一种微波介质陶瓷材料的制备方法

文档序号:1855052阅读:220来源:国知局
专利名称:一种微波介质陶瓷材料的制备方法
技术领域
本发明涉及陶瓷材料领域,特别是涉及一种微波介质陶瓷材料的制备方法。
背景技术
微波介质陶瓷是适用于微波频段的中介电常数与高品质因数的陶瓷材料,在微波电路中发挥着介质隔离、介质波导以及介质谐振等功能,可用于制作以微波管、管带线等为主要构成的微波混合集成电路,很大程度地减小了微波介质谐振器等器件的质量和体积。其中,具有钙钛矿结构的(1-x)CaTiO3-XNdAlO3(简称CTNA,其中,X表示摩尔百分比)基微波介质陶瓷材料由于具有适中的介电常数(L 45)、接近于零的谐振频率温度系数(Tf 0)和相当高的品质因数(QXf > 30000),从而引起了业界的广泛关注和研究。然而,业界的研究主要停留在其材料的微观结构和介电性能以及烧成工艺和材料的介电性能的相互关系上,对于其制备方法的研究很少。目前的现有技术中,国内外厂商大都采用机械混合与固相烧结结合的制备方法,即将固态粉体原料在行星式或搅拌式球磨机中充分混合均匀后在高温煅烧条件下发生固相反应而制备出所需陶瓷粉体,进而压制成型、固相烧结成介质陶瓷材料。这种传统的制备方法主要有以下缺陷:高温烧结过程中粉体反应活性较差,需要很高的烧结温度(至少1450摄氏度以上)和较长的烧结时间,导致需要极高的生产能耗;反应合成的陶瓷粉体粒径较大,粒度分布宽,杂相较多进而影响CTNA的主晶相纯度并且导致难于实现烧结完全致密化,即难于获得具备稳定优良微波介电性能的介质陶瓷材料;忽略了 Ca元素易挥发在烧结过程中的“晶格缺陷效应”对产品的微波性能造成的不良影响。因此,需要提供一种微波介质陶瓷材料的制备方法,以解决现有技术中制备微波介质陶瓷材料过程中烧 结温度过高、烧结时间较长以及难于实现烧结致密化的问题。

发明内容
本发明主要解决的技术问题是提供一种微波介质陶瓷材料的制备方法,能够在制备微波介质陶瓷材料过程中降低烧结温度、缩短烧结时间和抑制易挥发元素Ca造成的“晶格缺陷效应”。为解决上述技术问题,本发明提供了一种微波介质陶瓷材料的制备方法,包括:将碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛的混合粉料进行机械均匀混合,形成粉体颗粒;将粉体颗粒进行第一次高能球磨,以将粉体颗粒均匀细化,形成细化粉体;将细化粉体在密闭容器中进行高温煅烧,形成前驱体粉料;将前驱体粉料进行第二次高能球磨,以将前驱体粉料进一步均匀细化,形成陶瓷粉体。其中,第二次高能球磨步骤之后还包括:喷雾造粒,在陶瓷粉体中添加浓度为5%、质量百分比为5% 10%的聚乙烯醇水溶液,将陶瓷粉体制成具球状流动性的粉体颗粒。其中,喷雾造粒步骤之后还包括:压制成型,将具球状流动性的粉体颗粒制成所需形状的陶瓷压坯。其中,陶瓷压坯是通过压力机以手动或自动填料方式进行双面压制成型,或者通过一次注射成型技术进行一次注射成型。其中,压制成型步骤之后还包括:烧结,将陶瓷压坯进行连续烧结,形成陶瓷毛坯,其中,最高烧结温度为1200 1500摄氏度,保温时间为3 6小时。其中,烧结步骤之后还包括:机械加工和样品检测,将陶瓷毛坯进行表面处理得到陶瓷样品,并测量陶瓷样品的介电性能指标。其中,混合粉料的配方按照化学式(1-x)Ca1+yTi03-x[NdAlO3]使其中x和y分别满足 0.28mol % ^ X ^ 0.48mol % 和 0.05mol % ^ y ^ 0.5mol % (y 可选碳酸I丐或氧化隹丐)。