3-β-呋喃核糖基噻唑并[4,5-d]嘧啶核苷及其应用的制作方法

文档序号:1117312阅读:169来源:国知局
专利名称:3-β-呋喃核糖基噻唑并[4,5-d]嘧啶核苷及其应用的制作方法
本申请是2002年11月27日第02826804.0号申请“3-β-呋喃核糖基噻唑并[4,5-d]嘧啶核苷及其应用”的分案申请。
本发明领域本发明涉及3-β-呋喃核糖基噻唑并[4,5-d]嘧啶核苷(3-β-D-ribofuranosylthiazolo[4,5-d]pyridimine nucleoside),以及含有这种免疫调节活性化合物的药学组合物。本发明还涉及这种化合物和组合物的治疗或预防应用,通过给予有效量的这种化合物治疗其所述的疾病和病症的方法。
本发明背景最近几十年中,在探索D-和L-嘌呤核苷类似物可能的治疗应用中的努力,明显扩大。许多核苷类似物目前正作为抗病毒药物销售,包括HIV逆转录酶抑制剂(AZT,ddI,ddC,d4T和3TC)。
在免疫调节研究中也已发掘了许多D-和L-嘌呤核苷类似物。例如,在7-和/或8位有取代基的鸟苷,显示对免疫系统的刺激。参见Reitz等,J.Med.Chem.,37,3561-78(1994);Michael等,J.Med,Chem.,36,3431-36(1993)。在其他研究中,Krenitsky等的美国专利5,821,236揭示了可用于治疗瘤的阿拉伯呋喃嘌呤衍生物的6-烷氧基衍生物。在Krenitsky等非美国专利号5,539,098中报道了水痘带状疱疹病毒的抑制剂,包括2-氨基-6-甲氧基-9-(β-D-阿拉伯呋喃糖基)-9H嘌呤的5’-O-丙酰(proprionyl)和5’-丁酰酯。7-脱氮鸟苷和类似物在老鼠中对许多RNA病毒显示抗病毒活性,即使化合物在细胞培养中缺少抗病毒性质。还论述了3-脱氮鸟嘌呤核苷和核苷酸对某些DNA和RNA病毒的明显广谱抗病毒活性。Revankar等,J.Med.Chem.,27,1489-96(1984)。某些7-和9-脱氮鸟嘌呤C-核苷呈现防止Semliki Forest病毒致命挑战的能力。Girgis等,J.Med.Chem.,332750-55(1990)。选择的6-亚磺酰胺和6-亚磺酰胺嘌呤核苷,作为论证的明显的抗肿瘤活性,由Robins等在美国专利号4328336中揭示。
在Robins等的美国专利号5,041,542中揭示了某些嘧啶并[4,5-d]嘧啶核苷,对BDF1鼠的L1210治疗是有效的。认为这些特殊的核苷是作为免疫调节剂的结果。参见Bonnet等,J.Med.Chem.,36,635-53(1993)。而且,Wang等(WIPO国际公开号WO 98/16184)报道嘌呤L-核苷化合物和它们的类似物用于治疗传染病、虫害、肿瘤、自体免疫疾病或免疫系统的调节方面问题。另外,Robins等在美国专利号5,041,426和4,880,784中,揭示具明显免疫活性的3-β-D-呋喃核糖基[4,5-d]嘧啶,包括鼠科脾细胞繁殖和在活的有机体内抗Semliki森林病毒。
免疫调节的一个可能目标包括Th1和Th2淋巴因子的刺激或抑制。类型I(Th1)细胞产生白细胞间素(IL-2),肿瘤坏死因子(TNF)和干扰素(IFN),它们主要对细胞调节的免疫性负责,比如延迟型超敏性和抗病毒的免疫性。类型2(Th2)细胞产生白细胞间素IL-4,IL-5,IL-6,IL-9,IL-10和IL-13,主要包括在协助体液免疫响应,比如在过敏原的反应中见到的。参见例如Mosmann,Annu.Rev.Immunol,7,145-73(1989)。发现D-鸟苷类似物在体外(Goodman,Int.J.Immunopharmacol,10,579-88(1988);美国专利号4,746,651,Goodman)和体内(Smee等,Antiviral Res.,15,229(1991);Smee等,Antimicrobial Agents和Chemotherapy,33,1487-92(1989))对淋巴因子IL-1、IL-6、INF和TNF(间接)引起各种效应。但是,D-鸟苷类似物的作用,比如7-硫代-8-氧代鸟苷,对在T细胞中直接调节类型1或类型2细胞因子是无效的或者尚无描述。
而且,已知许多嘌呤核苷类似物的口服给药是困难的,产生于不良的吸收、不良的溶解性或者,作为酸或碱性条件或酶作用的结果,在消化道中降解和/或这些现象的结合。因此对具有改良的口服性,耐药性和用于调节免疫系统给药的嘌呤核苷类似物的不断需求。
发明概述本发明通过下述3-β-呋喃核糖基噻唑并[4,5-d]嘧啶核苷、药学上可接受的药物前体、药学上活性的代谢产物和药学上可接受盐(这些化合物、药物前体、代谢产物和盐通称为“试剂”)的发现,满足这种需求,它们可用作免疫调节剂。
一般,本发明与式I的化合物有关
其中R1独立为H、-C(O)R3或外消旋的、L-或D-氨基酸基团-C(O)CHNH2R4,其中,R3是取代或未取代的烷基,R4是H或取代或未取代的烷基;R2是H、OR5或N(R6)2,其中,R5独立为H或烷基,R6独立为H、取代或未取代的烷基、环烷基或者与氮一起形成取代或未取代的杂环烷基环;以及其中,如果R2是-OH,至少R1基团之一是外消旋的、L-或D-氨基酸基团-C(O)CHNH2R4。
在优选的实施方案中,本发明涉及具有式I的化合物,其中至少R1基团之一是外消旋的、L-或D-氨基酸基团-C(O)CHNH2R4,R4是取代或未取代的烷基,且其中剩余的R1基团是H;R2是OR5或N(R6)2,其中R5独立选自H或烷基,且其中R6独立为H、取代或未取代的烷基、环烷基或者与氮一起形成取代或未取代的杂环烷基环。
在另一个优选的实施方案中,本发明涉及具有式I的化合物,其中至少R1基团之一是外消旋的、L-氨基酸基团-C(O)CHNH2R4,其中,R4是取代或未取代的烷基,且其中剩余的R1基团是H;R2是OR5或N(R6)2,其中,R4是取代的烷基,且其中R6独立为H或者取代或未取代的烷基。
在另一个优选的实施方案中,本发明涉及具有式I的化合物,其中至少R1基团之一是L-氨基酸基团-C(O)CHNH2R4,其中,R4是-CH(CH3)2,且其中剩余的R1基团是H;R2是OH。
在本发明的另一方面,本发明的化合物选自
本发明还涉及药学上可接受的药物前体,药学上活性的代谢产物和药学上可接受的化合物、药物前体的盐或式I的代谢产物。还阐述了制备式I的化合物的有利方法。
式I的化合物作为免疫系统增强剂是有用的,并具有某些免疫系统性质,包括调节、促分裂(mitogenicity)、强化和/或增强,或者它们是具有这些性质化合物的中间体。希望这些化合物至少对宿主的天然杀手、巨噬细胞、免疫系统的淋巴细胞有作用。由于这些性质,它们可用作抗病毒和抗肿瘤试剂。它们作为适当药学组合物的活性成分,用于医治受感染的宿主。
在本发明的一个方面,式I的化合物被用来通过给予哺乳动物药学上有效量的化合物来治疗哺乳动物全范围的病毒疾病。预计用式I的化合物治疗的病毒疾病包括RNA和DNA病毒导致的急性和慢性感染。没有限制治疗感染的范围,式I的化合物在治疗腺病毒,巨细胞病毒,甲肝病毒(HAV),乙肝病毒(HVB),黄病毒包括黄热病毒和丙肝病毒(HCV),单纯疱疹1型和2型,带状疱疹,人疱疹病毒6,人免疫缺陷病毒(HIV),人乳头瘤病毒(HPV),A型流感病毒,B型流感病毒,囊尾蚴,副流感病毒,脊髓灰质炎病毒,痘病毒(包括天花和猴痘病毒),鼻病毒,呼吸道合胞病毒(RSV),导致出血热的多种病毒家族,包括沙粒病毒(LCM、Junin病毒、Machup病毒、Guanarito病毒和拉沙热),布尼亚病毒(汗坦病毒和裂谷热)和线状病毒(埃博拉病毒和马尔堡病毒),一系列病毒性脑炎包括西尼罗病毒,拉克罗斯病毒,加利福尼亚脑炎病毒,委内端拉马脑脊髓炎病毒,东方马脑脊髓炎病毒,西方马脑脊髓炎病毒,日本脑炎病毒,Kysanur森林病毒和蜱媒病毒,如克里木-刚果出血热病毒。
本发明的另一方面,通过给予哺乳动物医药有效量的化合物,用式I的化合物治疗哺乳动物中的细菌、真菌和原生动物感染。希望对致病微生物的整个范围,都能用本发明的化合物治疗,包括不限制耐抗生素的生物体。式I的化合物的激活免疫系统抗旁路机理的多个组分的能力,通常发现降低对抗生素的易感性,因此用式I的化合物治疗这种耐微生物引起的哺乳动物的感染,是本发明的特殊应用。
在本发明的另一方面,通过给哺乳动物药理上有效量的化合物,式I的化合物用于治疗哺乳动物的肿瘤。可治疗的肿瘤或癌包括病毒引起的,效果包括抑制病毒感染细胞变异成瘤的状态,抑制病毒从变异的细胞传播到其他正常细胞和/或阻止病毒转变细胞的生长。预期式I的化合物可用于广谱肿瘤,包括但不限于癌,肉瘤和白血病。包括在这类中的是乳房、结肠、膀胱、肺、前列腺、胃、胰腺癌,成淋巴细胞和骨髓白血病。
在本发明的另一方面,治疗哺乳动物的方法包括给予治疗和/或预防有效量的、含本发明化合物的药物。在这方面,效果可能与哺乳动物免疫系统一些部分的调节有关,尤其Th1和Th2的细胞因子活性调节,包括但不限于白细胞间素类,例如IL-1到IL-12,其他细胞因子,比如TNFα,干扰素包括干扰素α和干扰素θ和干扰素γ和它们的下游效应器。Th1和Th2细胞因子调节发生的地方,预期调节可包括Th1和Th2的刺激,Th1和Th2的抑制,Th1或Th2的刺激,其他的抑制或者双峰调节,其中在Th1/Th2水平的效应(比如一般化抑制)在高浓度出现,而其他效应(比如Th1或Th2的刺激和其他的抑制)在低浓度出现。
在本发明的另一方面,含式I的化合物的药物组合物,以治疗有效剂量,施药给正接受不包括式I抗感染药物的哺乳动物。本发明的优选方面,以治疗有效剂量的含式I的化合物的药物组合物,与直接作用在感染物上的抗感染药物一起给药,抑制感染物的生长或杀死感染物。
本发明优选的方面,包括治疗有效量的本发明式I的化合物的药物组合物,提供改良的口服有效性,并作为免疫调节剂给药。本发明的另一优选方面,包括治疗有效量的本发明式I的化合物的药物组合物,作为经过淋巴组织附在胃上的试剂,掩饰活性结构,因此这组织的激化最小化,改进口服可忍耐性。
附图简述

