用于制备抗菌制剂输注液的药物组合物和其制备方法(变化形式)与流程

文档序号:13429656阅读:174来源:国知局
本发明涉及适于制备抗菌药物的可注射制剂溶液的药物制剂和其混配技术,其可用于医学和兽医学中治疗不同病因的传染性和发炎性疾病,并且用于制药工业中以制备原料药和最终剂型。

背景技术:
数十年来,在制备大多数抗菌(抗细菌和抗真菌)制剂的静脉内注射液和输注液的临床实践中,传统上最常用的成分是注射用水、0.9%氯化钠溶液、5%右旋糖(葡萄糖)溶液、不太常用的0.45%氯化钠溶液、2%和10%右旋糖溶液、林格氏溶液(Ringer'ssolution)、乳酸林格氏溶液、供静脉内输注用的氯化钾和氯化钠的溶液等,这些常用成分本身不具有抗菌作用,并且没有增强抗菌药物的治疗功效的作用[1]。鉴于这一事实,并且考虑到截至目前,许多临床上有影响的微生物菌株已经对许多抗菌制剂产生不同程度的特殊抗性,因此确立可有效地增加许多抗细菌和抗真菌药物治疗传染性和发炎性疾病的抗菌活性和临床功效的全新方法成为现代实验药理学和实用医学的紧迫任务。过去多年里,研究人员发现,使用各种纳米粒子作为载体,用于将不同抗生素直接递送到为生物体提供抗感染防护的免疫系统细胞(巨噬细胞)以达到增加这些制剂的细胞内浓度并由此加强其抗菌性质(这一点对于以下在这些细胞中持久存在的微生物最为重要:衣原体(clamydia)、支原体(mycoplasma)、分枝杆菌(mycobacteria)等)的目的,以及用于刺激巨噬细胞的抗细菌活性并另外将巨噬细胞募集到感染的组织,是开发新型制药技术和新型高效的抗生素治疗方法的极具前景的趋势[2、3、4、5、6、7、8、9]。本发明的目的是详细阐明基于使用氯化钠、右旋糖和胶态二氧化硅来制备粉碎的抗菌制剂可注射形式的输注液的药物组合物以及其制备方法,所述氯化钠、右旋糖和胶态二氧化硅与在本发明中作为原型检查的传统溶剂(注射用水、0.9%氯化钠溶液、5%右旋糖溶液、林格氏溶液等)相比,具有增强抗细菌和抗真菌制剂的治疗功效的作用。在实现本发明过程中得到的技术成果是基于使用胶态二氧化硅纳米粒子和微米粒子,加强抗细菌和抗真菌制剂的肠胃外形式的治疗功效。胶态二氧化硅纳米粒子与微米粒子在药理学有益性质生物相容性、生物分布、生物降解性和低毒性方面存在差异,其能够在经肠胃外引入期间充当抗生素的载体,将抗生素细胞内递送到集中在哺乳动物肺、肝、肾、脾、淋巴结、心脏、皮肤、膀胱和其它器官中的发炎性组织中的巨噬细胞(此举明显增加在细胞内水平上和体内感染组织中的抗生素浓度),并明显增加免疫系统中这些细胞的抗菌活性(具体说来,借助于刺激一氧化氮产生,并活化吞噬作用过程),由此显著增加抗细菌和抗真菌药物的治疗作用[10、11、12、13、14、15、16、17]。这一问题已经利用一组发明通过产生用于制备抗细菌和抗真菌制剂输注液的药物组合物来解决。

技术实现要素:
第一种变化形式一种药物组合物,其用于制备可溶于无菌注射用水、0.45%和0.9%氯化钠溶液中的抗菌制剂的输注液,所述药物组合物的特征在于其粉末形式,其含有重量比相应地等于4.5或9:(1-5)的氯化钠和胶态二氧化硅。这种药物组合物的新型制备方法已经就抗菌制剂输注液的制备来详细阐明,所述方法包括混合氯化物与其它组分,其特征在于,将粉末状氯化钠与类粉末状胶态二氧化硅以相应地等于4.5或9:(1-5)的重量比混合,并且借助于碰撞摩擦作用对所得混合物进行机械加工,直到细密分散(小于5微米)的胶态二氧化硅粒子的质量分率增加至少两倍。为了能基于使用提出的药物组合物制备输注液,按处方信息中的指示,将一剂抗菌制剂干粉(可溶于注射用水中)溶解于10ml注射用水中,随后将全部体积的所得溶液与上述药物组合物干粉一起装入小瓶中,剧烈振荡2或3分钟,接着再将得到的由抗菌制剂溶液与药物组合物组成的悬浮液溶解于50-100-200ml0.45%或0.9%氯化钠溶液(视组合物含量而定)中,并根据抗菌制剂处方信息中所指示的要求,以输注液形式静脉内注射。第二种变化形式一种药物组合物,其用于制备可溶于无菌注射用水、2%和5%右旋糖溶液中的抗菌制剂的输注液,所述药物组合物的特征在于其粉末形式,其含有重量比相应地等于20或50:(1-5)的右旋糖和胶态二氧化硅。