其中,碳酸 丐、氧化 丐和氧化招的纯度均大于99.5%, 二氧化钛和氧化钕的纯度不小于 99.9%。其中,将碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛的混合粉料进行机械均匀混合,形成粉体颗粒的步骤包括:将混合粉料放在球罐中,加入二氧化错磨球作为研磨介质,加入无水乙醇或去离子水作为有机溶剂进行机械均匀混合,并且在形成粉体颗粒后,除去有机溶剂进行干燥处理,其中,混合粉料、研磨介质、有机溶剂三者重量比例为1: 3: 3且占球罐容积的60% 80%,混合时间为I 3小时。其中,在第一次高能球磨步骤中,球料比为8: I 10: 1,球磨时间为I 3小时,转速为600 800转/分钟。其中,第一次高能球磨后的细化粉体粒度分布在I 2μπι范围内。

其中,在高温煅烧步骤中,密闭容器为耐高温坩埚,煅烧温度为900 1200摄氏度,保温时间为3 6小时。其中,在第二次高能球磨步骤中,球料比为10:1 12: 1,球磨时间I 3小时,转速600 1000转/分钟。其中,第二次高能球磨后的陶瓷粉体的粒度小于I μ m。其中,在第二次高能球磨步骤中,进一步添加改性添加剂和烧结助剂。其中,改性添加剂为Ca0、Sr0、Ti02、Zn0、Al203、Nb2O5以及Ta2O5中的一种或几种,烧结助剂为Bi203、B2O3> CuO、V2O5以及BaO中的一种或几种。其中,微波介质陶瓷材料的配方按照化学式(1-x) Ca1+yTi03-x [NdAlO3]使x和y分别满足 0.28mol % ^ X ^ 0.48mol % 和 0.05mol % ^ y ^ 0.5mol % (y 可选碳酸I丐或氧化钙)。其中,改性添加剂的质量百分比为碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛总量的1% 4%,烧结助剂的质量百分比为碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛总量的
0.1% 1%。本发明的有益效果是:区别于现有技术的情况,本发明的微波介质陶瓷材料的制备方法通过增加易挥发元素Ca在原料中的摩尔百分比及两次高能球磨,可抑制Ca元素易挥发产生的“晶格缺陷效应”,在很大程度上降低烧结温度和缩短烧结时间,并且实现高度致密化,降低生产成本和技术难度。


为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:图1是本发明实施例的微波介质陶瓷材料的制备方法的流程示意图;图2是根据本发明一个实施例的微波介质陶瓷材料的制备方法中,运用传统固相反应合成方法结合高能球磨技术经过第一次高能球磨制得的细化粉料的粒度分布图(a)和运用传统固相反应合成方法结合高能球磨技术并增加Ca元素百分含量的制备方法制得的微波介质陶瓷样品的X射线衍射(XRD)图谱(b);图3是根据本发明一个实施例的微波介质陶瓷材料的制备方法中,运用传统固相反应合成方法结合高能球磨技术的制备方法制得的微波介质陶瓷样品和运用传统固相反应合成方法结合高能球磨技术并通过适量增加Ca元素百分含量的制备方法制得的微波介质陶瓷样品的扫描电镜(SEM)对比图像(a)和(b)。
