主动元件基板及其制法的制作方法

文档序号:15464345发布日期:2018-09-18 18:57阅读:116来源:国知局

本发明涉及一种主动元件(有源元件)基板,且特别是涉及一种包括结晶金属氧化物层的主动元件基板及其制法。



背景技术:

目前,背通道蚀刻型(Back-Channel Etch)的金属氧化物薄膜晶体管逐渐被许多公司所重视。背通道蚀刻型的金属氧化物薄膜晶体管具有光刻次数少、器件小型化、制造成本低等优点,有利于制造更高开口率的显示面板。

在背通道蚀刻型金属氧化物薄膜晶体管的制作工艺中,金属形成于金属氧化物半导体通道层上,接着图案化金属以形成互相分离的源极与漏极。然而,在图案化金属时,金属氧化物半导体通道层相当容易因为暴露于蚀刻剂下而受到损伤,使得产品良率下降。有鉴于此,目前亟需一种能够解决前述问题的方法。



技术实现要素:

本发明提供一种主动元件基板,在源极与漏极的图案化制作工艺中,可以减少蚀刻液对金属氧化物造成的损害。

本发明提供一种主动元件基板的制造方法,在形成源极与漏极的制作工艺中,可以减少蚀刻液对金属氧化物造成的损害。

本发明的一种主动元件基板,包括基板、第一主动元件以及第二主动元件。第一主动元件包括第一栅极、结晶金属氧化物层、第一绝缘层、第一源极与第一漏极。结晶金属氧化物层位于第一栅极上,且与第一栅极之间夹有第一绝缘层。以穿透式电子显微镜的选区绕射模式观察从结晶金属氧化物的上表面至结晶金属氧化物层的下表面的范围,可以观察到结晶相的绕射图案。第一源极及第一漏极电连接结晶金属氧化物层。第二主动元件包括第二栅极、硅半导体层、第二源极与第二漏极。硅半导体层,与第二栅极重叠。第二源极及第二漏极,与该硅半导体层电连接。

本发明的一种主动元件基板的制造方法,包括:形成第一栅极于基板上;形成第一绝缘层于第一栅极上;形成非结晶金属氧化物层于第一栅极上;形成第二绝缘层于非结晶金属氧化物层上;形成非结晶硅层于第二绝缘层上,且非结晶金属氧化物层位于非结晶硅层与第一栅极之间;进行快速热退火制作工艺,以将非结晶金属氧化物层转变成结晶金属氧化物层;以及形成第一源极与第一漏极,与结晶金属氧化物层电连接。

基于上述,本发明的至少一实施例中,主动元件基板金属氧化物层包括结晶相,可以减少在形成源极与漏极的制作工艺中,蚀刻液对金属氧化物造成的损害。此外,本发明的非结晶金属氧化物层不需经过准分子激光退火(excimer laser annealing,ELA)就可以转变成结晶金属氧化物层,可以缩减制造主动元件基板所需要的成本及工时。

为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附的附图作详细说明如下。

附图说明

图1A~图1D是本发明的一实施例的一种主动元件基板的制造流程的剖面示意图;

图2是本发明的一实施例的一种主动元件基板的制造流程的剖面示意图;

图3A~图3D是本发明的一实施例的一种主动元件基板的制造流程的剖面示意图;

图4是本发明的一实施例的一种结晶金属氧化物层的绕射图案的示意图;

图5是本发明的一实施例的一种结晶金属氧化物层的绕射图案的示意图;

图6是本发明的一实施例的一种结晶金属氧化物层的绕射图案的示意图;

图7A是本发明的一实施例的一种结晶金属氧化物层的穿透式电子显微镜照片图;

图7B~图7D是本发明的一实施例的一种结晶金属氧化物层的纳米束电子绕射(nano-beam electron diffraction,NBED)照片图。

符号说明

1、2、3:主动元件基板

100:基板

110:第一绝缘层

120、120’:第二绝缘层

130:非结晶硅层

130’:硅半导体层

140:第三绝缘层

CMO:结晶金属氧化物层

D1:第一漏极

D2:第二漏极

G1:第一栅极

G2:第二栅极

H1、H2、H3、H4:开口

M1:第一导电材料层

M2:第二导电材料层

M3:第三导电材料层

MO:非结晶金属氧化物层

R1:第一区

R2:第二区

S1:第一源极

S2:第二源极

SM:遮蔽金属层

T1:第一主动元件

T2:第二主动元件

X、Y、Z:区域

具体实施方式

图1A~图1D是依照本发明的一实施例的一种主动元件基板1的制造流程的剖面示意图。

请先参考图1A,在基板100上依序形成图案化的第一导电材料层M1、第一绝缘层110、非结晶金属氧化物层MO、第二绝缘层120以及非结晶硅层130。

图案化的第一导电材料层M1例如包括第一栅极G1与第二栅极G2,第一栅极G1与第二栅极G2分别位于基板100上的第一区R1与第二区R2。在一些实施例中,主动元件基板1为像素阵列基板,基板100上的第一区R1与第二区R2分别为显示区与周边区,但本发明不以此为限。