一种制备用于制备抗菌制剂输注液的药物组合物的方法,其包括混合右旋糖与其它组分,所述方法的特征在于,将粉末状右旋糖与类粉末状胶态二氧化硅以右旋糖比胶态二氧化硅相应地等于20或50:(1-5)的重量比混合,并且借助于碰撞摩擦作用对所得混合物进行机械加工,直到细密分散(小于5微米)的胶态二氧化硅粒子的质量分率增加至少两倍。为了能基于使用提出的药物组合物制备输注液,按处方信息中的指示,将一剂抗菌制剂干粉(可溶于注射用水中)溶解于10ml注射用水中,随后将全部体积的所得溶液与上述药物组合物干粉一起装入小瓶中,剧烈振荡2或3分钟,接着再将得到的由抗菌制剂溶液与药物组合物组成的悬浮液溶解于50-100-200ml2%或5%右旋糖溶液(视组合物含量而定)中,并根据抗菌制剂处方信息中所指示的要求,以输注液形式静脉内注射。当使用提出的药物组合物时,如果得到的混合物(氯化钠+胶态二氧化硅或右旋糖+胶态二氧化硅)通过碰撞摩擦作用进行机械加工,使尺寸≤5μm的胶态二氧化硅粒子的含量为至少35%,那么抗菌制剂的治疗功效将增加。为了制备药物组合物,研究人员使用由俄罗斯药物制造商《ABOLmed》有限公司(《ABOLmed》LLC)所提供的药剂学中可用的氯化钠结晶粉末和右旋糖结晶粉末,以及抗菌制剂(阿莫西林(amoxycillin)+克拉维酸(clavulanate)、氨曲南(aztreonam)、头孢噻肟(cefotaxime)、头孢曲松(ceftriaxone)、头孢他啶(ceftazidime)、头孢哌酮(cefoperazone)+舒巴坦(sulbactam)、头孢吡肟(cefepime)、美罗培南(meropenem)、硫酸阿米卡星(amikacinsulfate)、阿奇霉素(azithromycin)、万古霉素(vancomycin)、卷曲霉素(capreomycin)、磷霉素(fosfomycin)和伏立康唑(voriconazole))。对于胶态二氧化硅,研究人员曾使用由《赢创德固赛公司(EvonikDegussaCorporation)》(德国)制造的药剂学中可用的AEROSIL200(通用名:胶态二氧化硅),其由圆形无孔二氧化硅纳米粒子(平均直径7-40nm)结合成尺寸<100μm的不规则的微米粒子组成。组合物配方的选择是基于胶态二氧化硅纳米粒子和微米粒子对抗细菌和抗真菌制剂分子的交互吸附现象,以及在借助于强烈机械摩擦碰撞来机械活化胶态二氧化硅微米粒子与氯化钠结晶粉末和右旋糖结晶粉末的混配物的情况下胶态二氧化硅微米粒子的尺寸减小。根据提供的重量比将胶态二氧化硅引入提出的组合物中是遵循针对抗菌制剂治疗功效的最大增强作用和副作用出现的最小可能性的标准,利用实验小鼠通过实验确定。与其它已知方法相比较,所述借助于由强烈机械摩擦碰撞来机械活化氯化钠或葡萄糖与胶态二氧化硅的粉末掺合物而制备上述药物组合物的方法使尺寸≤5μm的胶态二氧化硅细粒的比例增加,这一尺寸的细粒可吸附抗菌制剂分子,并且被巨噬细胞主动吞噬[18]。为此,借助于强烈机械摩擦碰撞对所述各试剂(氯化钠+胶态二氧化硅或右旋糖+胶态二氧化硅)的掺合物进行机械活化,直到胶态二氧化硅细粉部分(≤5μm)的重量比增加至少两倍。使用所得由胶态二氧化硅细粒与其表面上逆向吸附的可溶于无菌注射用水中的各种抗菌制剂分子组成的粉末状药物组合物来制备输注液。为了获得所述组合物,研究人员使用了一种机械化学方法,这种方法通过强烈机械碰撞,即优先在各种研磨机中实现的对各物质施加碰撞摩擦作用的压力和剪切,来处理固体成分掺合物。固体粉末物质(氯化钠+胶态二氧化硅或右旋糖+胶态二氧化硅)的掺合物在滚筒式球磨机中经历机械活化。与通过简单地混合各组分或通过其溶液汽化来获得掺合物相比较,所用获得混配物的方式可实现粉末组分的完全均质化,并因此使药物组合物具有高药理学活性。根据最小所需机械作用剂量的定量标准,宜使用针对所得组合物的悬浮液的颗粒测定方法。在本文中,需要可借助于激光光度法测量的不超过5μm的胶态二氧化硅粒子的重量含量应增加至少2倍。粉末混配物的机械处理是在滚动球磨机、振动球磨机或行星式球磨机(planetarymill)中进行。可使用小球、旋轴等作为研磨介质。