图1是鼠中isatoribine和干扰素α的血浆水平的绘图描述。
本发明和优选实施方案的详细说明下列术语在这规范中使用,按下列定义使用它们其中使用的术语“组成”和“包括”,是以它们公开,非限制性的意思。
术语“核苷”涉及戊糖组成的化合物或连接到杂环特殊位置的或连接到嘌呤(9-位)天然位置的或嘧啶(1-位)的或连接到类似物中相当位置的改良戊糖体组成的化合物。
术语“嘌呤”是指含氮的双环杂环。
术语“嘧啶”是指含氮的单环杂环。
术语“D-核苷”是指有D-核糖体的核苷(例如腺苷)化合物。
术语“L-核苷”是指有L-核糖体的核苷化合物。
其中使用的术语“烷基”是指有1-12个碳原子的直链或分支的烷基。典型的烷基包括甲基(Me,它也可结构地用“/”描述),乙基(Et),正丙基,异丙基,丁基,异丁基,仲丁基,叔丁基(tBu),戊基,异戊基,叔戊基,己基,异己基等。
术语“烷氧基”是指-O-烷基。说明性的例子包括甲氧基,乙氧基,丙氧基等。
术语“卤素”代表氯,氟,溴或碘。术语“卤代”代表氯代,氟代,溴代或碘代。
术语“环烷基”是指饱和的或部分饱和的,单环的或稠合的或螺旋多环的,每个环有3-12个环原子的碳环。说明性的环烷基的例子包括
等。
“杂环烷基”是指单环或稠合的或螺旋多环的,饱和的或部分饱和的,每个环具有3-12个环原子,它们选自C原子和N,O和S杂原子。杂环烷基的说明性例子包括 等术语“芳基”(Ar)是指单环的或稠合的或螺旋多环的,每个环有3-12个原子的芳族碳环(环结构的环原子都是碳)。芳基的说明性例子包括 等。
术语“取代的”意指规定基团或部分带有一个或多个取代基。术语″未取代的″意指规定的基团不带有取代基。
取代的烷基、环烷基或杂环烷基被一个或多个取代基取代,它们包括卤素(F、Cl、Br或I),低级烷基(C1-6)、-OH、-NO2、-CN、-CO2H、-O-低级烷基、-芳基、-芳基-低级烷基、-CO2CH3、-CONH2、-OCH2CONH2、-NH2、-SO2NH2、卤代烷基(如-CF3、-CH2CF3)、-O-卤代烷基(如-OCF3、-OCHF2)等。
术语“免疫调节剂”是指能通过刺激或抑止,调节正常或异常免疫系统的天然或合成的产品。
术语“预防”是指本发明化合物或组合物,对诊断为有病的或有发展这种疾病危险的患者,防止其中确定疾病的能力。术语还环绕防止已患病的或有这种疾病症状的患者,病情的进一步发展。
术语″治疗″是指(i)防止疾病、病症、或动物倾向于发病、病症、但尚未确诊患有疾病的情况(ii)抑制疾病、病症或症状,即阻止它的发展(iii)减轻疾病,病症或症状,即使疾病、病症和/或症状减轻术语“”和“”表示画化学结构中,不对称碳原子上取代基的特殊立体化学构型。这里描述的化合物都以D-呋喃基构型。
本发明化合物可出现互变现象。当式I不能明确表示互变形式时,认为式I倾向于代表所述化合物的任何互变形式,而不仅限于式图所表示的特殊化合物形式。例如,认为式I不管取代基是否以烯醇或酮形式显示,它们代表相同的化合物(如下面例子中所示)。
一些本发明化合物可作为单一立体异构体(即基本没有其他立体异构体,外消旋物和/或对映体和/或非对映体的混合物。所有这些单一立体异构体,外消旋物及其混合物都倾向于在本发明的范围内。旋光活性的本发明化合物,优选以旋光纯的形式使用。
如本领域技术人员所知道的,有一个手性中心(即一个不对称碳原子)的旋光纯化合物,基本上是由两个可能对映体之一个组成(即对映纯),有超过一个手性中心的旋光纯化合物,是非对映纯和对映纯的化合物。本发明的化合物是以至少90%旋光纯的形式使用,即,含有至少90%单一异构体的形式(80%对映体超过(“e.e”)或非对映异构体超过(“d.e”),优选至少95%(90%e.e.或d.e.),更优选至少97.5%(95%e.e.或d.e.),最优选至少99%(98%e.e.或d.e.)。
另外,式I要包括确定结构的溶剂化的以及不溶剂化的形式。例如,式I包括以水合的和非水合形式标明结构的化合物。溶剂化物的其他例子包括与异丙醇,乙醇,甲醇,DMSO,乙酸乙酯,乙酸或乙醇胺结合的结构。
除式I的化合物外,本发明包括药学上可接受的药物前体,药学活性的代谢物,药学上可接受的这些化合物和代谢物的盐。
“药学上可接受的药物前体”在生理学条件下可转变或通过溶剂分解,转变成规定的化合物或在呈现其药理学效应前,转变成这种化合物的药学上可接受的盐。通常,药物前体配置的目标是改进化学稳定性,改进患者接受和适应,改进生物药效率,延长作用的持续时间,改进器官选择性,改进配方(例如增加的水溶性)和/或减少副作用(例如毒性)。用工艺上熟悉的方法,可容易地从式I的化合物制备,如Burger’s Medicinal Chemistry and Drug Chemistry,1,172-178,949-982(1995)所述的方法。参见Bertolini等,J.Med.Chem.,40,2011-2016(1997);Shan,等,J.Pharm.Sci.,86(7),765-767;Bagshawe,Drug Dev.Res.,34,220-230(1995);Bodor,Advances in Drug Res.,13,224-331(1984);Bundgaard,Design ofProdrugs(Elsevier Press 1985);Larsen,药物前体的设计和应用,药物设计和开发(Krogsgaard-Larsen等编,Harwood Academic Publishers,1991);Dear等,J.Chromatogr.B,748,281-293(2000);Spraul等,J.Pharmaceutical & BiomedicalAnalysis,10,601-605(1992)和Prox等,Xenobiol.,3,103-112(1992)。
“药学上活性代谢物”意指规定化合物或其盐,通过在体内代谢,产生的药理活性。进入人体后,大多数药物是改变它们物理性质和生物效应的化学反应底物。这些代谢变换,通常影响式I的化合物的极性,改变药物在体内分布和从人体排泄的途径。然而,在一些情况下,为治疗作用而要求药物的新成代谢。例如,抗代谢物类的抗癌药,必须在它们传送到癌细胞后转变成它们的活性形式。
自大多数药物经一些类型的代谢转变,在药物代谢中起作用的生物化学反应许许多多并且各不相同。药物代谢的主要场所是肝脏,虽然其他组织也可参与。
这些变化特征是代谢产物或“代谢物”,比母体药物更极性,虽然极性药物有时候得到较小极性的产物。具有高脂质/水分离系数的物质,它们容易通过隔膜,还容易从管状尿通过肾管细胞扩散回血浆。因此,这些物质倾向于具有低的肾清除和在体内长的持续。如果药物代谢成更极性的化合物,低分离系数的物质,它的管状再吸收将大大降低。而且,在最近肾管和肝脏细胞中阴离子和阳离子的特殊分泌机理,对极性物质起很大作用。
作为特殊例子,非那西汀(乙酰对氯苯乙醚)和退热冰都是温和的止痛和退热试剂,但在体内转变成更极性和更有效的代谢物——今天广泛使用的对-羟基乙酰苯胺(醋氨酚)。在给予人们退热冰的剂量时,血浆中出现连续的代谢物峰值和衰减。在最初一小时中,退热冰是主要的血浆成分。在第二小时中,由于退热冰水平的下降,代谢物醋氨酚浓度达到峰值。最后,几小时后,主要血浆成分是惰性的、可从人体排泄的代谢物。因此,一个或多个代谢物,以及药物本身的血浆浓度,是药理上重要的。
“药学上可接受盐”意指保持规定化合物的自由酸和碱的生物效力,不是生物学上不希望的或其反面不希望的。本发明的化合物拥有足够酸性的、足够碱性的或两者的官能团,从而与许多无机或有机碱,无机或有机酸反应,形成药学上可接受的盐。说明性的药学上可接受的盐,包括本发明化合物与无机酸或有机酸或无机碱反应制备的盐,比如硫酸盐、焦硫酸盐、硫酸氢盐、亚硫酸盐、磷酸盐、一氢磷酸盐、二氢磷酸盐、偏磷酸盐、焦磷酸盐、氯化物、溴化物、碘化物、乙酸盐、丙酸盐、癸酸盐、辛酸盐、丙烯酸盐、甲酸盐、异丁酸盐、己酸盐、戊酸盐、丙炔酸盐、草酸盐、丙二酸盐、琥珀酸盐、辛二酸盐、癸二酸盐、延胡索酸盐、马来酸盐、丁炔-1,4-二辛酸盐(dioates)、戊炔-1,4-二辛酸盐、安息香酸盐、氯代安息香酸盐、甲基安息香酸盐、二硝基安息香酸盐、羟基安息香酸盐、甲氧基安息香酸盐、邻苯二甲酸盐、磺酸盐、二甲苯磺酸盐、苯基乙酸盐、苯基丙酸盐、苯基丁酸盐、柠檬酸盐、乳酸盐、γ-羟基丁酸盐、羟乙酸盐、酒石酸盐、甲烷-磺酸盐、丙烷磺酸盐、萘-1-磺酸盐、萘-2-磺酸盐以及苦杏仁酸。
如果本发明化合物是碱,希望的药学上可接受的盐可通过工艺上适当可用的方法制备,例如用无机酸处理自由碱,比如氢氯酸、氢溴酸、硫酸、硝酸、磷酸等或者用有机酸,比如乙酸、马来酸、琥珀酸、苦杏仁酸、延胡索酸、丙二酸、丙酮酸、草酸、乙醇酸、水杨酸,吡喃型酸(pyranosidyl acid),如葡糖醛酸或半乳糖醛酸、α-羟基酸,如柠檬酸或酒石酸、氨基酸,如天冬氨酸或谷氨酸,芳族酸,如安息香酸或苯乙烯酸,磺酸,如对甲苯磺酸或乙烷磺酸等。
如果本发明化合物是酸,希望的药学上可接受的盐可用任何适合的方法制备,例如用无机或有机碱处理自由酸,比如,胺(伯,仲或叔),碱金属氢氧化物或碱土金属氢氧化物等。适合的盐的说明性例子包括衍生自氨基酸的有机盐,比如氨基乙酸和精氨酸,氨,伯、仲和叔胺,环状胺,如哌啶,吗啉和哌嗪,衍生自钠、钙、钾、镁、锰、铁、铜、锌、铝和锂的无机盐。
在试剂是固体的情况下,本领域的技术人员知道,本发明化合物和盐可以不同的晶粒或多形态形式存在,它们应在本发明和规定配方的范围内。
本发明的另一方面是涉及包括药学组合物,它包括可接受载体或稀释剂,治疗有效量式I的化合物,药学上可接受的盐,氢氧化物,酯,溶剂化物,药物前体,代谢物或立体异构体。
式I的化合物在药物配制中是有用的,配方包括有效量化合物I或作为与赋形物或载体的混合物,适合于肠或非肠道的应用。适合口服给药的本发明配制可以离散单位的形式,如胶囊,扁囊剂,药片,片剂或锭剂,每个含有确定量的活性成分,以粉末或颗粒的形式,以溶液或含水液体或不含水液体中悬浮液的形式或以油在水中乳状液或水在油中乳状液的形式。活性成分也可以药丸,干药糖剂或糊剂的形式。