具体实施例方式下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。实施例一一种微波介质陶瓷材料的制备方法,其流程示意图如图1所示,包括:步骤S101,将碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛的混合粉料进行机械均匀混合,形成粉体颗 粒。步骤SlOl包括将混合粉料放在球罐中,加入二氧化锆磨球作为研磨介质,加入无水乙醇或去离子水作为有机溶剂进行机械均匀混合,并且在形成粉体颗粒后,除去有机溶剂进行干燥处理,其中,混合粉料、研磨介质、有机溶剂三者重量比例为1: 3: 3且占球罐容积的60% 80%,混合时间为I 3小时。其中,混合粉料的配方按照化学式(1-x) Ca1+yTi03_x[NdAlO3]使 x 和 y 分别满足 0.28mol % ^ x ^ 0.48mol % 和 0.05mol %^y^0.5mol% (y可选碳酸钙或氧化钙)。其中,碳酸钙、氧化钙和氧化铝的纯度均大于
99.5%,二氧化钛和氧化钕的纯度不小于99.9%。由于原料中具有碳酸钙和氧化钙,提高了易挥发元素Ca在CTNA基介质材料中的摩尔百分比,可以抑制易挥发元素Ca造成的“晶格缺陷效应”。步骤S102,将粉体颗粒进行第一次高能球磨,以将粉体颗粒均匀细化,形成细化粉体。在本实施例中,以二氧化锆磨球作为高能球磨的研磨介质进行第一次高能球磨,使第一次高能球磨后的细化粉体的粒度分布在I 2μπι范围内,有效地提高了粉体颗粒的反应活性和接触面积,进而达到降低煅烧反应合成温度的目的,其中,球料比为8: I 10: 1,球磨时间为I 3小时,转速为600 800转/分钟。步骤S103,将细化粉体在密闭容器中进行高温煅烧,形成前驱体粉料。在本实施例中,将第一次高能球磨后的粉体放在密闭的耐高温坩埚中,经高温反应合成高纯度主晶相的前驱体粉料。高温煅烧过程的工艺参数为:密闭容器为耐高温坩埚,煅烧温度为900 1200摄氏度,保温时间为3 6小时。步骤S104,将前驱体粉料进行第二次高能球磨,以将前驱体粉料进一步均匀细化,形成陶瓷粉体。在本实施例中,以二氧化锆磨球作为高能球磨的研磨介质,并进一步添加改性添加剂和烧结助剂进行第二次高能球磨。控制形成的陶瓷粉体的粒度小于I μ m,改性添加剂为CaO、SrO、TiO2, ZnO, Al2O3' Nb2O5以及Ta2O5中的一种或几种,烧结助剂为Bi203、B203、CuO、V2O5以及BaO中的一种或几种,该微波介质陶瓷材料的配方按照化学式(1-x) Ca1+yTi03_x[NdAlO3]使 x 和 y 分别满足 0.28mol % ^ x ^ 0.48mol % 和 0.05mol %^y^0.5mol% (y可选碳酸钙或氧化钙)。其中,改性添加剂的质量百分比为碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛总量的1% 4%,烧结助剂的质量百分比为碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛总量的0.1% 1%。其中,球料比为10:1 12: 1,球磨时间I 3小时,转速600 1000转/分钟。通过加入改性添加剂和 烧结助剂,可使陶瓷粉体进一步均匀分布,减少陶瓷粉体间的孔隙度,可以达到在一定程度上降低烧结温度与微波介质陶瓷烧结致密化的目的。此外,在本实施例中,将陶瓷粉体形成之后,还可以根据需要进一步包括以下步骤:喷雾造粒,在陶瓷粉体中添加浓度为5%、质量百分比为5% 10%的聚乙烯醇水溶液,将陶瓷粉体制成具球状流动性的粉体颗粒,以使该粉体颗粒具有很好的流动性。压制成型,将具球状流动性的粉体颗粒制成所需形状的陶瓷压坯。