在一些实施例中,第一栅极G1与第二栅极G2包括金属,例如包括钛金、钼、铜、铝、银或其他金属或前述金属的组合。在一些实施例中,第一栅极G1与第二栅极G2包括多层结构,例如是钛-铝-钛结构或是钼-铝-钼结构,但本发明不以此为限。在一些实施例中,第一栅极G1与第二栅极G2较佳为钛或钛与铝的组合。在一些实施例中,第一栅极G1与第二栅极G2的厚度较佳为0.1微米至1微米,但本发明不以此为限。在一些实施例中,形成第一栅极G1与第二栅极G2的方法包括物理气相沉积(Physical vapor deposition,PVD)或其他类似的制作工艺。在一些实施例中,第一栅极G1与第二栅极G2同时形成。

形成第一绝缘层110于第一栅极G1上。在一些实施例中,第一绝缘层110覆盖第一栅极G1、第二栅极G2以及部分基板100。第一绝缘层110例如包括氧化硅。第一绝缘层110的厚度较佳为50纳米~300纳米,例如为100纳米、150纳米、200纳米或250纳米。在此厚度范围内,第一绝缘层110可以获得较佳的保温以及传热效果。在一些实施例中,形成第一绝缘层110的方法包括化学气相沉积(Chemical Vapor Deposition,CVD)或其他类似的制作工艺。

形成非结晶金属氧化物层MO于第一区R1中的第一栅极G1上,非结晶金属氧化物层MO至少覆盖第一栅极G1的部分顶面。在一些实施例中,非结晶金属氧化物层MO还覆盖了第一栅极G1的部分侧面。在一些实施例中,非结晶金属氧化物层MO还形成于第二区R2中的第二栅极G2上。非结晶金属氧化物层MO的金属元素例如包括元素铟、元素镓、元素锌或上述金属元素的组合。非结晶金属氧化物层MO例如是在常温下以溅镀的方式形成,但本发明不以此为限。在一些实施例中,非结晶金属氧化物层MO的厚度为40纳米~100纳米,例如为50纳米、60纳米、70纳米、80纳米或90纳米。

形成第二绝缘层120于非结晶金属氧化物层MO上,非结晶金属氧化物层MO位于第一绝缘层110与第二绝缘层120之间。在一些实施例中,第二绝缘层120覆盖第一栅极G1、第二栅极G2以及部分基板100。第二绝缘层120例如包括氧化硅。第二绝缘层120的厚度较佳为50纳米~250纳米,例如为100纳米、150纳米或200纳米。在此厚度范围内,第二绝缘层120可以获得较佳的保温以及传热效果。在一些实施例中,形成第二绝缘层120的方法包括化学气相沉积(Chemical Vapor Deposition,CVD)或其他类似的制作工艺。

形成非结晶硅层130于第二绝缘层120上,非结晶金属氧化物层MO位于非结晶硅层130与第一栅极G1之间。非结晶硅层130的厚度为10纳米~230纳米,较佳为40纳米~60纳米,例如为50纳米。在一些实施例中,形成非结晶硅层130的方法包括化学气相沉积(Chemical Vapor Deposition,CVD)或其他类似的制作工艺。

请参考图1B,进行一快速热退火制作工艺RTP,以将非结晶金属氧化物层MO转变成结晶金属氧化物层CMO。在一些实施例中,快速热退火制作工艺RTP的最高温度为400度~700度,例如是625度、650度或675度,且持续时间为30秒~6分钟。

现有技术在快速热退火制作工艺之后会再进行准分子激光退火(Excimer laser annealing,ELA)提供热量,才能使半导体(例如非结晶金属氧化物或非结晶硅)结晶化,但本发明直接于快速热退火制作工艺就能将非结晶金属氧化物层MO转变成结晶金属氧化物层CMO,节省了制造主动元件基板的成本以及工时。在一些实施例中,结晶金属氧化物层CMO包括了结晶轴不互相平行的多个结晶,但本发明不以此为限。以穿透式电子显微镜的选区绕射模式观察从结晶金属氧化物CMO的上表面U至结晶金属氧化物层CMO的下表面B的范围,可以观察到结晶相的绕射图案。在一些实施例中,结晶金属氧化物CMO包括铟镓锌氧化物,若以铟镓锌氧化物做为薄膜晶体管的通道层使用,则可以形成较薄的栅绝缘层,且具有载流子迁移率较高的优点。