组合物通常配制成单位剂量形式,比如药片,胶囊,含水悬浮液或溶液。这些配制通常包括固体,半固体或液体载体。说明性的载体包括乳糖,葡萄糖,蔗糖,山梨醇,甘露醇,淀粉,阿拉伯树胶,磷酸钙,矿物油,可可脂,可可油,藻酸盐,黄芪胶,明胶,糖浆,甲基纤维素,聚氧乙烯山梨醇单月桂酸酯,甲基羟基安息香酸盐,丙基羟基安息香酸盐,滑石,硬脂酸镁等。
特别优选的配制包括含活性成分与稀释剂的药片和凝胶胶囊,如乳糖,葡萄糖,蔗糖,山梨醇,纤维素,干的玉米淀粉,糖胶和/或润滑剂,比如硅土,滑石,硬脂酸,它的镁盐或钙盐,聚乙二醇。
药片也可含有结合剂,如镁铝硅酸盐,淀粉糊,凝胶,分解质,甲基纤维素,钠羟甲基纤维素和聚乙烯基吡咯;载体,如乳糖和玉米淀粉;分解质,如淀粉,琼脂,蔼藻酸或它的钠盐,冒泡混合物和/或吸收剂,着色剂,香料和甜剂。本发明的组合物可被杀菌和/或含辅剂,如保存、稳定、膨胀或乳化试剂,溶液促进剂,调节渗透压的盐和/或缓冲剂。另外,组合物可含有其他治疗价值的物质。含水悬浮液可含有与活成分结合的乳化和悬浮试剂。所有口服剂形式还可含甜剂和/或香料或着色剂。
这些组合物分别按传统的混合,成粒或涂层方法制备,含约0.1-75%活性成分,优选约1-50%。药片可通过压缩或成型活性成分与一个或多个辅助成分制备。压制的药片可在适当机器中压缩制备,活性成分以自由流动的形式,如粉末或颗粒,任选与结合剂、润滑剂、惰性稀释剂、标明活性剂或分散剂混合。成型药片可通过在适当机器中,浇注粉末状的活性成分和用惰性液体稀释剂湿润的载体的混合物制备。
在非肠道给药时,组合物通常是以单位剂量,灭菌注射形式(含水等压溶液,悬浮液或乳状液),具有药学上可接受的载体。这些载体优选非毒性的,非肠道-可接受的,并且含非治疗稀释剂或溶剂。这些载体的例子包括水,含水溶液,比如盐水(等渗氯化钠溶液),林格溶液,葡萄糖溶液,Hanks溶液,非含水载体,如1,3-丁二醇,固定油(如玉米、棉花籽、花生、芝麻油,合成一或二甘油酯),油酸乙酯和豆蔻酸异丙酯。
油质的悬浮液可按照工艺上已知的技术,用分散或湿润试剂和悬浮试剂形成。可接受溶剂或悬浮介质之间是消过毒的固定油。为此,可使用任何温和的固定油。脂肪酸,如油酸和它的甘油酯衍生物,包括橄榄油和蓖麻油,尤其以它们的聚氧乙烯形式,在制备注射剂中也是有用的。这些油溶液或悬浮液也可含有长链醇稀释剂或分散剂。
灭菌盐水是优选的载体,化合物通常是充分水溶的,制成所有预期需求的溶液。载体可含有少量添加剂,如增溶性物质,增强等渗性物质,增强化学稳定性的物质,例如抗氧化剂,缓冲剂和防腐剂。
在直肠给药时,组合物通常配制成单位剂量的形式,如栓剂或扁囊剂。这些组合物可通过将化合物与非刺激的、室温是固体但在直肠温度是液体的赋形剂混合制备,这样它们将在直肠融化,释放化合物。通常赋形剂包括可可油,蜂蜡和聚乙二醇或其他脂肪的乳状液或悬浮液。
鼻或口腔给要的配制(比如自推进粉末分散配方),可包括约0.1%到5%重量/重量活性成分,例如,约1%w/w的活性成分。另外,一些配方可混合到舌下药片或锭剂中。
而且,化合物可局部给药,尤其在要处理的条件包含局部应用可接近的区域和组织,包括眼睛,皮肤或低肠管道的紊乱。
对眼睛的局部应用或眼药使用,化合物作为在等压的、pH-调节的消毒盐水中的微粉末化悬浮液配制或者,优选作为等压的、pH调节消毒盐水中的溶液配制,有或没有防腐剂,比如氯化苄基醇盐(benzylalkonium chloride)。另外,化合物可配制到油膏中,比如矿脂。
对于局部的皮肤应用,化合物可配制到含悬浮或溶解化合物的油膏中,例如,与一个或多个下列物质的化合物矿物油,液体矿脂,白矿脂,乙二醇,聚氧乙烯化合物,乳化蜡和水。另外,化合物可配制到含悬浮或溶解活性化合物的洗液或面霜中,例如一个或多个下列物质的化合物矿物油,失水山梨糖醇单硬脂酸酯,聚山梨酯60,十六烷酯蜡,十六烯醇(cetearyl alcohol),2-辛基十二醇,苄醇和水。
下肠道的局部应用以直肠的栓剂配制(见上面)或灌肠剂可见效。
配方以单位剂量形式出现,可通过制药工艺上熟知的方法制备。所有方法包括将活性成分结合到载体的步骤,载体由一个或多个辅助成分组成。一般,通过均匀和紧密地将活性成分结合到液体载体或细分的固体载体或两者中来制备药物,然后,如果需要,将产品成型为希望的药物。
本发明的药学化合物以治疗有效量使用,使用的量取决于要求释放情况,敏感效应所需要的药学组合物的浓度,药物治疗释放时间的长短。
本发明式I的化合物优选作为含单一个或分开剂量的化合物胶囊或片剂给药或作为灭菌溶液,悬浮液或乳状液,用于以单一或分开剂量的非肠给药。
本发明的化合物以组合物治疗有效量使用。式I的化合物的有效量取决于所使用的特殊化合物,这些化合物的量从大约1%变化到65%,容易地结合到液体或固体载体传递系统。
对于医学使用,达到治疗效果所需的式I的化合物的量,按照给予的特殊化合物,给药的途径,治疗的哺乳动物,相关疾病的特殊异常而变化。遭受其中所述情况的哺乳动物的式I的化合物的适合系统剂量,一般在约0.1-100毫克/公斤体重的范围。应理解为普通内科医生或兽医,对要求的预防或治疗,能容易地确定或处方化合物的有效量。
在处理中,医师或兽医可使用静脉内药丸,接着静脉内灌输,合适的话,重复给药。在本发明的方法中,化合物以含传统非毒性药学上可接受的载体、辅料和媒介物的配方施药,例如,口服,不经消化道,吸入喷雾,局部,直肠,鼻,口腔,舌下,阴道,心室内或经植入的宿主。
不经消化道包括,但不限于,下列给药例子静脉内的、皮下的、肌肉的、脊柱内的、骨内的、腹膜内的、鞘内的、心室内的、胸骨内的或颅内的注射和输注技术,比如通过硬膜下的泵。优选入侵技术,尤其直接向损坏的神经元组织。在式I的化合物可单独给药时,优选作为药学配方的部分提供。
作为中心神经系统对象是治疗有效,本发明方法中使用的化合物在周围施药时,很容易渗透血-脑屏障。但是,不能渗透血-脑屏障的化合物,仍可通过心室内途径有效给药。
使用在本发明方法中的化合物可以单一剂量,多个分散剂量和连续灌输给药。由于化合物是小的,容易扩散和相对稳定的,它们很适合连续灌输。泵意指皮下和硬膜下的泵,是连续灌输优选的。
对于本发明的方法,可使用调节定时和剂量顺序的有效给药计划。化合物的剂量优选包括药学剂量单位,它们包含活性化合物的有效量。有效量意指提供免疫增强响应和/或通过一次或多次药学剂量单位的给药,产生要求的有力效用。
脊椎动物宿主的示范性日剂量,从约0.001mg/kg到约50mg/kg。一般,剂量水平约0.1mg到10,000mg活性成分化合物的次序,应用于治疗上述情况,优选的水平是约0.5mg到2,000mg。特殊患者的特殊剂量水平根据许多因素变化,包括应用的特殊化合物的活性,患者的年龄,体重,健康状况,患者的饮食,给药的时间,排泄的速率,化合物与其他药物的结合,在治疗的特殊疾病的严重性,给药的形式和途径。通常,生体外剂量作用结果,为患者给药的适合剂量提供有用的指导。动物模型的研究也是有帮助的。确定适合剂量水平的考虑事项,在工艺上是熟知的。
化合物和组合物可与一个或多个治疗试剂共-施药,(1)一起在一个配方中(2)分开在各个活性试剂最佳释放速率设计的各个配方中。每个配方可含有约0.01%到99.99%(按重量)本发明化合物,优选约3.5%到60%,以及一个或多个药物赋形剂,比如湿润、乳化和PH缓冲试剂。在本发明方法中使用的化合物以结合一个或多个治疗试剂给药时,这些试剂的特殊剂量水平将取决于这些考虑,比如组合物的上面识别和本发明的总体方法。
对于本发明的方法,按有效治疗的需要,可使用和重复调节化合物定时和释放顺序的给药计划。这计划包括予处理和/或与另外的治疗试剂的共-给药。
可用下面所述的反应途径和合成方案,使用工艺上常用的技术,用容易得到的起始材料,制备本发明试剂。
本发明非例示化合物的合成,可通过改良技术人员熟知的工艺进行,例如,适当保护干扰基团,改变成其他适合的、工艺上熟知的试剂或进行反应条件的常规改进。另外,这里揭示的其他反应或通常工艺上熟知的反应,认作在制备本发明其他化合物上,具有可用性。
化合物的制备在下面所述的合成规划在中,除非另行说明,所有温度是℃,所有份和百分率是按重量。试剂是购自商业供应商,比如Aldrich Chemical Company或LancasterSynthesis Ltd.,并且,除非另行注明,使用时不进一步纯化。四氢呋喃(THF)和N,N-二甲亚砜(DMF)购自Aldrich,装在良好密封的瓶子中并直接使用。除非另行注明,下列溶剂和试剂在干燥氮气氛围下蒸馏。THF和Et2O从Na-苯甲酮羰游基;CH2Cl2,二异丙基胺,嘧啶蒸馏,Et3N从CaH2蒸馏,MeCN先从P2O5,然后从CaH2;蒸馏。MeOH从Mg;PhMe,EtOAc蒸馏,i-PrOAc从CaH2蒸馏。TFAA在干燥氩气下,经简单常压蒸馏纯化。
下面提到的反应一般在室温的氩气的正压下、在无水溶剂中进行,反应烧瓶装有经注射器引入物质和试剂的橡胶隔板。玻璃器具是烤箱干燥和/或热干燥的。反应用TLC化验,根据判断起始材料的消耗终止,分析的薄层色谱(TCL)在铝-底硅胶60F2540.2mm平板(EM Science)上进行,用UV光(254nm)显现,接着用市售的乙醇磷钼酸加热。制备性薄层色谱(TLC)在铝底硅胶60F2541.0毫米平板(EM Science)上进行,用UV光(254nm)显现。
除非另行注明,通常用反应溶剂或提取溶剂使反应体积加倍进行处理,然后,以指示的水溶液,用25%体积的提取体积洗涤。产物溶液过滤前Na2SO4和/或Mg2SO4干燥,旋转蒸发器上减压蒸发溶剂,记录为真空除去溶剂。柱层析在正压下用230-400目硅胶或50-200目中性氧化铝完成。在样品中注明的压力或在常压进行氢解。
操作在400MHz的Varian Mercury-VX400仪器上记录1H-NMR光谱,操作在75MHz,记录13C-NMR光谱。按CDCl3溶液得到NMR光谱(以ppm报道),用氯仿作为参考标准(7.27ppm和77.00ppm),CD3OD(3.4和4.8ppm和49.3ppm),DMSO-d6或适合时内部四甲基硅烷(0.00ppm)。其他NMR溶剂需要时使用。在报道峰多样性时,使用下列缩写。s(单峰),d(双峰),t(三峰),q(四峰),m(多峰),br(宽),dd(双峰的双峰),dt(三峰的双峰)。偶合常数在给出时,以赫兹(Hz)报道。
