微波介质陶瓷及其制备工艺的制作方法

文档序号:1987997阅读:534来源:国知局
专利名称:微波介质陶瓷及其制备工艺的制作方法
微波介质陶瓷及其制备工艺技术领域
本发明属于微波介质材料及其制造技术领域,特别是涉及移动、卫星通信等系统中的介质谐振器、多层滤波器等微波器件用的微波介质陶瓷。
背景技术
微波介质陶瓷应用于微波、卫星通信,移动通信、电子对抗设备等,为现代通讯中广泛使用的谐振器、滤波器、介质导波回路等微波元器件的关键材料,在微波电路系统中发挥着介质隔离、介质波导以及介质谐振等一系列电路功能。理想的微波介质陶瓷具有较高的相对介电常数,低损耗即高品质因子P ·/值(GHz)和趋于零的谐振频率温度系数考。
近年来,通讯系统的迅猛发展,需要开发新的材料以满足各种介质谐振器、多层滤波器等微波器件的制造,满足移动通讯、卫星通信等系统对微波电路集成化、微型化、高可靠稳定化的技术要求。研究表明,由稀土构成的BaO-R2O3-TiO2 (R为稀土元素)系列微波介质陶瓷具有实用的良好的介电性能和较高的品质因数。通常人们注重具有较高介电常数、 较好的品质因数和较低谐振频率温度系数的BaO-Nd2O3-TiO2系列和BaO-Sm2O3-TiO2系列微波介质陶瓷的研究,且发现当分子式为BaparIV2xTi18O54且x=2/3时钨青铜结构的材料呈现最优介电性能。
J. Euro. Ceram. Soc. , “Science of tungstenbronze-type like Ba6_3xR8+2xTi18054 (R=rare earth) microwave dielectric solid solutions”,H. Ohsato, 21 2703-11 (2001).(欧洲陶瓷协会期刊,“钨青铜结构Ba6 —xR8+2xTi18054微波介质固融体的原理”),研究了适用于移动通讯应用的钨青铜结构微波介质材料Ba6 —xR8+2xTi18054固融体的晶体结构特征,总结了其单晶格和超晶格的晶体数据和结构,以及其化学式·和结构式。它仅仅总结了微波介电特性的机制及微波介质材料设计的建议,提供了 R = La、Nd、Sm的研究结果,没涉及R = Eu的研究。因为传统工艺制备Ba6 —xEu8+2xTi18054时,很难得到理想的样品O
章锦泰、许赛卿、周东祥等“微波介质材料与器件的发展”,(2004年中国电子学会第十三届电子元件学术年会论文集),详细论述了微波介质材料与器件国内外现状和技术发展趋势。论文中指出,在介电常数小于20和大于100以及在40 - 70之间还缺少频率温度系数好的微波介质材料。针对此要求开发具有实用性的微波介质材料具有良好的应用前景,可以满足国内市场需求。
同时,微波介质陶瓷粉体的合成工艺对材料的性能影响较大。适宜的制备方法使陶瓷具有良好的可靠性、重复性及优良的机械物理性能,获得的陶瓷粉体具有化学成分配比准确、物相纯度高、成分分布均匀、粒度细、无团聚等特性。微波介质陶瓷粉体的合成一般为固相法、熔盐法、微波合成法,以及湿化学法溶胶-凝胶法、共沉淀法、水热法(见1材料导/皮;)田中青、刘韩星等“微波介质陶瓷粉体的合成方法研究”,17(12) 48 - 51 2003)。但是这些方法都还存在需要解决的问题,如共沉淀法生产成本较高,难以进行大规模化生产,而常规固相法原料微观分布的不均匀,难于充分反应而得到高纯的目的相;易引入杂质,可能损害陶瓷材料性能;陶瓷的烧结温度也较高。同时,材料制备方法的选取需要满足所制备材料的晶体结构和晶体生长的一定要求,相同的制备方法如溶胶一凝胶法在制备不同的材料时,会产生不同的效果,如晶粒过小而导致材料组分的挥发且所制备的材料致密度差等现象。发明内容