在本实施例中,陶瓷压坯是通过压力机以手动或自动填料方式进行双面压制成型,或者通过一次注射成型技术进行一次注射成型。其中,压制压力为80 120MPa。烧结,将陶瓷压坯进行连续烧结,形成陶瓷毛坯,其中,最高烧结温度为1200 1500摄氏度,保温时间为3 6小时。在本实施例中,将陶瓷压坯放入密闭的耐高温氧化铝坩埚中进行连续烧结,在高温时段发生固相反应生成致密的陶瓷毛坯。机械加工和样品检测,将陶瓷毛坯进行表面处理得到陶瓷样品,并测量陶瓷样品的介电性能指标。在本实施例中,可以采用磨削、抛光等机械加工方式对陶瓷毛坯进行表面处理,得到所需尺寸的陶瓷样品,并用网络分析仪测量其介电性能指标:介电常数ερ谐振频率温度系数Tf和品质因数Q。实施例二一种微波介质陶瓷材料的制备方法,包括:步骤一、在配料前将氧化钕原粉在800摄氏度下预烧3小时,以排除水分进行干燥;按照化学式0.72Ca1+ainrol%TiO3-0.28NdA103配比碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛,在混合粉料中加入二氧化锆磨球作为研磨介质,加入无水乙醇或去离子水作为有机溶剂,放在球罐中进行机械均匀混合,并且在形成粉体颗粒后,除去有机溶剂进行干燥处理,混合粉料、磨球、溶剂(重量)比例为1: 3: 3且其占球罐容积的60% 80%,原料混合时间为3小时。
在本实施例中,碳酸钙和二氧化钛的化学计量比均为0.72mol%,氧化铝和氧化钕的化学计量比均为0.28m0l%,氧化钙的化学计量比为0.1mol %,以增加Ca元素的百分含量。需要说明的是,碳酸钙、氧化钙和氧化铝粉料的纯度均大于99.5%,二氧化钛和氧化钕粉料的纯度不小于99.9%。步骤二、以二氧化锆磨球为研磨介质,将步骤一形成的粉体颗粒干燥后进行第一次高能球磨,以将粉体颗粒均匀细化形成细化粉体。其中,高能球磨时间为2小时,球料比为8: 1,转速为400转/分钟。步骤三、将步骤二形成的细化粉体放在密闭的耐高温坩埚中,经高温煅烧反应合成具有高纯度主晶相的前驱体粉料。其中,煅烧温度为1000摄氏度,保温时间为3小时。

步骤四、以二氧化锆磨球为研磨介质,将煅烧后前驱体粉料进行第二次高能球磨得到进一步均匀细化的陶瓷粉体。其中,高能球磨时间为I小时,球料比为10: 1,转速为1000转/分钟。步骤五、在步骤四得到的陶瓷粉体中添加质量百分比例为10%的聚乙烯醇(PVA)水溶液(浓度为5% ),利用干燥塔或造粒机制成球状且流动性好的粉体颗粒。步骤六、采用压力机(手动或自动填料)以双面压制将步骤五得到的粉体颗粒制成所需形状的陶瓷压坯,其压制压力为120MPa ;或者采用一次注射成型技术得到所需形状的陶瓷压坯。步骤七、将陶瓷压坯放入密封的耐高温氧化铝坩埚中,进行连续烧结,形成陶瓷毛坯。其中,最高烧结温度为1350摄氏度,保温时间为3小时。步骤八、取出烧成的陶瓷毛坯,经磨削、抛光等表面处理后得到所需尺寸的陶瓷样品,以便进行测试。然后,利用网络分析仪测得其介电性能指标分别为:% = 43.7 ; τ f =21.5ppm/°C ;QXf = 41000(测试频率为 1.1 GHz)。实施例三一种微波介质陶瓷材料的制备方法,包括:步骤一、在配料前将氧化钕原粉在800摄氏度下预烧3小时,以排除水分进行干燥;按照化学式0.62Ca1+(l.15Ml% TiO3-0.38NdA103配比碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛,在混合粉料中加入二氧化锆磨球作为研磨介质,加入无水乙醇或去离子水作为有机溶剂,放在球罐中进行机械均匀混合,并且在形成粉体颗粒后,除去有机溶剂进行干燥处理,混合粉料、磨球、溶剂(重量)比例为1: 3: 3且其占球罐容积的60% 80%,原料混合时间为2小时。