红外(IR)光谱作为纯油,作为KBr小球或作为CDCl3溶液在FT-IR光谱仪上记录,给出时以波数(cm-1)报道。报道的质谱是由Anadys Pharmaceuticals公司的分析化学部进行的(+)-ES LC/MS。元素分析由Atlantic Microlab公司(Norcross,GA)进行。熔点(mp)在开放式毛细管装置上确定,未校正。
所述的合成途径和试验步骤利用许多普通化学缩写。THF(四氢呋喃),DMF(N,N-二甲基甲酰胺),EtOAc(乙酸乙酯),DMSO(二甲亚砜),DMAP(4-二甲基氨基嘧啶),DBU(1,8-二氮环[5.4.0]十一-7-烯),DCM(4-(二氰基亚甲基)-2-甲基-6-(4-二甲基氨基-苯乙烯基1)-4H-吡喃),MCPBA(3-氯过氧苯甲酸),EDC(1-(3-二甲基氨基丙基)-3-乙基碳二亚胺氢氯化物),HATU(O-(7-氮杂苯并三唑-1-基)-1,1,3,3-四甲基尿鎓六氟磷酸盐)(O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluroniumhexafluorophosphate),HOBT(1-羟基苯并三唑水合物),TFAA(三氟乙酸酐),pyBOP(苯并三唑-1-基氧)三吡咯烷磷鎓六氟磷酸盐),DIEA(二异丙基乙基胺)等。
流程1显示制备5-氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2,7-二酮的5’-氨基酸酯的一般步骤。
流程1 a)2,2-二甲氧基丙烷、丙酮、DMSO、MeSO3H,0℃b)BOC-NHCHR4CO2H、EDC、DMAP、PhMe,0℃-室温c)无水HCl、iPrOAc、iPrOH在典型的合成途径中,首先保护5-氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2,7-二酮的β-D-核糖体的2’,3’-羟基,优选用丙酮化合物,如2中所示。然后自由的5’-羟基可与N-保护的氨基酸经各种酯化方法,形成Iia。氨基酸酯的氮和核糖的2’,3’-羟基经历各种去保护条件,优选同时接着氨基酸酯自由胺盐的形成,如II所示。
实施例15-氨基-3-(5’-O-L-缬氨酸基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2,7-二酮二氢氯化物(3)
步骤15-氨基-3-(2’,3’-O-异亚丙基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2,7-二酮的制备室温下,向装在250毫升Morton烧瓶中的丙酮(40毫升)和1(5.37g,17.0mmol,按照美国专利5,041,426实施例2中给出的步骤制备,全部结合在此供参考)的非均相混合物中连续加入2,2-DMP(6.26毫升,50.9毫摩尔)、DMSO(6.6毫升)和MeSO3H(220微升,3.39毫摩尔)。剧烈搅拌反应混合物,随着二醇的消耗,变成均相和金黄色。TLC分析(SiO2,10%MeOH-CHCl3)显示在6小时后反应完成。接着,用有凹槽的Whatman 1型滤纸,重力滤去未溶解的固体。然后将滤液倒入10体积的冰水(400毫升)中。形成直接的白色固体沉淀。简短搅拌后,加入NaHCO3(285毫克,3.39毫摩尔)溶解在水(10毫升)中,中和MeSO3H。在Morton反应器中剧烈搅拌15分钟,混合物通过粗糙的闪烁玻璃漏斗(scintered glass funnel)过滤。固体物用冰水(100毫升)洗涤,空气干燥,然后在65℃高真空干燥,得到5.36克(88%)丙酮化合2的白色固体;熔点280-81℃;1H(DMSO-d6)δ1.28(s,3H),1.47(s,3H),3.43-3.55(m,2H),3.95-3.99(m,1H),4.77-4.80(m,1H),4.88-4.91(m,1H),5.24-5.26(m,1H),5.99(s,1H),6.97(br s,2H),11.25(s,1H)。
步骤25-氨基-3-(2’,3’-O-异亚丙基-5’-N-叔-丁氧羰基-L-缬氨酸基1)-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮(4)的制备在0℃,向N-丁氧羰基-(L)-缬氨酸(671毫克,2.81毫摩尔)在THF(9毫升)的溶液中,加入EDC(588毫克,3.07毫摩尔)。形成的均匀混合物在0℃搅拌45分钟,在该点它变成非均匀的,将上面步骤1中的固体丙酮混合物2(1.00克,2.81毫摩尔)一次加入。随后加入固体DMAP(522毫克,4.27毫摩尔)。使使用混合物到达室温,搅拌5小时,在25℃旋转蒸发浓缩成黄色浆。残留物溶解在EtOAc(50毫升)中,用1N HCl(10毫升)分离,接着用饱和的NaHCO3(10毫升)水溶液中和酸。酸性水溶液相用EtOAc(2×50毫升)提取,然后用碱性水溶液相分离。合并的有机相Na2SO4干燥,经短的SiO2垫过滤,浓缩,得到1.480克(96%)of Boc-保护的氨基酸酯4泡沫,熔点158℃(dec);1H(CDCl3)δ0.86(d,J=7.0,3H),0.95(d,J=7.0,3H),1.35(s,3H),1.44(s,9H),1.56(s,3H),1.75(br s,1H),2.08-2.19(m,1H),4.20-4.24(m,2H),4.30-4.37(m,1H),4.56(dd,J=11.0,5.9,1H),4.96(dd,J=6.2,3.7,1H),5.11(br d,J=8.8,1H),5.29(br d,J=6.6,1H),5.88(br s,2H),6.23(s,1H)。
步骤3制备5-氨基-3-(5’-O-L-缬氨酸基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2,7-二酮二氢氯化物(3)HCl气的蒸汽通过浓硫酸的起泡瓶,随后在0℃直接进入含干的乙酸异丙酯(80毫升)的250毫升3颈Morton烧瓶,直至得到饱和溶液。在这溶液中加入上面步骤2的Boc-氨基酸酯(5.53克,9.95毫摩尔)在乙酸异丙酯(30毫升)中,在5分钟内形成白色固体。在它中加入10%(v/v)IPA(11毫升)。反应混合物温至室温,然后搅拌12小时。非均相的反应混合物用干的甲苯(100毫升)稀释。用中孔闪烁玻璃漏斗在氮气下过滤,得到米色的无定型固体。在干THF中的固体研碎物,接着通过过滤和在干燥,得到3.677克(81%)标题化合3的白色固体熔点166-68℃(dec);1H(DMSO-d6)δ0.90(d,J=7.0,3H),0.94(d,J=7.0,3H),2.14-2.18(m,1H),3.83-3.85(m,1H),3.96-4.00(m,1H),4.23-4.28(m,2H),4.42(dd,J=11.7,3.4,1H),4.75(dd,J=10.3,5.5,1H),5.81(d,J=4.4,1H),6.46(br s,3H),7.23(br s,2H),8.47(s,3H),11.5(br s,1H)。
元素分析C15H21N5O7S·2HCl计算值C,36.89;H,4.75;Cl,14.52;N,14.34;S,6.57;实际值C,37.03H,4.74;Cl,14.26;N,14.24;S,6.42。
实施例25-氨基-3-(5’-O-L-异亮氨酰基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2,7-二酮3/2氢氯化物(5) 步骤15-氨基-3-(2’,3’-O-异亚丙基-5’-N-叔丁氧羰基-L-异亮氨酰基)-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮(6)的制备以实施例1步骤2的类似方法,从5-氨基-3-(2’,3’-O-异亚丙基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮2和N-叔-丁氧基-L-异亮氨酸7,制备1,5-氨基-3-(2’,3’-O-异亚丙基-5’-N-叔-丁氧羰基-L-异亮氨酰基)-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮6,收率93%,米色泡沫1H NMR(400MHz,d6-DMSO)δ11.29(s,1H),7.09(d,J=8.0,1H),7.02(br s,1H),6.02(s,1H),5.28(d,J=6.2,1H),5.06(br s,1H),4.16-4.22(m,2H),3.85(dd,J=8.0,6.6,1H),1.68(br s,1H),1.47(s,3H),1.34(s,9H),1.29(s,3H),0.71-0.89(m,5H)。
步骤25-氨基-3-(5’-O-L-异亮氨酰基-β-D-呋喃核糖基)噻唑并-[4,5-d]嘧啶-2,7-二酮二氢氯化物(5)以实施例2的步骤3的类似方法,从上面中间体制备标题化合物,白色固体,收率80%熔点173-174℃(dec);1H NMR(400MHz,d6-DMSO)δ11.41(br s,1H),8.41(brs,3H),7.15(br s,2H),5.82(d,J=4.8,1H),4.50-5.00(m,2H),4.40(dd,J=11.7,3.3,1H),4.21-4.30(m,2H),3.91-4.0(m,2H),1.84-1.91(m,1H),1.37-1.44(m,1H),1.19-1.27(m,1H),0.80-0.87(m,6H)。元素分析C16H23N5O7S·3/2HCl计算值C,39.69;H,5.10;N,14.47;Cl,10.98;S,6.62;实际值C,39.05;H,5.13;N,13.73;Cl,11.08;S,6.02。