本发明旨在解决现有技术还未能提供有介电常数小于20和大于100以及在40 — 70之间还缺少频率温度系数好的微波介质材料,旨在获得所需要介电常数的同时并具有高品质因数的微波介质陶瓷材料以及制备方法。
针对以上根本技术问题,本发明相应的解决技术方案是微波介质陶瓷,其特征在于该微波介质陶瓷由碳酸盐、氧化物和有机物形式的Na、 Gd、Dy、Er、Lu 和 Ti 组成,其化学式为 Na0.5Re4.5Ti4015,式中 Re = Gd、Dy、Er、Lu ;该微波介质陶瓷由碳酸钠、钛酸丁酯或二氧化钛、氧化钆或氧化镝或氧化铒或氧化镥为主原料制得。
湿化学合成法中溶胶一凝胶法由于可以实现分子水平上的混合,针对研究不同材料的晶体结构,选择合适的粉体制备方法和陶瓷制备工艺具有十分重要的现实意义。本发明人深入研究试图结合溶胶-凝胶法和固相法两种方法的优点,形成适合本发明申请陶瓷材料的优良的组合方法,获得令人满意的陶瓷材料。
本发明提供微波介质陶瓷的制备方法如下该微波介质陶瓷由碳酸盐、氧化物和有机物形式的Na、Gd、Dy、Er、Lu和Ti组成,其化学式为Naa5Re45Ti4O15,式中Re = Gd、Dy、Er、Lu ;包括以下步骤 (1)按照化学计量比选取原料,将EDTA酸加入氨水溶液,并添加钛酸丁酯在60°C 100 °C、pH = 3 5搅拌溶解;制备每摩尔微波介质陶瓷需12 25摩尔的EDTA酸及20 30 升25% 28%的氨水;将硝酸添加到氧化钆或氧化镝或氧化铒或氧化镥中,搅拌直至氧化钆或氧化镝或氧化铒或氧化镥完全溶解,然后添加到上述溶液中;将碳酸钠添加到上述溶液;上述混合溶液在60 0C 120 °C、pH = 6 8搅拌浓缩形成溶胶;(2)将步骤(I)得到的溶液在120°C 180 °C酯化,在加热的同时搅拌,直至使得溶胶变为凝胶树脂;(3)将步骤(2)生成的凝胶在高温炉中经焦化和预烧,得超微粉料,焦化时升温4 6小时,保持温度在300 0C 600 °C,预烧时升温10 24小时,所需温度1000 0C 1200 0C ;(4)步骤(3)得到的粉料中添加聚乙烯醇,经预压、压片、排胶和烧结得到微波介质陶瓷预压前聚乙烯醇的添加量为原料总质量的6 15 %;压片时压强为8 10 MPa,排胶时升温8 20小时,温度为600 °C 800 °C,烧结时升温5 15小时,温度为1200 °C 1500 0C。
本发明人发现还可以通过以下步骤制备(O按照化学计量比称量原料,碳酸钠、二氧化钛、氧化钆或氧化镝或氧化铒或氧化(2)将步骤(I)称得的各原料,放入球磨罐中球磨4-36小时;(3)将步骤(2)球磨后的原料放在烘箱中100-200°C下干燥,之后粉碎后预烧,得粉末材料,预烧时升温10 24小时,所需温度1000 0C 1200 0C ;(4)步骤(3)得到的粉料中添加聚乙烯醇,经预压、压片、排胶和烧结得到微波介质陶瓷预压前聚乙烯醇的添加量为原料总质量的6 15 %;压片时压强为8 10 MPa,排胶时升温8 20小时,温度为600 °C 800 °C,烧结时升温5 15小时,温度为1200 °C 1500 0C。