在本实施例中,碳酸钙和二氧化钛的化学计量比均为0.62mol%,氧化铝和氧化钕的化学计量比均为0.38mol %,氧化钙的化学计量比为0.15mol %,以增加Ca元素的百分含量。需要说明的是,碳酸钙、氧化钙和氧化铝粉料的纯度均大于99.5%,二氧化钛和氧化钕粉料的纯度不小于99.9%。步骤二、以二氧化锆磨球为研磨介质,将步骤一形成的粉体颗粒干燥后进行第一次高能球磨,以将粉体颗粒均匀细化形成细化粉体。其中,高能球磨时间为3小时,球料比为12: 1,转速为800转/分钟。步骤三、将步骤二形成的细化粉体放在密闭的耐高温坩埚中,经高温煅烧反应合成具有高纯度主晶相的前驱体粉料。其中,煅烧温度为900摄氏度,保温时间为5小时。
步骤四、以二氧化锆磨球为研磨介质,将煅烧后前驱体粉料进行第二次高能球磨得到进一步均匀细化的陶瓷粉体。其中,高能球磨时间为2小时,球料比为10: 1,转速为800转/分钟。步骤五、在步骤四得到的陶瓷粉体中添加质量百分比例为10%的聚乙烯醇(PVA)水溶液(浓度为5% ),利用喷雾干燥塔或造粒机制成球状且流动性好的粉体颗粒。步骤六、采用压力机(手动或自动填料)以双面压制将步骤五得到的粉体颗粒制成所需形状的陶瓷压坯,其压制压力为120MPa ;或者采用一次注射成型技术得到所需形状的陶瓷压坯。步骤七、将陶瓷压坯放入密封的耐高温氧化铝坩埚中,进行连续烧结,形成陶瓷毛坯。其中,最高烧结温度为1450摄氏度,保温时间为4小时。步骤八、取出烧成的陶瓷毛坯,经磨削、抛光等表面处理后得到所需尺寸的陶瓷样品,以便进行测试。然后,利用网络分析仪测得其介电性能指标分别为:L = 45.2 ; τ f =
5.6ppm/°C ;QXf = 48400(测试频率为 1.1 GHz)。实施例四一种微波介质陶瓷材料的制备方法,包括:步骤一、在配料前将氧化钕原粉在800摄氏度下预烧3小时,以进行干燥;按照化学式 0.52Ca1+0.25mol% TiO3-0.48NdA103配比碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛,在混合粉料中加入二氧化锆磨球作为研磨介质,加入无水乙醇或去离子水作为有机溶剂,放在球罐中进行机械均匀混合,并且在形成粉体颗粒后,除去有机溶剂进行干燥处理,混合粉料、磨球、溶剂(重量)比例为1: 3: 3且其占球罐容积的60% 80%,原料混合时间为3小时。在本实施例中,碳酸钙和二氧化钛的化学计量比均为0.52mol%,氧化铝和氧化钕的化学计量比均为0.48mol %,碳酸钙的化学计量比为0.25mol %,以增加Ca元素的百分含量。需要说明的是,碳酸钙、氧化钙和氧化铝粉料的纯度均大于99.5%,二氧化钛和氧化钕粉料的纯度不小于99.9%。步骤二、以二氧化锆磨球为研磨介质,将步骤一形成的粉体颗粒干燥后进行第一次高能球磨,以将粉体颗粒均匀细化形成细化粉体。其中,高能球磨时间为3小时,球料比为10: 1,转速为600转/分钟。步骤三、将步骤二形成的细化粉体放在密闭的耐高温坩埚中,经高温煅烧反应合成具有高纯度主晶相的前驱体粉料。其中,煅烧温度为1150摄氏度,保温时间为4小时。步骤四、以二氧化锆磨球为研磨介质,将煅烧后前驱体粉料进行第二次高能球磨得到进一步均匀细化的陶瓷粉体。