实施例35-氨基-3-(5’-O-[α-L-叔-丁基甘氨酸基]-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2,7-二酮氢氯化物(8) 步骤15-氨基-3-(2’,3’-O-异亚丙基-5’-N-叔-丁氧基-羰基-[α-L-叔-丁基甘氨酰]-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮(9)的制备以实施例1步骤2类似的方法,从5-氨基-3-(2,3-O-异亚丙基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶酮-2,7-二酮2和N-α-L-叔-丁氧甘氨酸,制备1,5-氨基-3-(2’,3’-O-异亚丙基-5’-N-叔-丁氧羰基-[α-L-叔-丁基甘氨酸基]-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮10,收率66%,白色泡沫1H NMR(400MHz,d6-DMSO)δ11.28(br s,1H),6.70-7.40(m,3H),6.02(s,1H),5.30(d,J=6.2,1H),5.05(brs,1H),4.17-4.24(m,3H),3.77(d,J=8.4,1H),1.47(s,3H),1.33(s,9H),1.29(s,3H),0.85(s,9H)。
步骤25-氨基-3-(5’-O-[α-L-叔-丁基甘氨酰]-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮(8)的制备以实施例1步骤3的类似方法,从上面中间体制备标题化合物8,收率80%,白色固体,熔点202-203℃(dec);1H NMR(400MHz,d6-DMSO)δ11.35(br s,1H),8.31(brs,3H),7.08(br s,2H),5.83(d,J=4.0,1H),5.45(br s,1H),5.21(br s,1H),4.77-4.82(m,1H),4.42(dd,J=11.4,2.6,1H),4.23-4.28(m,1H),3.96-4.04(m,1H),3.74(s,1H),0.97(s,9H)。元素分析C16H23N5O7S·HCl计算值C,41.25;H,5.19;N,15.03;Cl,7.61;S,6.88;实际值C,40.41;H,5.41;N,14.16;Cl,7.01;S,6.23。
实施例45-氨基-3-(5’-O-[α-L-N-甲基缬氨酸基]-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2,7-二酮氢氯化物(11) 步骤15-氨基-3-(2’,3’-O-异亚丙基-5’-N-叔-丁氧羰基-[α-L-N-甲基缬氨酸基]-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮(12)的制备以实施例1步骤2的类似方法,从5-氨基-3-(2’,3’-O-异亚丙基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮2和N-叔-丁氧基-L-N-甲基缬氨酸13,制备5-氨基-3-(2’,3’-O-异亚丙基-5’-N-叔-丁氧羰基-[α-L-N-甲基缬氨酸基]-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2,7-二酮12,收率63%,米色泡沫1H NMR(400MHz,d6-DMSO)旋转异构体氨基甲酸酯δ11.28(br s,1H),7.00(br s,2H),6.02(s,1H),5.27(d,J=6.6,1H),5.04(br s,1H),4.14-4.28(m,3H),3.91(d,J=9.5,1H),2.79(br s,3H),2.09(br s,1H),1.46(s,3H),1.36(s,4.5H),1.32(s,4.5H),1.28(s,3H),0.78-0.89(m,6H)。
步骤25-氨基-3-(5’-O-[α-L-N-甲基缬氨酸基]-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2,7-二酮氢氯化物(11)以实施例1步骤3的类似方法,从上面中间体制备标题化合11,略微不纯的白色固体,收率60%,熔点>180℃(dec);1H NMR(400MHz,d6-DMSO)11.31(br s,1H),9.05(br s,2H),7.05(br s,2H),5.83(d,J=4.4,1H),5.46(br s,1H),5.21(brs,1H),4.76-4.82(m,1H),4.42-4.48(m,1H),4.28-4.38(m,1H),4.22-4.28(m,1H),3.94-4.04(m,2H),2.54(br s,3H),2.23(br s,1H),0.98(d,J=7.0,3H),0.88(d,J=7.0,3H)。元素分析C16H23N5O7S·HCl计算值C,41.25;H,5.02;N,15.03;S,6.88;Cl,7.61;实际值C,40.57;H,5.37;N,13.57;S,6.16;Cl,7.29。
流程2
流程2显示制备5-氨基-7-甲氧基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮和5,7-二氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮 实施例55-氨基-3-β-D-呋喃核糖基-7-甲氧基-噻唑并[4,5-d]嘧啶2-酮(14)在氩气氛围下,无水1(2.0克,6.3毫摩尔)溶解在干燥的吡啶中。溶液冷却到0℃,将TFAA(13.3克,63毫摩尔)滴加到混合物中。5分钟后,反应在60℃油浴进行1.5小时,并通过TLC(SiO2,20%MeOH-CHCl3)控制嘧啶阳离子的形成。0.2Rfs起始材料转化成基线点,它在暴露于254纳米UV光时发出蓝色荧光。在转化成激活的中间体时,将新鲜制备的甲醇钠(1.8克Na,78毫摩尔,300毫升甲醇)溶液,在0℃加入反应。使反应温至室温,并存放2天。混合物用1M NH4Cl(100毫升)淬灭,用25%IPA-CHCl3(5×100毫升)提取。粗品通过硅胶塞过滤,然后浓缩,得到1.6克(75%)标题混合物14。制备性TLC(SiO2;水,甲醇,乙酸乙酯,5∶10∶85)得到的分析样品,白色固体,熔点>160℃(dec);[M+H]+330.9,[2M+H]+661.1,[3M+H]+991.0;Rf=0.6(20%MeOH-CHCl3);mp 200.4℃-200.9℃;1H NMR(400MHz,d6-DMSO)δ6.92(s,2H),5.86(d,J=5.2,1H),5.28(d,J=5.6,1H),4.96(d,J=5.2,1H),4.78(dd,J=10.8,5.6,1H),4.67(t,J=6.0,1H),4.07-4.10(m,1H),3.91(s,3H),3.70-3.80(m,1H),3.55-3.60(m,1H),3.40-3.45(m,1H)。元素分析C11H14N4O6S计算值C,40.00;H,4.27;N,16.96;S,9.71;实际值C,40.07;H,4.43;N,16.71;S,9.53。
实施例65,7-二氨基-3- -D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮(15)在氩气氛围下,无水1(0.3克,0.9毫摩尔)溶解在干燥的吡啶中。溶液冷却到0℃,将TFAA(1.2毫升,9.5毫摩尔)滴加到混合物中。5分钟后,反应在60℃油浴进行1.5小时,并通过TLC(SiO2,20%MeOH-CHCl3)控制嘧啶阳离子的形成。0.2Rfs起始材料转化成基线点,它在暴露于254纳米UV光时发出蓝色荧光。在转化成激活的中间体时,将新鲜制备的甲醇钠(1.8克Na,78毫摩尔,300毫升甲醇)溶液,在0℃加入反应。将反应烧瓶温放在冰浴中。稳定趋于平衡后,滴加30%NH3(25mL)水溶液直至放热停止,加入剩余物。几分钟内,按分析TLC Rf0.25(SiO2,20%MeOH-CHCl3)指示,产物形成。烧瓶30分钟内温至室温,然后水溶液旋转真空下脱气,用25%IPA-CHCl3(5×100毫升提取)。闪蒸层析产品(SiO2,10%MeOH-CHCl3),得到55毫克(17%)略微不纯的标题化合15。通过制备性TLC(SiO2;水-MeOH-EtOAc,5∶10∶85)得到分析样品,白色固体熔点>155℃(dec);[M+H]+316.0;Rf=0.25(SiO2,20%MeOH-CHCl3);1H NMR(400MHz,d6-DMSO)δ6.76(s,2H),6.14(s,2H),5.85(d,J=5.2,1H),5.22(d,J=4.8,1H),4.92(d,J=2.8,1H),4.70-4.83(m,2H),4.05-4.10(m,1H),3.65-3.80(m,1H),3.52-3.62(m,1H)3.40-3.50(m,1H)。元素分析C10H13N5O5S·H2O计算值C,37.03;H,4.35;N,21.59;S,9.89;实际值C,37.27;H,4.32;N,20.43;S,10.11。
流程3 实施例75-氨基-7-甲基氨基-3-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮(18)