本发明的制备方法为化学法和固相反应法相结合的一种方法,不同于现有技术中的干湿混合法,最近研究的干湿混合法中湿化学法采用共沉淀法,而本发明申请粉料的制备采用溶胶-凝胶法或球磨法,陶瓷的生成采用固相反应法。采用本发明方法制备的 Naa5Re45Ti4O15 (Re = Gd、Dy、Er、Lu)的微波介电陶瓷,在取适当烧结温度时,呈现单一相结构,XRD分析在1000-1200 0C预烧后并最终温度烧结后可生成单一相的Naa5Re45Ti4O15 ;扫描电镜测试结果表明晶粒大小均匀;因为制备Naa5Re45Ti4O15粉料时采用溶胶_凝胶法,降低了烧结温度,减少了材料制备的能耗。
本发明申请有益效果体现在提供了含稀土微波介质新材料配方,适当扩展了微波介质材料的选择范围;而且针对本发明材料提供了合理的新工艺,提供的本发明微波介质陶瓷具有良好的品质因数或较低的频率温度系数。


图1为本发明实施例1陶瓷的X射线衍射图。
图2为本发明实施例2陶瓷的X射线衍射图。
图3为本发明实施例7陶瓷的X射线衍射图。
图4为本发明实施例8陶瓷的X射线衍射图。
图5为本发明制备工艺(溶胶-凝胶法制粉+固相反应法烧结)流程图。
具体实施方式
本发明实施例中需要的原料情况如下原料碳酸钠(Na2CO3),纯度为99. 8%,生产厂家为天津市科密欧化学试剂开发中心;二氧化钛(TiO2),纯度为98%,由上海美兴化工有限公司(原兴塔美兴化工厂)提供; 钛酸丁酯((C4H9O)4Ti),纯度为98%,由上海美兴化工有限公司(原兴塔美兴化工厂)提供;氧化钆(Gd2O3),纯度为99. 99%,生产厂家为上海跃龙新材料股份有限公司;氧化镝(Dy2O3),纯度为99.9%,生产厂家为华东医药股份有限公司;氧化铒(Er2O3),纯度为99. 99%,生产厂家为华东医药股份有限公司;氧化镥(Lu2O3),纯度为99. 95%,生产厂家为上海跃龙新材料股份有限公司;EDTA 酸(Ethylene dianinetetraaceticacid),纯度为 99. 5 %,生产厂家为合肥工业大学化学试剂厂;氨水(Ammonia),纯度为25_28%,生产厂家为杭州长征化工厂;硝酸(HNO3),纯度为65-68%,生产厂家为浙江中星化工试剂有限公司;聚乙烯醇(Polyvinyl alcohol 124),纯度为98_99%,生产厂家为国药集团化学试剂有限公司实施例1按照配方分子式称取原料分子式为Naa5Gd45Ti4O15,分子量为1150. 7109,配料质量为 12. 78g,配料摩尔数为0.011 ;制备方法为(1)称取所需的原料Na2CO3质量为O.2950 g ;Gd203质量为8. 7184 g、(C4H9O)4Ti质量为 15.4358 g0
制备O. 011 摩尔的 Na。. 5Gd4. Ji4O15,将 O. 22 摩尔 EDTA 酸,取 25% 28% 的氨水 O. 275 升,将EDTA酸加入氨水溶液,并添加设计量的钛酸丁酯,在60 °C 100 °(下,用硝酸调整 PH值为3 5,保温搅拌溶解;硝酸添加到氧化钆中,搅拌直至氧化钆完全溶解,生成硝酸钆添加到上述混合液,将设计量的碳酸钠也添加到上述溶液。
上述混合溶液在60 0C 120 °C、pH = 6 8搅拌浓缩形成溶胶;(2)得到的溶胶在130°(左右酯化,在加热的同时搅拌,直至变为凝胶树脂;(3)凝胶在高温炉中经焦化和预烧,得超微粉料,焦化时需升温6个小时左右,保 持温度在300 oC 600 oC,预烧时需升温16个小时,所需温度为1000 oC 1200 oC,保温2 4个小时。