请参考图1C,移除位于第一区R1的部分非结晶硅层130,剩余的非结晶硅层130包括硅半导体层130’。硅半导体层130’至少覆盖部分第二栅极G2。在本实施例中,部分第二绝缘层120也会被移除,部分第一绝缘层110以及剩于的第二绝缘层120’位于硅半导体层130’与第二栅极G2之间,且第二绝缘层120’与该第二栅极G2之间具有部分第一绝缘层110。

在基板100上形成第二导电材料层M2,第二导电材料层M2例如覆盖结晶金属氧化物层CMO、硅半导体层130’、第一绝缘层110以及第二绝缘层120’。第二导电材料层M2例如包括钛金、钼、铜、铝、银或其他金属或前述金属的组合。在一些实施例中,第二导电材料层M2包括多层结构,例如是钛-铝-钛结构或是钼-铝-钼结构,但本发明不以此为限。在一些实施例中,第二导电材料层M2较佳为钼或钼与铝的组合,但本发明不以此为限。在一些实施例中,形成第二导电材料层M2的方法包括物理气相沉积(Physical vapor deposition,PVD)或其他类似的制作工艺。

在一些实施例中,形成第二导电材料层M2之前,会先于结晶金属氧化物层CMO上形成一层蚀刻停止层,以在后续图案化第二导电材料层M2时能保护结晶金属氧化物层CMO。

请参考图1D,对第二导电材料层M2进行图案化制作工艺,以形成第一源极S1、第一漏极D1、第二源极S2以及第二漏极D2。第一源极S1与第一漏极D1电连接结晶金属氧化物层CMO。第二源极S2与第二漏极D2电连接硅半导体层130’。

图案化第二导电材料层M2的方法例如包括利用湿式蚀刻法于第二导电材料层M2中形成开口H1以及开口H2。开口H1将第一源极S1与第一漏极D1分隔开来,开口H2将第二源极S2与第二漏极D2分隔开来。在一些实施例中,结晶金属氧化物层CMO相较于非结晶金属氧化物层MO具有更佳的抗酸蚀能力,因此,可以降低图案化第二导电材料层M2时蚀刻液对结晶金属氧化物层CMO所造成的损害。在一些实施例中,图案化第二导电材料层M2会使用草酸、铝酸、氢氟酸或其他类似的蚀刻液。在一些实施例中,第二导电材料层M2使用具有较低阻值以及制造较低成本的钼-铝-钼多层结构,图案化第二导电材料层M2时可以使用铝酸蚀刻液以进一步降低制造成本。在本实施例中,利用湿式蚀刻法图案化第二导电材料层M2具有生产速度快以及低成本的优点。

至此,本实施例中的主动元件基板1已经大致完成,主动元件基板1包括基板100、第一主动元件T1以及第二主动元件T2。第一主动元件T1包括第一栅极G1、结晶金属氧化物层CMO、第一绝缘层110、第一源极S1与第一漏极D1。结晶金属氧化物层CMO位于第一栅极G1上,且与第一栅极G1之间夹有第一绝缘层110。第一源极S1及第一漏极D1电连接结晶金属氧化物层CMO。第二主动元件T2包括第二栅极G2、硅半导体层130’、第二源极S2与第二漏极D2。部分第一绝缘层110与第二绝缘层120’夹在第二栅极G2与硅半导体层130’之间。

在本实施例中,第一主动元件T1的第一漏极D1电连接至像素电极,且第二主动元件T2例如为栅极驱动电路在阵列基板上(Gate on Array,GOA)中的栅极驱动元件。第一主动元件T1的结晶金属氧化物层CMO具有较低的漏电流,且第二主动元件T2的硅半导体层130’包括非晶硅,因此,本实施例的主动元件基板1同时具有省电以及制造成本较低等优点,且以包括非晶硅的第二主动元件T2来作为栅极驱动电路在阵列基板上中的栅极驱动元件可以有更高元件可靠度。此外,本实施例中的第一主动元件T1为背通道蚀刻型薄膜晶体管,因此,主动元件基板1具有较高的开口率。

