好,比能量密度高等优点。

本发明与现有技术相比具有以下优点:

(1)所制得的二硫化锡/石墨烯复合材料,二硫化锡在石墨烯表面分布均匀;

(2)所制得的二硫化锡/石墨烯复合材料性能稳定,在空气中不易变性,容易存放;

(3)所制得的二硫化锡/石墨烯复合材料比表面积大;

(4)所制得的二硫化锡/石墨烯复合材料用作锂离子电池负极材料,具有较大的比容量和较好的循环性能;

(5)实验过程较为简单,对实验仪器设备要求低,原料易得到,费用低,可进行批量生产。

附图说明

图1为实施例1制备的二硫化锡/石墨烯纳米复合材料的SEM图。

图2为实施例2制备的二硫化锡/石墨烯纳米复合材料的SEM图。

图3为实施例3制备的二硫化锡/石墨烯纳米复合材料的SEM图。

图4为实施例3制备的二硫化锡/石墨烯纳米复合材料的XRD图。

图5为实施例4制备的二硫化锡/石墨烯纳米复合材料的SEM图。

图6为实施例5制备的二硫化锡/石墨烯纳米复合材料的SEM图。

图7为实施例5制备的二硫化锡/石墨烯纳米复合材料作为锂离子电池负极材料在100mA/g电流密度下的循环稳定性测试图。

具体实施方式

实施例1

氧化石墨的制备:分别称取5.0g石墨和3.75g NaNO3放入1L的烧杯中,机械强力搅拌,缓慢加入150mL的浓硫酸,搅拌0.5小时,再缓慢加入20g的KMnO4,0.5小时加完,继续搅拌20小时后,反应物粘度增大,停止搅拌,得到浆糊状紫红色物质。放置5天后,分别缓慢加入500mL去离子水和30mLH2O2,此时溶液颜色变为较明显的亮黄色,待溶液充分反应后,离心、洗涤,得到氧化石墨。

水热工序:将70mg氧化石墨烯溶于80mL去离子水中,加入9mL浓硫酸(ρ=1.84g/cm3),超声分散3小时,然后转移到反应釜中,160℃恒温反应30小时,获得三维柱状还原氧化石墨烯,洗涤收集。

复合工序:将0.34g四氯化锡,0.30g硫代乙酰胺,溶解到16mL异丙醇中,将12mg三维柱状氧化石墨烯加入到上述溶液中,3℃浸泡3天,随后转移至反应釜中,140℃恒温反应36小时,将产物洗涤,80℃真空干燥3小时,收集得到二硫化锡/石墨烯纳米复合材料。

实施例2

氧化石墨的制备方法同实施例1。

水热工序:将70mg氧化石墨烯溶于80mL去离子水中,加入9mL浓硫酸(ρ=1.84g/cm3),超声分散3小时,然后转移到反应釜中,180℃恒温反应20小时,获得三维柱状还原氧化石墨烯,洗涤收集。

复合工序:将0.45g四氯化锡,0.40g硫代乙酰胺,溶解到有机溶剂16mL异丙醇中,将16mg三维柱状还原氧化石墨烯加入到上述溶液中,25℃浸泡2天,随后转移至反应釜中,180℃恒温反应30小时,将产物洗涤,70℃真空干燥4小时,收集得到二硫化锡/石墨烯纳米复合材料。

实施例3

氧化石墨的制备方法同实施例1。

水热工序:将70mg氧化石墨烯溶于80mL去离子水中,加入9mL浓硫酸(ρ=1.84g/cm3),超声分散3小时,然后转移到反应釜中,200℃恒温反应22小时,获得三维柱状还原氧化石墨烯,洗涤收集。

复合工序:将0.56g四氯化锡,0.48g硫代乙酰胺,溶解到有机溶剂16mL异丙醇中,将18mg三维柱状还原氧化石墨烯加入到上述溶液中,15℃浸泡3天,随后转移至反应釜中,210℃恒温反应28小时,将产物洗涤,60℃真空干燥4小时,收集得到二硫化锡/石墨烯纳米复合材料。

实施例4

氧化石墨的制备方法同实施例1。

水热工序:将100mg氧化石墨烯溶于80mL去离子水中,加入12mL浓硫酸(ρ=1.84g/cm3),超声分散3小时,然后转移到反应釜中,200℃恒温反应20小时,获得三维柱状还原氧化石墨烯,洗涤收集。

复合工序:将0.54g氯化亚锡,0.54g硫脲,溶解到有机溶剂16mL乙二醇中,将20mg三维柱状还原氧化石墨烯加入到上述溶液中,40℃浸泡2天,随后将其转移至反应釜中,240℃恒温反应22小时,将产物洗涤,50℃真空干燥6小时,收集得到二硫化锡/石墨烯纳米复合材料。

实施例5

氧化石墨的制备方法同实施例1。

水热工序:将120mg氧化石墨烯溶于80mL去离子水中,加入12mL浓硫酸(ρ=1.84g/cm3),超声分散3小时,然后转移到反应釜中,260℃恒温反应18小时,获得三维柱状还原氧化石墨烯,洗涤收集。

复合工序:将0.75g氯化亚锡,0.65g硫脲,溶解到有机溶剂16mL乙二醇中,将24mg三维柱状还原氧化石墨烯加入到上述溶液中,45℃浸泡1天,随后将其转移至反应釜中,260℃恒温反应18小时,将产物洗涤,40℃真空干燥8小时,收集得到二硫化锡/石墨烯纳米复合材料。

将实施例5所得最终产物二硫化锡/石墨烯的复合材料作为锂离子电池的负极材料,采用复合材料、乙炔黑和PVDF的质量比为85:5:10,以N-甲基吡咯烷酮(NMP)溶剂调制成均匀浆状;将浆状物涂于铜箔之上,用刮刀将其均匀涂布成膜片状,均匀地附着于铜箔表面。制成的涂层放于烘箱中,以110℃烘干12小时;烘干完成后移入真空干燥箱中,以120℃真空干燥10小时;再将干燥后的复合材料涂层采用对辊机或者压片机等进行压片处理;采用机械裁片机裁剪电极片,以锂片作为对电极,电解液为市售1mol/L LiPF6/EC+DMC溶液,利用电池测试仪进行充放电性能测试,所得产物作为锂离子电池负极材料在100mA/g电流密度下的循环稳定性测试结果如附图7所示。由附图7可见,电池的循环稳定性好,循环100次后电池容量仍稳定在915mAh/g。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1