利用实验用啮齿动物(小鼠)进行的所得组合物的药理学试验显示,与抗菌药物的常用溶剂相比较,借助所述方法制备的所述组合物对于抗菌(抗细菌和抗真菌)制剂治疗由金黄色葡萄球菌、大肠杆菌和绿脓杆菌诱发的细菌性败血症以及由白色念珠菌诱发的真菌性败血症时的治疗功效具有特殊的增强作用。因此,使用所述药物组合物和其制备方法提供以下益处:1)在临床上使针对恶性传染性和发炎性疾病的抗菌疗法的功效和品质显著增加,降低死亡率;2)制药技术具有生态安全性、无废物且成本低。具体实施方式本发明将利用下文所列实例予以说明。实例1.固体组合物的制备。NaCl:胶态二氧化硅。在滚筒式旋转球磨机中,将重量比为4.5:1、4.5:2、4.5:5、9:1、9:2和9:5的氯化钠和胶态二氧化硅的掺合物处理1、2或4小时。在由俄罗斯《VA设备公司(VAInstalt)》制造的Microsizer-201а粒子尺寸激光分析仪上分析初始胶态二氧化硅粒子以及其与NaCl的不同变化形式组合物于水中的悬浮液的颗粒含量。将1g到5g研究的粉末放入样品制备模件(液体体积150sm3)中,其量足以使70%到75%的光透射穿过试管。1或2分钟之后,进行测量,同时对悬浮液进行处理以破坏团块。根据嵌入分析仪中的计算程序进行数据处理。结果制成重量分布与粒子尺寸的关系的直方图形式。为确定胶态二氧化硅粒子吸附的抗菌制剂的数量,将0.5g抗生素物质(以活性物质计)溶解于5sm3注射用水中。之后,将已知量的干燥组合物NaCl:胶态二氧化硅悬浮于新制的抗生素溶液中,以12000rpm的速度离心所得悬浮液30分钟,小心地倒出上清液,将残留物质胶态二氧化硅再悬浮于相同量的注射用水中。利用HPLC方法确定脱附到水相中的抗生素的浓度。随后,重复沉淀和悬浮程序。根据确定的由胶态二氧化硅残留物脱附的抗生素总量计算吸附的抗生素的量。所得颗粒组合物的数据和吸附速率显示于表1中。由所得数据可知,选定的制备提供的组合物的条件可使胶态二氧化硅细粉部分(粒度≤5μm)的比例增加至少2倍,并使胶态二氧化硅粒子结合抗菌制剂分子的结合度达到至少40%。表1通过应用组合物制备的组合物和抗菌制剂溶液于水中的悬浮液的颗粒测定数据;胶态二氧化硅粒子对制剂的吸附速率实例2.固体组合物的制备右旋糖:胶态二氧化硅。在滚筒式旋转球磨机中,将重量比为20:1、20:2、20:5、50:1、50:2和50:5的右旋糖和胶态二氧化硅的掺合物处理1、2或4小时。遵循实例1中所述的方法,测量胶态二氧化硅于水中的悬浮液的颗粒含量和抗生素的吸附速率。所得数据显示于表2中。由这些数据可知,所述制备提供的组合物的方法还使胶态二氧化硅细粉部分(粒度≤5μm)的比例增加至少2倍,并使胶态二氧化硅粒子结合抗菌制剂分子的结合度达到至少40%。表2通过应用组合物制备的组合物和抗菌制剂溶液于水中的悬浮液的颗粒测定数据;胶态二氧化硅粒子对制剂的吸附速率实例3.基于使用药物组合物制备的抗菌制剂的溶液(静脉内注射用)的治疗功效的测定。已经进行一项针对β-内酰胺类抗生素(阿莫西林+克拉维酸、头孢噻肟、头孢曲松、头孢哌酮+舒巴坦、头孢他啶、头孢吡肟、氨曲南、美罗培南)、大环内酯类(阿奇霉素)、氨基糖苷类(硫酸阿米卡星)、糖肽类(万古霉素)、抗真菌剂(伏立康唑)以及磷霉素的研究。为测定抗菌剂的治疗功效,首先建立败血症实验模型,并根据[19、20],采用所得结果(χ2)的统计学处理方法。微生物:金黄色葡萄球菌(ATCC编号25923F-49)、大肠杆菌(ATCC编号25922F-50)、绿脓杆菌(ATCC编号27853F-51)、白色念珠菌(ATCC编号24433)。动物:实验是根据《测试动物使用规程(Regulationsfortestanimalsuse)》(USSR卫生部订购增刊第755期,1977年12月8日)利用杂交小鼠(CBA×C57Black/6)CBF1进行。败血症实验模型对小鼠静脉内注射0.8ml绿脓杆菌每日培养物悬浮液,剂量为每只小鼠5×108CFU;或0.8ml金黄色葡萄球菌每日培养物悬浮液,剂量为每只小鼠1010CFU;或0.8ml大肠杆菌每日培养物悬浮液,剂量为每只小鼠8×108CFU;或0.8ml白色念珠菌每日培养物悬浮液,剂量为每只小鼠1010CFU。