图2是依照本发明的一实施例的一种主动元件基板2的制造流程的剖面示意图。在此必须说明的是,图2的实施例沿用图1A~图1D的实施例的元件标号与部分内容,其中采用相同或近似的标号来表示相同或近似的元件,并且省略了相同技术内容的说明。关于省略部分的说明可参考前述实施例,在此不赘述。

请参考图2,在本实施例中,第二栅极G2不属于图案化的第一导电材料层M1,图案化的第一导电材料层M1例如包括第一栅极G1与遮蔽金属层SM。硅半导体层130’至少覆盖部分遮蔽金属层SM,部分第一绝缘层110与第二绝缘层120’位于硅半导体层130’与遮蔽金属层SM之间,且第二绝缘层120’与遮蔽金属层SM之间具有部分第一绝缘层110。

形成第三绝缘层140以覆盖第一源极S1、第一漏极D1、第二源极S2以及第二漏极D2。第三绝缘层140包括暴露出第二源极S2的开口H3以及暴露出第二漏极D2的开口H4。

在第三绝缘层140上形成图案化的第三导电材料层M3,第三导电材料层M3例如包括第二栅极G2、源极接触结构SC以及漏极接触结构DC。第二栅极G2、源极接触结构SC以及漏极接触结构DC属于同一膜层。源极接触结构SC穿过开口H3以电连接第二源极S2。漏极接触结构DC穿过开口H4以电连接第二漏极D2。第二栅极G2位于硅半导体层130’上方。在本实施例中,第二主动元件T2包括顶部栅极结构,硅半导体层130’位于遮蔽金属层SM与第二栅极G2之间,但本发明不以此为限。

在一些实施例中,第三导电材料层M3的材料包括透明导电材料,例如是铟锡氧化物、铟锌氧化物、铝锡氧化物、铝锌氧化物、铟镓锌氧化物或其他金属氧化物或上述两种以上氧化物的叠层。由于第三导电材料层M3包括透明导电材料,当主动元件基板是用于显示装置时,可以具有较高的开口率。

在一些实施例中,遮蔽金属层SM能作为栅极使用,且硅半导体层130’位于第二栅极G2与遮蔽金属层SM之间,以形成双栅极结构。由于遮蔽金属层SM以及第一栅极G1为同一道图案化制作工艺中所定义出来的,因此,不用额外的图案化制作工艺就可以得到双栅极结构。双栅极结构可以增强硅半导体层130’的载流子迁移率(carrier mobility),因此第二主动元件T2中的硅半导体层130’即使为非晶硅,也可以有足够的载流子迁移率。此外,具有双栅极结构的主动元件可以有较高的元件电流。在一些实施例中,遮蔽金属层SM能作为栅极使用,且第三导电材料层M3不包括第二栅极G2。

图3A~图3D是依照本发明的一实施例的一种主动元件基板3的制造流程的剖面示意图。在此必须说明的是,图3A~图3C的实施例沿用图2的实施例的元件标号与部分内容,其中采用相同或近似的标号来表示相同或近似的元件,并且省略了相同技术内容的说明。关于省略部分的说明可参考前述实施例,在此不赘述。

图3A之前的步骤类似于图1A与图1B,在此不赘述。在本实施例中,第二栅极G2不属于图案化的第一导电材料层M1,图案化的第一导电材料层M1例如包括第一栅极G1与遮蔽金属层SM。

请参考图3A,移除部分非结晶硅层130(绘于图1B)以及第二绝缘层120(绘于图1B),以形成硅半导体层130’与第二绝缘层120’。硅半导体层130’至少覆盖部分遮蔽金属层SM,部分第一绝缘层110与第二绝缘层120’位于硅半导体层130’与遮蔽金属层SM之间,且第二绝缘层120’与遮蔽金属层SM之间具有部分第一绝缘层110。

在一些实施例中,移除部分非结晶硅层130之前或之后,会对非结晶硅层130进行准分子激光退火(Excimer laser annealing,ELA),以形成包括结晶硅的硅半导体层130’。硅半导体层130’至少覆盖部分遮蔽金属层SM。

请参考图3B,在基板100上形成第二导电材料层M2,第二导电材料层M2例如覆盖结晶金属氧化物层CMO、硅半导体层130’、第一绝缘层110以及第二绝缘层120’。