步骤15-乙酰氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2,7(6H)-二酮(16)无水1(8.0克,39.5毫摩尔)溶解在干燥的吡啶(65mL)中。随后加入DMAP(3.1克,25.3毫摩尔)和乙酸酐(19.1毫升,202.4毫摩尔)。室温进行反应2小时,用饱和的NaHCO3(100毫升)淬灭反应,并用DCM(3×200毫升)提取。浓缩有机相,然后用醚粉碎。这提供12.5克(103%)略微不纯的5-乙酰氨基-3-(2,3,5-三-O-乙酰基-β-D-呋喃核糖基)噻唑并-[4,5-d]嘧啶-2,7(6H)-二酮的白色固体16。熔点246.7-248.1℃;Rf=0.20(SiO2,50%EtOAc-CHCl3);1H NMR(400MHz,d6-DMSO)δ12.23(s,1H),11.85(s,1H),5.97(m,2H),5.48(t,J=6,1H),4.35-4.40(m,1H),4.25-4.31(m,1H),4.08-4.18(m,1H),2.49(s,3H),2.07(s,3H),2.01(s,3H),2.00(s,3H)。
步骤25-乙酰氨基-7-(2,4,6-三异丙基-苯磺酰基氧)-3-(2,3,5-三-O-乙酰基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮(17)的制备上面步骤1的中间体(500毫克,0.98毫摩尔),溶解在室温DCM(15毫升)中。将DMAP(7.3毫克,0.06毫摩尔)和TEA(16毫升,11毫摩尔)加入溶液,接着加入2,4,6-三异丙基苯磺酰氯(454毫克,1.5毫摩尔)。1小时后反应完成,浓缩粗品,然后用闪蒸层析(SiO2,10%EtOAc-CHCl3)纯化,得到690毫克(92%)5-乙酰氨基-7-(2,4,6-三异丙基-苯磺酰基氧)-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮,泡沫白色固体1774.5-76.3℃;Rf=0.7(SiO2,20%EtOAc-CHCl3);1H(400MHz,d6-DMSO)δ10.83(s,1H),7.39(s,2H),6.03(d,J=4.0,1H),5.91-5.96(m,1H),5.69(t,J=6.4,1H),4.30-4.70(m,1H),4.22-4.26(m,1H),4.16-4.20(m,1H),3.90-4.00(m,2H),2.97-3.01(m,1H),2.07(s,3H),2.06(s,3H),2.04(s,3H),1.88(s,3H),1.17-1.25(m,18H)。
步骤35-乙酰氨基-7-甲基氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮(19)的制备上面步骤2的中间体(1.7克,2.27毫摩尔)室温溶解在二噁烷中。将它加入甲胺(3.4毫升,6.8毫摩尔)在甲醇中的2.0M溶液。2小时后起始材料被消耗。反应混合物浓缩,然后闪蒸层析(SiO2,梯度洗脱,20-80%EtOAc-CHCl3)纯化,得到945毫克(83%)纯标题化合物,黄色的油[M+H]+498.2,[2M+H]+995.4;Rf=0.55(10%CH3OH-CHCl3);1H NMR(400MHz,d6-DMSO)δ10.13(s,1H),7.70(d,J=4.41,1H),5.95-6.02(m,2H),5.69(s,1H),4.35-4.39(m,1H),4.16-4.23(m,2H),2.90(d,J=4.8,3H),2.20(s,3H),2.07(s,3H),2.02(s,3H),2.00(s,3H)。
步骤45-氨基-7-甲基氢基-3-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮(18)的制备上面步骤3的中间体(420毫克,0.85毫摩尔)溶解在二噁胺(4mL)中,将1M LiOH(8.5毫升,8.5毫摩尔)加入溶液。O-乙酰基团在40分钟内被除去,在Rf=0.15(SiO2,5%MeOH-EtOAc)得到中间体。2小时后,如TLC Rf=0.20(SiO2,5%MeOH-EtOAc)指示的,N-乙酰基被除去。反应混合物用化学计算的乙酸中和,用25%IPA-CHCl3提取,然后浓缩得到195毫克(70%)的18。制备性TLC(SiO2;水-MeOH-EtOAc,10∶20∶70)得到标题化合物18的分析样品。白色固体[M+H]+330.0;Rf=0.20(5%MeOH-EtOAc);熔点>108℃;1H NMR(400MHz,d6-DMSO)7.06(d,J=3.6,1H),6.24(s,2H),5.85(d,J=5.2,1H),5.22(d,J=4.8,1H),4.93(d,J=5.2,1H),4.70-4.80(m,2H),4.07(d,J=4.8,1H),3.75(d,J=4.4,1H),3.5-3.6(m,1H),3.40-3.50(m,1H),2.82(d,J=4.4,3H)。
实施例85-氨基-7-二甲基氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮(20) 步骤15-乙酰氨基-7-二甲基氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2-酮的制备以实施例7步骤2的类似方法,生成5-乙酰氨基-7-二甲基氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2-酮,收率80%,黄色油M+511.14;Rf=0.70(SiO2,10%MeOH-CHCl3);1H NMR(400MHz,d6-DMSO)δ10.15(s,1H),6.10-6.15(m,1H),5.98-6.09(m,1H),5.5.66-5.70(m,1H),4.35-4.40(m,1H),4.22-4.27(m,1H),4.14-4.08(m,1H),3.18(s,6H),2.19(s,3H),2.08(s,3H),2.06(s,3H),1.99(s,3H)。
步骤25-氨基-7-二甲基氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮(20)的制备以实施例7步骤3类似的方法,生成标题化合物20,收率82%。由制备性TLC(SiO2;水-MeOH-EtOAc,10∶20∶70)得到分析样品,白色固体[M+H]+344.0;[2M+H]+687.4;mp>112℃;Rf=0.20(5%MeOH-EtOAc);1H NMR(400MHz,d6-DMSO)δ6.27(s,2H),5.91(d,J=4.8,1H),5.22(d,J=6.0,1H),4.93(d,J=5.2,1H),4.71-4.76(m,2H),4.07-4.09(m,1H),3.7-3.8(m,1H),3.5-3.6(m,1H),3.5-3.6(m,1H),3.09(s,6H)。元素分析C12H17N5O5S计算值C,41.98;H,4.99;N,20.40;实际值C,41.32;H,5.14;N,18.59。
实施例95-氨基-7-环丙基氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮一氢氯化物盐(21) 步骤15-乙酰氨基-7-环丙基氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2-酮的制备以实施例3步骤2的类似方法,生成2,5-乙酰氨基-7-环丙基氨基-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2-酮,收率80%,黄色油Rf=0.45(SiO2,75%EtOAc-CHCl3);1H NMR(400MHz,d6-DMSO)δ10.11(s,1H),7.87(d,J=2.8,1H),5.98-6.01(m,1H),5.70-5.76(s,1H),4.32-4.39(m,1H),4.16-4.30(m,2H),3.85(s,1H),2.87(s,1H),2.25(s,3H),2.07(s,3H),2.06(s,3H),1.98(s,3H),0.73-0.76(m,2H),0.57-0.60(m,2H)。
步骤25-氨基-7-环丙基氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮的制备以实施例7步骤3类似的方法,生成5-氨基-7-环丙基氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮,收率79%。由制备性TLC(SiO2;水-MeOH-EtOAc,10∶20∶70)得到分析样品,白色固体Rf=0.20(5%MeOH-EtOAc);熔点>100℃;[M+H]+356.0;1H(400MHz,d6-DMSO)δ7.24(s,1H),6.28(s,2H),5.86(d,J=5.6,1H),5.22(d,J=6,1H),4.92(d,J=5.2,1H),4.70-4.80(m,2H),4.05-4.10(m,1H),3.7-3.8(m,1H),3.5-3.6(m,1H),3.45-3.50(m,1H),2.8(s,1H),0.68-0.70(m,2H),0.54-0.57(m,2H)。
步骤35-氨基-7-环丙基氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮氢氯化物盐(21)的制备将上面步骤2制备的固体材料,加入剧烈搅拌的4M HCl在二噁胺中,制备标题化合物。得到标题化合物的白色固体熔点>99℃;1H NMR(400MHz,d6-DMSO)δ7.25(d,1H,J=2.8,1H),6.23(s,2H),5.87(d,J=5.2,1H),5.21(bs,1H),4.98(bs,1H),4.73-4.79(m,2H),4.09(t,J=5.6,1H),3.72-3.79(m,1H),3.55-3.60(m,1H),3.45-3.37(m,1H),2.75-2.82(m,1H),0.72-0.79(m,2H),0.55-0.63(m,2H)。元素分析C13H17N5O5S·HCl计算值C,39.85;H,4.63;N,17.87;Cl,9.05;实际值C,39.66;H,4.85;N,16.57;Cl,8.13。