(4)将已制好的聚乙烯醇胶添加到粉料中,聚乙烯醇的添加量为原料设计总质量的8% ;经预压、压片、排胶和烧结得到微波介质陶瓷压片时压强为8 10 MPa ;排胶时升温保温需8 20小时,温度为600 oC 800 oC ;烧结时升温保温需5 15小时,温度为 1200 oC 1500 oC。
实施例2按照配方分子式称取原料分子式为Naa 5Dy4.5Ti4015,分子量为1174. 3359,配料质量为 13.05 g,配料摩尔数为O. 011 ;制备方法为(1)称取所需的原料Na2CO3质量为O.2950 g ;Dy203质量为9. 3574 g、(C4H9O)4Ti质量为 15.4358 g0
制备0.011 摩尔的 Naa5Dy445Ti4O15,将 0. 132 摩尔 EDTA 酸,取 28% 的氨水 0. 22 升, 将EDTA酸加入氨水溶液,并添加设计量的钛酸丁酯,在60 °C下,用硝酸调整pH值为3 5,保温搅拌溶解;硝酸添加到氧化镝中,搅拌直至氧化镝完全溶解,添加到上述混合液,将设计量的碳酸钠也添加到上述溶液。
上述混合溶液在60 °C、pH = 6 8搅拌浓缩形成溶胶;(2)得到的溶胶在120°(左右酯化,在加热的同时搅拌,直至变为凝胶树脂;(3)凝胶在高温炉中经焦化和预烧,得超微粉料,焦化时需升温4个小时左右,保持温度在300 oC 350 °G,预烧时需升温10个小时,所需温度为1200 °G,保温2 4个小时。
(4)将已制好的聚乙烯醇胶添加到粉料中,聚乙烯醇的添加量为原料设计总质量的6% ;经预压、压片、排胶和烧结得到微波介质陶瓷压片时压强为8 9 MPa ;排胶时升温保温需8小时,温度为800°C ;烧结时升温保温需5小时,温度为1500 0Co
实施例3按照配方分子式称取原料分子式为Naa5Er45Ti4O15,分子量为1195. 7559,配料质量为 13.29 g,配料摩尔数为O. 011 ;制备方法为(1)称取所需的原料Na2CO3质量为O.2950 g ;Er2O3质量为9. 5640 g、(C4H9O)4Ti质量为 15.4358 g0
制备O. 011 摩尔的 Naa5Er45Ti4O15,将 O. 275 摩尔 EDTA 酸,取 25% 的氨水 O. 33 升, 将EDTA酸加入氨水溶液,并添加设计量的钛酸丁酯,在100 0C下,用硝酸调整pH值为3 5,保温搅拌溶解;硝酸添加到氧化铒中,搅拌直至氧化铒完全溶解添加到上述混合液,将设计量的碳酸钠也添加到上述溶液。
上述混合溶液在120 °C、pH = 6 8搅拌浓缩形成溶胶;(2)得到的溶胶在180°(左右酯化,在加热的同时搅拌,直至变为凝胶树脂; (3)凝胶在高温炉中经焦化和预烧,得超微粉料,焦化时需升温5个小时左右,保持温度在400 oC 600 °G,预烧时需升温24个小时,所需温度为1000 °G,保温2个小时。
(4)将已制好的聚乙烯醇胶添加到粉料中,聚乙烯醇的添加量为原料设计总质量的15% ;经预压、压片、排胶和烧结得到微波介质陶瓷压片时压强为10 MPa ;排胶时升温保温需20小时,温度为600 oC ;烧结时升温保温需15小时,温度为1200
实施例4按照配方分子式称取原料分子式为Naa 5Lu4.5Ti4015,分子量为1230. 4374,配料质量为 13.67 g,配料摩尔数为O. 011 ;制备方法为(1)称取所需的原料Na2CO3质量为O.2950 g ;Lu203质量为9. 9545 g、(C4H9O)4Ti质量为 15.4358 g0