其中,高能球磨时间为2小时,球料比为8: 1,转速为1000转/分钟。 步骤五、在步骤四得到的陶瓷粉体中添加质量百分比例为10%的聚乙烯醇(PVA)水溶液(浓度为5% ),利用喷雾干燥塔或造粒机制成球状且流动性好的粉体颗粒。步骤六、采用压力机(手动或自动填料)以双面压制将步骤五得到的粉体颗粒制成所需形状的陶瓷压坯,其压制压力为120MPa ;或者采用一次注射成型技术得到所需形状的陶瓷压坯。步骤七、将陶瓷压坯放入密封的耐高温氧化铝坩埚中,进行连续烧结,形成陶瓷毛坯。其中,最高烧结温度为1250摄氏度,保温时间为6小时。步骤八、取出烧成的陶瓷毛坯,经磨削、抛光等表面处理后得到所需尺寸的陶瓷样品,以便进行测试。然后,利用网络分析仪测得其介电性能指标分别为:L = 44.7 ; τ f=-8.4ppm/°C ;QXf = 42600(测试频率为 1.1 GHz)。实施例五采用与实施例三的微波介质陶瓷材料的制备方法相同的工艺参数对适量增加Ca元素百分含量(y)的样品进行试制与检测,从而对本发明上述实施例应用到具体环境中进行详细描述,所得样品的基本性能指标详见表1-2。表I不同摩尔百分比碳酸钙(CaCO3)对应试样的介电性能指标
权利要求
1.一种微波介质陶瓷材料的制备方法,其特征在于,包括: 将碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛的混合粉料进行机械均匀混合,形成粉体颗粒; 将所述粉体颗粒进行第一次高能球磨,以将所述粉体颗粒均匀细化,形成细化粉体; 将所述细化粉体在密闭容器中进行高温煅烧,形成前驱体粉料; 将所述前驱体粉料进行第二次高能球磨,以将所述前驱体粉料进一步均匀细化,形成陶瓷粉体。
2.根据权利要求1所述的微波介质陶瓷材料的制备方法,其特征在于,所述第二次高能球磨步骤之后还包括: 喷雾造粒,在所述陶瓷粉体中添加浓度为5%、质量百分比为5% 10%的聚乙烯醇水溶液,将所述陶瓷粉体制成具球状流动性的粉体颗粒。
3.根据权利要求2所述的微波介质陶瓷材料的制备方法,其特征在于,所述喷雾造粒步骤之后还包括: 压制成型,将所述具球状流动性的粉体颗粒制成所需形状的陶瓷压坯。
4.根据权利要求3所述的微波介质陶瓷材料的制备方法,其特征在于,所述陶瓷压坯是通过压力机以手动或自动填料方式进行双面压制成型,或者通过一次注射成型技术进行一次注射成型。
5.根据权利要求3所述的微波介质陶瓷材料的制备方法,其特征在于,所述压制成型步骤之后还包括:烧结,将所述陶瓷压坯进行连续烧结,形成陶瓷毛坯,其中,最高烧结温度为1200 1500摄氏度,保温时间为3 6小时。
6.根据权利要求5所述的微波介质陶瓷材料的制备方法,其特征在于,所述烧结之后还包括:机械加工和样品检测,将所述陶瓷毛坯进行表面处理得到陶瓷样品,并测量所述陶瓷样品的介电性能指标。
7.根据权利要求1所述的微波介质陶瓷材料的制备方法,其特征在于,所述混合粉料的配方按照化学式(1-x) Ca1+yTi03-x [NdAlO3]使其中x和y分别满足0.28mol % X 0.48mol %和0.05mol y ^ 0.5mol % (y可选碳酸I丐或氧化I丐)。其中,所述碳酸隹丐、氧化I丐和氧化招的纯度均大于99.5%,所述二氧化钛和氧化钕的纯度不小于99.9%。