实施例105-氨基-7-环戊基氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮(22) 步骤15-乙酰氨基-7-吡咯烷子基-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2-酮以实施例7步骤2类似的方法,生成5-乙酰氨基-7-吡咯烷子基-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2-酮,收率70%。由制备性TLC(SiO2;水-MeOH-EtOAc,10∶20∶70)得到分析样品,白色固体熔点>108℃(dec);Rf=0.80(10%水和20%甲醇在乙酸乙酯中);[M+H]+384.0;1H NMR(400MHz,d6-DMSO)δ7.00(d,J=7.2,1H),6.17(s,2H),5.18(d,J=5.2,1H),5.21(d,J=5.6,1H),4.92(d,J=5.6,1H),4.74-4.80(m,2H),4.30-4.35(m,1H),4.05-4.10(m,1H),3.70-3.80(m,1H),3.55-3.60(m,1H),3.30-3.45(m,1H),1.40-2.0(m,8H)。
步骤25-氢基-7-环戊基氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶2-酮的制备以实施例7步骤3的类似方法,生成化合物22,收率70%。由制备性TLC(SiO2;水-MeOH-EtOAc,10∶20∶70)得到分析样品,白色固体熔点>108℃(dec);Rf=0.80(10%水和20%甲醇在乙酸乙酯中);[M+H]+384.0;1H NMR(400MHz,d6-DMSO)δ7.00(d,J=7.2,1H),6.17(s,2H),5.18(d,J=5.2,1H),5.21(d,J=5.6,1H),4.92(d,J=5.6,1H),4.74-4.80(m,2H),4.30-4.35(m,1H),4.05-4.10(m,1H),3.70-3.80(m,1H),3.55-3.60(m,1H),3.30-3.45(m,1H),1.40-2.0(m,8H)。
实施例115-氨基-7-吡咯烷子基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮(23) 步骤1)5-乙酰氨基-7-吡咯烷子基-3-(2’,3’,5’-三-O-乙酰基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮的制备以实施例7步骤2类似的方法,生成5-乙酰氨基-7-吡咯烷子基-3-(2,3,5-三-O-乙酰基-β-D-呋喃核糖基)-噻唑并[4,5-d]嘧啶-2-酮,收率79%,黄色油[M+H]+538.1;Rf=0.80(SiO2,水-MeOH-EtOAc,10∶20∶70);1H(400MHz,d6-DMSO)δ10.04(s,1H),5.97-6.02(m,2H),5.68(s,1H),4.38(dd,J=11.6,3.6,1H),4.15-4.23(m,2H),3.58(s,4H),2.23(s,3H),2.08(s,3H),2.05(s,3H),1.98(s,3H),1.89(s,4H)。
步骤25-氨基-7-吡咯烷子基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮的制备以实施例7步骤3类似的方法,生成标题化合物23,收率81%。由制备性TLC(SiO2;水-MeOH-EtOAc,10∶20∶70)得到分析样品,白色固体熔点>112.4℃(dec);[M+H]+370.3;1H NMR(400MHz,d6-DMSO)δ6.22(s,2H),5.90(d,J=4.8,1H),5.23(d,J=5.2,1H),4.94(d,J=4.4,1H),4.68-4.75(m,2H),4.08(d,J=4.8,1H),3.71-3.76(m,1H),3.55(bs,5H),3.38-3.54(m,1H),1.87(s,4H)。
流程4 a)2,2-二甲氧基丙烷、丙酮、DMSO、MeSO3H,0℃b)BOC-NHCHR4CO2H、EDC、DMAP、PhMe,0℃-室温c)无水HCl、iPrOAc、iPrOH实施例125-氨基-7-环戊基氨基-3-(5’-O-L-缬氨酸基)-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮氢氯化物(24)随着剧烈的搅拌,中间体B溶解在无水氯化氢在0℃乙酸异丙酯的溶液中,并使它温至室温。在非均匀的混合物中加入乙酸异丙酯。反应混合物搅拌12小时。加入甲苯,过滤产物,真空干燥,得到要求的2-HCl盐24。
中间体制备如下5-氨基-7-环戊基氨基-3-(2’,3’-O-异亚丙基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮(A)根据Kini等的步骤制备化合物A,通过在0℃搅拌5-氨基-7-环戊基氨基-3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶-2-酮22与丙酮,DMSO,甲磺酸和过量二甲氧基丙烷的混合物,直至起始材料被消耗。将反应混合物加入冰水,并用NaHCO3中和至pH7,用EtOAc提取。浓缩有机层,经硅胶柱层析,得到2’,3’-保护的二醇产物。
5-氨基-7-环戊基氨基-3-(5’-O-(N-(叔-丁氧基羰基)-L-缬氨酸基)-2’,3’-O-异亚丙基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮(B)将0℃1.0当量的N-(叔-丁氧基羰基)-L-缬氨酸在THF中的溶液加入1.1当量的EDC。搅拌30分钟后,加入1.0当量的5-氨基-7-环戊基-3-(2’,3’-O-异亚丙基-β-D-呋喃核糖基)噻唑并[4,5-d]嘧啶-2-酮,A和1.5当量的DMAP反应混合物温至室温,搅拌5小时,浓缩。残留物溶解在EtOAc中,用1N HCl分配,用饱和的NaHCO3(10毫升)水溶液中和。水相再用EtOAc提取。合并有机相,Na2SO4干燥,过滤,真空蒸发,得到中间体B,硅胶柱层析纯化。
生物试验在通过选择的途径给药时,论证式I的化合物口服特性和诱导免疫响应的能力,在鼠和猎犬的试验中很容易证实。式I的化合物的这些测量结果,可与本揭示中参考文献中描述化合物的类似试验结果比较(例如,U.S.专利5,041,426和4,880,784),显示式I的化合物在药物动力学和药效学性质方面的优点。
鼠中干扰素(Mu-IFN-)浓度正常的小鼠提供评估所述本发明提供1口服材料改进程度的有用系统。不但可测量口服所述药物前体产生的isatoribine的血浆浓度,而且在小鼠中进行的广泛免疫研究,提供适合测量干扰素水平、isatoribine要求的生物活性有效反映的原浆移动的试剂。
我们在一系列的试验中使用鼠科系统,证明3,1的5’-缬氨酸酯(val-isatoribine)产生干扰素响应,实质地改良isatoribine本身给药。
表1记录鼠血浆中鼠科干扰素化验结果,用isatoribine服药两次,以重碳酸盐配方,在口服途径50毫克/公斤的水平。很明显,即使在间隔4小时后重复服药,没有可测量的干扰素。
表1两次间隔4小时口服50毫克/公斤剂量的Isatoribine,鼠干扰素α(Mu-IFN-α)血浆浓度(pg/mL)
BQLn-低于评估的可计量极限<n pg/mL。
表2记录鼠血浆中鼠科干扰素α化验结果第一次与重碳酸盐一起给药,然后4小时后与isatoribine一起口服给药,以重碳酸盐配方,在50毫克/公斤的水平。从4个老鼠报道血浆中干扰素,包括两个接受重碳酸盐赋形剂剂量。在这试验中报道的所有值是低的,干扰素水平在每个时点所有3个小鼠的报道是不一致,认为这些信号可能是化验接近下限测量所产生的人工产物。
表2按照一次赋形剂剂量和4小时后一次50毫克/公斤剂量的Isatoribine,鼠干扰素α(Mu-IFN-α)血浆浓度(pg/mL)
BQLn-低于评估的可计量极限<n pg/mLNR-无报道。
表3记录口服val-isatoribine、溶解在重碳酸盐中、剂量相对于摩尔基础50毫克/公斤的isatoribine的老鼠血浆中鼠科干扰素的化验结果。很明显,在服药后1.0小时,1.5小时和2.0小时,干扰素很容易测量。在给定的时点在所有化验的鼠中检测干扰素,包括val-isatoribine给药后效果的可靠性。因此,val-isatoribine的单一给药,优于isatoribine的单一剂量或重复剂量。
表3Val-Isatoribine单一73.0毫克/公斤剂量后,鼠干扰素α(Mu-IFN-α)血浆浓度(pg/mL)
BQL-低于评估的可计量极限<12.5pg/mLBQLn-低于评估的可计量极限<n pg/mLNR-无报道。
表1,2和3中列出的数据也可从测量干扰素水平影响范围的观点考虑。对isatoribine研究中使用的114个鼠的仅4个鼠的血浆,进行干扰素检测,服用val-isatoribine的30个鼠的10个,血浆中有可检测的干扰素。因此,药物前体增加出现干扰素响应的鼠的比例从4%到30%,平均值和峰值响应的大小增加两倍在其它的试验中,测量isatoribine静脉内途径给药的鼠的isatoribine和干扰素的血浆水平,这些水平与口服val-isatoribine后产生isatoribine和干扰素水平的比较。这些数据在图1中总结。在这图中,很明显,口服val-isatoribine(“val-isator”)(以50毫克/公斤isatoribine摩尔当量)诱导的干扰素水平,类似于静脉内isatoribine(“isator”)以25毫克/公斤的水平。因此,口服val-isatoribine提供的isatoribine和干扰素水平,它们是静脉给药isatoribine后观测到水平的大约50%。