请参考图3C,对第二导电材料层M2进行图案化制作工艺,以形成第一源极S1、第一漏极D1、第二源极S2以及第二漏极D2。第一源极S1与第一漏极D1电连接结晶金属氧化物层CMO。第二源极S2与第二漏极D2电连接硅半导体层130’。图案化第二导电材料层M2的方法例如包括利用湿式蚀刻法于第二导电材料层M2中形成开口H1以及开口H2。开口H1将第一源极S1与第一漏极D1分隔开来,开口H2将第二源极S2与第二漏极D2分隔开来。

请参考图3D,形成第三绝缘层140以覆盖第一源极S1、第一漏极D1、第二源极S2以及第二漏极D2。第三绝缘层140包括暴露出第二源极S2的开口H3以及暴露出第二漏极D2的开口H4。

在第三绝缘层140上形成图案化的第三导电材料层M3,第三导电材料层M3例如包括第二栅极G2、源极接触结构SC以及漏极接触结构DC。第二栅极G2、源极接触结构SC以及漏极接触结构DC属于同一膜层。源极接触结构SC穿过开口H3以电连接第二源极S2。漏极接触结构DC穿过开口H4以电连接第二漏极D2。在本实施例中,第二主动元件T2包括顶部栅极结构,硅半导体层130’位于遮蔽金属层SM与第二栅极G2之间,但本发明不以此为限。在一些实施例中,遮蔽金属层SM能作为栅极使用,且硅半导体层130’位于第二栅极G2与遮蔽金属层SM之间,以形成双栅极结构。在一些实施例中,遮蔽金属层SM能作为栅极使用,且第三导电材料层M3不包括第二栅极G2。

在本实施例中,第一主动元件T1的第一漏极D1电连接至像素电极,且第二主动元件T2例如为栅极驱动电路在阵列基板上(Gate on Array,GOA)中的栅极驱动元件。第一主动元件T1的结晶金属氧化物层CMO具有较低的漏电流,且第二主动元件T2的硅半导体层130’包括多晶硅,因此,本实施例的主动元件基板3同时具有省电以及窄边框等优点。此外,本实施例中的第一主动元件T1为背通道蚀刻型薄膜晶体管,因此,主动元件基板3具有较高的开口率。

图4是依照本发明的一实施例的一种结晶金属氧化物层的绕射图案。图5是依照本发明的一实施例的一种结晶金属氧化物层的绕射图案。图6是依照本发明的一实施例的一种结晶金属氧化物层的绕射图案。

图4~图6可以是同一实施例中的结晶金属氧化物层在不同位置处的绕射图案,也可以是不同实施例中的结晶金属氧化物层的绕射图案。

请参考图4~图6,以穿透式电子显微镜的选区绕射模式观察从上述一些实施例的结晶金属氧化物CMO的上表面U至结晶金属氧化物层CMO的下表面B的范围,可以观察到结晶相的绕射图案,例如是从结晶金属氧化物层CMO剖面拍摄的绕射图案。在图4~图6可以于绕射图案中的看到多个明显的绕射点,而这些绕射点大致上排列出同心圆的样子。在本实施例中,结晶金属氧化物CMO包括多晶的金属氧化物,如铟镓锌氧化物。

图7A是依照本发明的一实施例的一种结晶金属氧化物层的穿透式电子显微镜照片。图7B~图7D是依照本发明的一实施例的一种结晶金属氧化物层的纳米束电子绕射(nano-beam electron diffraction,NBED)照片。图7B~图7D大致上分别对应图7A中的区域X、区域Y以及区域Z。

从图7A~图7D可以看出,结晶金属氧化物层于靠近上表面的区域X、靠近中间的区域Y以及靠近下表面的区域Z中,都可以发现结晶的金属氧化物。在本实施例中,前述金属氧化物为铟镓锌氧化物。

本发明一实施例中的第一主动元件的第一漏极电连接至像素电极,且第二主动元件例如为周边电路的驱动元件。第一主动元件的结晶金属氧化物层具有较低的漏电流,且第二主动元件的硅半导体层包括非晶硅,因此,主动元件基板同时具有省电以及制造成本低等优点。

本发明一实施例中的第一主动元件的第一漏极电连接至像素电极,且第二主动元件例如为周边电路的驱动元件。第一主动元件的结晶金属氧化物层具有较低的漏电流,且第二主动元件的硅半导体层包括多晶硅,因此,主动元件基板同时具有省电以及窄边框等优点。

本发明一实施例中的第一主动元件为背通道蚀刻型薄膜晶体管,因此,主动元件基板具有较高的开口率。

虽然结合以上实施例公开了本发明,然而其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,可作些许的更动与润饰,故本发明的保护范围应当以附上的权利要求所界定的为准。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1