8.根据权利要求1所述的微波介质陶瓷材料的制备方法,其特征在于,所述将碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛的混合粉料进行机械均匀混合,形成粉体颗粒的步骤包括: 将所述混合粉料放在球罐中,加入二氧化锆磨球作为研磨介质,加入无水乙醇或去离子水作为有机溶剂进行机械均匀混合,并且在形成所述粉体颗粒后,除去有机溶剂进行干燥处理,其中,混合粉料、研磨介质、有机溶剂三者重量比例为1: 3: 3且占球罐容积的60% 80%,混合时间为I 3小时。
9.根据权利要求1所述的微波介质陶瓷材料的制备方法,其特征在于,在所述第一次高能球磨步骤中,球料比为8:1 10: 1,球磨时间为I 3小时,转速为600 800转/分钟。
10.根据权利要求9所述的微波介质陶瓷材料的制备方法,其特征在于,所述第一次高能球磨后的细化粉体粒度分布在I 2 μ m范围内。
11.根据权利要求1所述的微波介质陶瓷材料的制备方法,其特征在于,在所述高温煅烧步骤中,密闭容器为耐高温坩埚,煅烧温度为900 1200摄氏度,保温时间为3 6小时。
12.根据权利要求1所述的微波介质陶瓷材料的制备方法,其特征在于,在所述第二次高能球磨步骤中,球料比为10:1 12: 1,球磨时间I 3小时,转速600 1000转/分钟。
13.根据权利要求12所述的微波介质陶瓷材料的制备方法,其特征在于,所述第二次高能球磨后的陶瓷粉体的粒度小于I μ m。
14.根据权利要求1所述的微波介质陶瓷材料的制备方法,其特征在于,在所述第二次高能球磨步骤中,进一步添加改性添加剂和烧结助剂。
15.根据权利要求14所述的微波介质陶瓷材料的制备方法,其特征在于,所述改性添加剂为Ca0、Sr0、Ti02、Zn0、Al203、Nb205以及Ta2O5中的一种或几种,所述烧结助剂为Bi203、B2O3、CuO、V2O5以及BaO中的一种或几种。
16.根据权利要求15所述的微波介质陶瓷材料的制备方法,其特征在于,所述介质陶瓷材料的配方按照化学式(1-x) Ca1+yTi03-x [NdAlO3]使x和y分别满足0.28mol %< X < 0.48mol %和0.05mol y ^ 0.5mol % (y可选碳酸I丐或氧化 丐)。其中,所述改性添加剂的质量百分比为碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛总量的1% 4%,所述烧结助剂的质量百分比为碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛总量的0.1% 1%。
全文摘要
本发明公开了一种微波介质陶瓷材料的制备方法,包括将碳酸钙、氧化钙、氧化铝、氧化钕和二氧化钛的混合粉料进行机械均匀混合,形成粉体颗粒;将粉体颗粒进行第一次高能球磨,以将粉体颗粒均匀细化,形成细化粉体;将细化粉体在密闭容器中进行高温煅烧,形成前驱体粉料;将前驱体粉料进行第二次高能球磨,以将前驱体粉料进一步均匀细化,形成陶瓷粉体。本发明的微波介质陶瓷材料的制备方法通过适量增加易挥发元素Ca在原料中的摩尔百分比并结合两次高能球磨工艺,可抑制易挥发元素Ca产生的“晶格缺陷效应”,在很大程度上降低烧结温度和缩短烧结时间,并且实现高度致密化,降低生产成本和技术难度。
文档编号C04B35/465GK103172366SQ201110435610
公开日2013年6月26日 申请日期2011年12月22日 优先权日2011年12月22日
发明者赵可沦, 陈明 申请人:深圳市大富科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1