小鼠对照组注射0.8ml体积的0.9%NaCl溶液或5%右旋糖溶液。感染后一天,对测试小鼠每日静脉内注射溶解于0.9%NaCl溶液或5%右旋糖溶液中的上述杀菌剂,以及其基于使用药物组合物制备的溶液(如前文所述),持续3天。每日注射的0.5ml溶液中所含所有β-内酰胺的量都为每只小鼠0.2mg,硫酸阿米卡星的量为每日每只小鼠2mg,万古霉素的量为每日每只小鼠1mg,磷霉素的量为每日每只小鼠2mg,伏立康唑的量为每日每只小鼠0.1mg。遵循相同方案,对照组注射0.5ml体积的0.9%NaCl溶液或5%右旋糖溶液以及药物组合物水溶液。根据感染后第7天存活小鼠的数量评价抗细菌疗法的功效[19、20]。表3和4中显示的得到的数据反映三次独立实验的结果(对于每一制剂研究,使用至少30只测试动物)。表3细菌性败血症抗菌疗法的功效(制剂溶液是基于组合物NaCl:胶态二氧化硅制备)*-以%表示并且是绝对值(存活率/感染动物)。**-未进行测试。表4细菌性败血症抗菌疗法的功效(制剂溶液是基于组合物右旋糖:胶态二氧化硅制备)*-以%表示并且是绝对值(存活率/感染动物)。**-未进行测试。从表3和4可看出,所有提出的用于制备所有测试的抗菌制剂的注射液的药物组合物都含有细密分散的纳米结构化胶态二氧化硅粉末,所述药物组合物在所述测试的抗菌制剂治疗测试动物由金黄色葡萄球菌、大肠杆菌、绿脓杆菌和白色念珠菌引起的难治性败血症时确切地增加其治疗功效。因此,从得到的数据,可得出结论:与传统的溶剂(本发明的原型)相比较,提供的用于制备抗细菌制剂和抗真菌制剂静脉内输注液的药物组合物(NaCl:胶态二氧化硅和右旋糖:胶态二氧化硅)在临床上对于增强所述抗细菌制剂和抗真菌制剂治疗恶性传染性和发炎性疾病的治疗潜力具有相当重要的作用。使用的文献1.《Kucer抗生素的使用》(Kucers'Theuseofantibiotics)//M.L.格劳森(M.L.Grauson),S.M.克罗维(S.M.Crowe),J.S.麦克卡斯(J.S.McCarthy)等人,第6版,第2卷,第3000页,英国伦敦(London,UK),霍德教育/ASM出版社(HodderEducation/ASMPress),2010。2.艾波拉斯S.C.(AbeylathS.C.),图罗斯E.(TurosE.),克服细菌对β-内酰胺抗生素的抗性的药物递送方法(Drugdeliveryapproachestoovercomebacterialresistancetoβ-lactamantibiotics)//《药物递送专家评论》(ExpertOpiniononDrugDelivery).–2008.–第5卷.–第931-949页。3.巴图斯N.G.(BastusN.G.),桑彻斯-提罗E.(Sanchez-TilloE.),溥杰斯S.(PujalsS.)等人,肽与金纳米粒子的结合物诱导巨噬细胞活化(Peptidesconjugatedtogoldnanoparticlesinducemacrophageactivation)//《分子免疫学》(MolecularImmunology).–2009.–第46卷.–第743-748页。4.品托-阿法达雷H.(Pinto-AlphandaryH.),安德蒙特A.(AndremontA.),古夫瑞P.(CouvreurP.),使用脂质体和纳米粒子进行的抗生素靶向递送:研究与应用(Targeteddeliveryofantibioticsusingliposomesandnanoparticles:researchandapplications)//《国际抗菌剂杂志》(InternationalJournalofAntimicrobialAgents).–2000.–第13卷.–第155-168页。5.乌本奇W.(UlbrichW.),兰普雷奇A.(LamprechA.),在发炎性疾病的疗法中借助纳米颗粒载体的靶向药物递送方法(Targeteddrug-deliveryapproachesbynanoparticulatecarriersinthetherapyofinflammatorydiseases)//《英国皇家学会界面期刊》(JournalRoyalSocietyInterface).