猎犬猎犬口服后,对系统暴露于isatoribine(1)的药物前体(val-isatoribine,3)的效应进行研究。Isatoribine是在重碳酸钠溶液中制备。Val-isatoribine和isatoribine按下列配方制备,它们以保证溶解性选择配方1Isatoribine在重碳酸钠溶液中,1和4毫克/毫升。
配方2Val-isatoribine在磷酸盐缓冲盐水中,1.62和6.48毫克/毫升,相当于摩尔基础上1和4毫克/毫升的isatoribine。
在研究开始,使用重量在15-27公斤的4雄和4雌猎犬,大约1-2岁。动物分成两组,每组2雄,2雌。试验材料通过强饲法在1和8天给药,给药之间有7天冲失期。每次服药后,在(predose)再次服药15,30分钟,1,2,3,4,6,8和10小时,从每个动物收集血样(2毫升)。血浆在-70℃冷冻直至分析。通过HPLC-MS/MS化验,分析血浆的isatoribine。
从每个狗中产生的isatoribine或val-isatoribine的isatoribine药物动力学参数在表4和5中总结。定义最大浓度(Cmax)的关键药物动力学参数和药物前体和重碳酸盐溶液在50毫克/公斤剂量的时间-浓度曲线(AUC)下面积测量的总暴露的比率,在表6中总结。对于药物前体3,Cmax比率是2.98±0.695,AUC比率是2.38±0.485。这些结果表明在50毫克/公斤剂量,药物前体val-isatoribine比在重碳酸盐溶液中的satoribine,提供实质上较高的Cmax和更大的生物利用度。
药物前体的Cmax和AUC对10毫克/公斤剂量的重碳酸盐溶液的比率,在表7中总结。对于药物前体,Cmax比率是2.24±0.249,AUC比率是1.82±0.529。这些结果表明在10毫克/公斤剂量,药物前体val-isatoribine比在重碳酸盐溶液中的satoribine,提供较高的Cmax和更大的生物利用度。
因此,口服后达到最大isatoribine浓度至少翻倍,口服药物前体val-isatoribine后,与satoribine相比,在10和50毫克/公斤剂量,系统暴露于isatoribine增强大约2倍。
表4狗在50毫克/公斤服用Isatoribine的药物动力学参数
表5狗在10毫克/公斤服用Isatoribine的药物动力学参数
表6狗在50毫克/公斤服用Isatoribine的药物动力学参数的比率
表7狗在10毫克/公斤服用Isatoribine的药物动力学参数的比率
优选药物前体有几个原因。第一,药物前体容易配制,提供高比例的活性试剂。这造成给定剂量小的胶囊体积,是口服产品的优点。第二,药物前体在试剂通过淋巴组织分布的内脏时,提供化装的活性结构,使该组织的激活最小,由此改进口服的耐药性。最后,在测试的剂量,口服后val-isatoribine提供的isatoribine血浆水平,在要求的生物效应范围内,isatoribine本身却不是这种情况。
上面所述的可效仿化合物,可根据下列一般实施例,配制成药物组合物。
实施例1非肠道组合物要制备适合于注射给药的非肠道药物组合物,将100毫克水溶性式I的化合物溶解在DMSO中,然后与10毫升0.9%消毒盐水混合。混合物结合到适合于注射的剂量单位形式。
实施例2口服组合物要制备口服的药物组合物,将100毫克式I的化合物与750毫克乳糖混合。混合物结合到口服剂量单位,比如硬凝胶胶囊,它适合于口服给药。
认为前面的描述在性质上是可效仿的和解释性的,是要说明本发明和优选的实施方案。通过常规的试验,技术人员可认识到明显的、不偏离本发明精神的改进和变化。因此,不想通过上面的说明定义本发明,而是通过下面的权利要求及其相关的定义本发明。
权利要求
1.式I代表的化合物或其药学上可接受的盐 其中R1独立为H、-C(O)R3或外消旋的、L-或D-氨基酸基团-C(O)CHNH2R4,其中,R3是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基,R4是H或选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基;R2是H或OR5,其中,R5是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基。
2.如权利要求1所述的化合物或其药学上可接受的盐,其中,至少一个R1基团是外消旋的、L-或D-氨基酸基团-C(O)CHNH2R4,剩余的R1基团是H,其中R4是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基;R2是OR5,其中R5是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基。
3.如权利要求2所述的化合物或其药学上可接受的盐,其中,至少一个R1基团是L-氨基酸基团-C(O)CHNH2R4,剩余的R1基团是H,其中R4是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基利异己基的烷基;R2是OR5,其中R5是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基。
4.如权利要求3所述的化合物或其药学上可接受的盐,其中,至少一个R1基团是L-氨基酸基团-C(O)CHNH2R4,剩余的R1基团是H,其中R4是-CH(CH3)2;R2是OH。
5.如权利要求1所述的化合物或其药学上可接受的盐,其中,R1独立为H、-C(O)R3或外消旋的、L-或D-氨基酸基团-C(O)CHNH2R4;R2是H;R3是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基,R4是H或选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基。
6.一种用于治疗病毒性疾病,细菌性或真菌性感染,原虫性感染和肿瘤的药物组合物,其特征在于,所述药物组合物包含药学上可接受的载体和式I表示化合物或其药学上可接受的盐 其中R1独立为H、-C(O)R3或外消旋的、L-或D-氨基酸基团-C(O)CHNH2R4,其中,R3是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基,R4是H或选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基;R2是H或OR5,其中,R5是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基。
7.如权利要求6所述的药物组合物,其中,至少一个R1基团是外消旋的、L-或D-氨基酸基团-C(O)CHNH2R4,剩余的R1基团是H,其中R4是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基;R2是OR5,其中R5是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基。
8.如权利要求7所述的药物组合物,其中,至少一个R1基团是L-氨基酸基团-C(O)CHNH2R4,剩余的R1基团是H,其中R4是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基;R2是OR5,其中R5是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基。
9.如权利要求8所述的药物组合物,其中,至少一个R1基团是L-氨基酸基团-C(O)CHNH2R4,剩余的R1基团是H,其中R4是-CH(CH3)2;R2是OH。
10.如权利要求6所述的药物组合物,其中,R1独立为H、-C(O)R3或外消旋的、L-或D-氨基酸基团-C(O)CHNH2R4;R2是H;R3是选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基,R4是H或选自甲基、乙基、正丙基、异丙基、丁基、异丁基、仲丁基、叔丁基、戊基、异戊基、叔戊基、己基和异己基的烷基。
11.权利要求1至5中任一项所述化合物或其药学上可接受的盐用于制造调节患者免疫细胞因子活性的药物的用途。
12.权利要求1至5中任一项所述化合物或其药学上可接受的盐用于制造治疗病毒性疾病或肿瘤的药物的用途。
13.如权利要求12所述的用途,所述病毒性疾病选自腺病毒,巨细胞病毒,甲肝病毒(HAV),乙肝病毒(HVB),黄热病毒,丙肝病毒(HCV),单纯疱疹1型和2型,带状疱疹,人疱疹病毒6,人免疫缺陷病毒(HIV),人乳头瘤病毒(HPV),A型流感病毒,B型流感病毒,麻疹,副流感病毒,脊髓灰质炎病毒,痘病毒,天花,猴痘病毒,鼻病毒,呼吸道合胞病毒(RSV),导致出血热的病毒,沙粒病毒,布尼亚病毒和线状病毒,脑炎病毒,西尼罗病毒,拉克罗斯病毒,加利福尼亚脑炎病毒,委内端拉马脑脊髓炎病毒,东方马脑脊髓炎病毒,西方马脑脊髓炎病毒,日本脑炎病毒,Kysanur森林病毒和蜱媒病毒。
14.权利要求1至5中任一项所述化合物或其药学上可接受的盐用于制造治疗细菌性、真菌性或原虫性感染的药物的用途。
全文摘要
本发明涉及3-β-D-呋喃核糖基噻唑并[4,5-d]嘧啶核苷和含这些化合物的、有免疫调节活性的药物组合物。本发明还涉及这些化合物和组合物的治疗或预防应用,通过服用有效量的这些化合物,治疗其中所述疾病和失调的方法。
文档编号A61P31/12GK101033242SQ200610172840
公开日2007年9月12日 申请日期2002年11月27日 优先权日2001年11月27日
发明者D·R·阿弗莱特, S·E·韦伯, J·R·莱诺克斯, E·J·鲁登 申请人:安那迪斯药品股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1