-2010.-第7卷.增刊1.-第S55-S66页。6.罗斯玛丽M.J.(RosemaryM.J.),麦克拉伦I.(MacLarenI.),普拉蒂普T.(PradeepT.),在SiO2存在下卷须霉素的抗细菌性质的研究(Investigationofantibacterialpropertiesofciprofloxacin@SiO2).//《朗缪尔》(Langmuir).-2006.-第22卷.-第10125-10129页。7.赖A.(RaiA.),佩布尼A.(PrabhuneA.),派瑞C.C.(PerryC.C.),抗生素介导的具有有效抗菌活性的金纳米粒子的合成以及其在抗菌涂层中的应用(Antibioticmediatedsynthesisofgoldnanoparticleswithpotentantimicrobialactivityandtheirapplicationinantimicrobialcoatings)//《材料化学杂志》(JournalofMaterialsChemistry).-2010.-第20卷.-第6789-6798页。8.祖尼克B.S.(ZolnikB.S.),冈萨雷斯-费尔南德斯A.(Gonzalez-FernandezA.),萨德雷N.(SadriehN.),度布沃拉斯卡V.(DobrovolskaiaV.),纳米粒子与免疫系统简评(Minireview:Nanoparticlesandtheimmunesystem)//《内分泌学》(Endocrinology).–2010.–第151卷.–第458-465页。9.品托-阿法达雷H.,波兰德O.(BallandO.),劳伦特M.(LaurentM.)等人,体外用鼠伤寒沙门氏菌感染的腹膜巨噬细胞中载有氨比西林的纳米粒子的细胞内观察(Intracellularvisualizationofampicillin-loadednanoparticlesinperitonealmacrophagesinfectedinvitrowithSalmonellatyphimurium)//《药物研究》(PharmaceuticalResearch).–1994.–第11卷.–第38-46页。10.帕克J-H.(ParkJ-H.),古L.(GuL.),马特乍恩G.(MaltzahnG.)等人,用于体内应用的生物可降解发光多孔硅纳米粒子(Biodegradableluminescentporoussiliconnanoparticlesforinvivoapplications)//《自然材料》(NatureMaterials).–2009.–第8卷.–第331-336页。11.赫曲克E.M.(HetrickE.M.),申J.H.(ShinJ.H.),斯塔克N.A.(StaskoN.A.)等人,释放一氧化氮的二氧化硅纳米粒子的杀细菌功效(Bactericidalefficacyofnitricoxide-releasingsilicananoparticles)//《ACS纳米》(ACSNano.)–2008.–第2卷.–第235-246页。12.佩尼斯B.(PernisB.),二氧化硅与免疫系统(Silicaandtheimmunesystem)//《生物医学文献》(ActaBiomed.)–2005.–第76卷,增刊2.-第38-44页。13.塔赛提E.(TasciottiE.),刘X.(LiuX.),巴哈凡R.Et(BhavaneR.Et)等人,用于成像和治疗应用的作为多阶段递送系统的中孔硅粒子(Mesoporoussiliconparticlesasamultistagedeliverysystemforimagingandtherapeuticapplications)//《自然纳米技术》(NatureNanotechnology).–2008.–第3卷.–第151-157页。14.塞勒姆M.N.(SeleemM.N.),慕努萨米P.(MunusamyP.),雷杰A(RanjanA)等人,用于靶向细胞内病原体的二氧化硅-抗生素杂合纳米粒子(Silica-antibiotichybridnanoparticlesfortargetingintracellularpathogens)//《抗菌剂与化学疗法》(AntimicrobialAgentsandChemotherapy).-2009.-第53卷.-第4270-4274页。15.楚克A.(ChuikoA.),佩图克A.(PentyukA.),夏塔克E.(Shtat'koE.),楚克N.(ChuikoN.),高分散性非晶形二氧化硅于医学方面的应用(Medicalaspectsofapplicationofhighlydisperseamorphoussilica)//《表面化学于生物医学与环境科学中的应用》(SurfaceChemistryinBiomedicalandEnvironmentalScience).J.P.布里兹(J.PBlitz)和V.古柯(V.Gun'ko.)编,II.数学、物理与化学(II.Mathematics,PhysicsandChemistry).–2006.–第228卷.–第191-204页。16.沃特斯K.M.(WatersK.M.),马塞洛L.M.(MasielloL.M.),臧格R.C.(ZangarR.C.)等人,巨噬细胞对二氧化硅纳米粒子的反应随粒度保持不变(Macrophageresponsestosilicananoparticlesarehighlyconservedacrossparticlesizes)//《毒理学》(ToxicologicalSciences).–2009.–第107卷.–第553-569页。17.卢卡雷利M.(LucarelliM.),盖提A.M.(GattiA.M.),萨瓦里诺G.(SavarinoG.)等人,巨噬细胞的先天防御功能可在纳米级陶瓷和金属粒子作用下发生偏差(Innatedefencefunctionsofmacrophagescanbebiasedbynano-sizedceramicandmetallicparticles)//《欧洲胞质运动网》(EuropeanCytokineNetwork).–2004.–第15卷.–第339-346页。18.汉密尔顿R.F.(HamiltonR.F.),萨克S.A.(ThakurS.A.),美法J.K.(MayfairJ.K.),霍莱恩A.(HolianA.),MARCO介导C57BL/6小鼠肺泡巨噬细胞中二氧化硅的吸收和毒性(MARCOmediatessilicauptakeandtoxicityinalveolarmacrophagesfromC57BL/6mice)//《生物化学杂志》(JournalBiologicalChemistry).–2006.–第281卷.–第34218-34226页。19.艾克哈特С.(EckhardtС.),菲克维勒K.(FickweilerK.),斯查曼R.(SchaumannR.)等人,莫西沙星在鼠类重度全身大肠杆菌和脆弱类杆菌混合感染模型中的治疗功效(TherapeuticefficacyofmoxifloxacininamurinemodelofseveresystemicmixedinfectionwithE.coliandB.fragilis)//《厌氧微生物》(Anaerobe).–2003.-第9卷.-第157-160页。20.斯查曼R.,布拉兹R.(BlatzR.),比尔J.(BeerJ.)等人,莫西沙星与亚胺培南/西司他丁治疗对静脉内感染不同菌株脆弱类杆菌和大肠杆菌的小鼠的死亡率的影响的比较(Effectofmoxifloxacinversusimipenem/cilastatintreatmentonthemortalityofmiceinfectedintravenouslywithdifferentstrainsofBacteroidesfragilisandEscherichiacoli)//《抗菌化学疗法杂志》(JournalofAntimicrobialChemotherapy).-2004.-第53卷.-第318-324页。
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1