制备O. 011摩尔的Naa5Lu4.5Ti4015,将O. 22摩尔EDTA酸,取25% 28%的氨水 O. 275升,将EDTA酸加入氨水溶液,并添加设计量的钛酸丁酯,在80 0C下,用硝酸调整pH 值为3 3. 6,保温搅拌溶解;硝酸添加到氧化镥中,搅拌直至氧化镥完全溶解,生成氧化镥添加到上述混合液,将设计量的碳酸钠也添加到上述溶液。
上述混合溶液在80 °C、pH = 6. 6搅拌浓缩形成溶胶;(2)得到的溶胶在150°(左右酯化,在加热的同时搅拌,直至变为凝胶树脂;(3)凝胶在高温炉中经焦化和预烧,得超微粉料,焦化时需升温5个小时左右,保持温度在400-450 °e,预烧时需升温16个小时,所需温度为1100 oC 1115 °e,保温3个小时。
(4)将已制好的聚乙烯醇胶添加到粉料中,聚乙烯醇的添加量为原料设计总质量的10% ;经预压、压片、排胶和烧结得到微波介质陶瓷压片时压强为8 9MPa ;排胶时升温保温需14小时,温度为700 oC ;烧结时升温保温需10小时,温度为1200 oC 1300 0Co
本发明实施例1 实施例4以及相应的介电性能测试结果如表1:
权利要求
1.微波介质陶瓷,其特征在于该微波介质陶瓷由碳酸盐、氧化物和有机物形式的Na、Gd、Dy、Er、Lu 和 Ti 组成,其化学式为 Na0.5Re4.5Ti4015,式中 Re = Gd、Dy、Er、Lu ; 该微波介质陶瓷由碳酸钠、钛酸丁酯或二氧化钛、氧化钆或氧化镝或氧化铒或氧化镥为主原料制得。
2.如权利要求1所述微波介质陶瓷的制备方法,该微波介质陶瓷由碳酸盐、氧化物和有机物形式的Na、Gd、Dy、Er、Lu和Ti组成,其化学式为Na。.5Re4.5Ti4015,式中Re = Gd、Dy、Er、Lu ; 其特征在于包括以下步骤 (1)按照化学计量比选取原料,将EDTA酸加入氨水溶液,并添加钛酸丁酯在60°C 100°C、pH = 3 5搅拌溶解;制备每摩尔微波介质陶瓷需12 25摩尔的EDTA酸及20 30升25% 28%的氨水; 将硝酸添加到氧化钆或氧化镝或氧化铒或氧化镥中,搅拌直至氧化钆或氧化镝或氧化铒或氧化镥完全溶解,然后添加到上述溶液中; 将碳酸钠添加到上述溶液; 上述混合溶液在60 0C 120 °C、pH = 6 8搅拌浓缩形成溶胶; (2)将步骤(I)得到的溶液在120°C 180 °C酯化,在加热的同时搅拌,直至使得溶胶变为凝胶树脂; (3)将步骤(2)生成的凝胶在高温炉中经焦化和预烧,得超微粉料,焦化时升温4 6小时,保持温度在300 0C 600 °C,预烧时升温10 24小时,所需温度1000 0C 1200 0C ; (4)步骤(3)得到的粉料中添加聚乙烯醇,经预压、压片、排胶和烧结得到微波介质陶瓷预压前聚乙烯醇的添加量为原料总质量的6 15 %;压片时压强为8 10 MPa,排胶时升温8 20小时,温度为600 °C 800 °C,烧结时升温5 15小时,温度为1200 °C 1500 0C。
3.如权利要求1所述微波介质陶瓷的制备方法,该微波介质陶瓷由碳酸盐、氧化物和有机物形式的Na、Gd、Dy、Er、Lu和Ti组成,其化学式为Na0.5Re4.5Ti4015,式中Re = Gd、Dy、Er、Lu ; 其特征在于包括以下步骤 (O按照化学计量比称量原料,碳酸钠、二氧化钛、氧化钆或氧化镝或氧化铒或氧化错; (2)将步骤(I)称得的各原料,放入球磨罐中球磨4-36小时; (3)将步骤(2)球磨后的原料放在烘箱中100-200°C下干燥,之后粉碎后预烧,得粉末材料,预烧时升温10 24小时,所需温度1000 0C 1200 0C ; (4)步骤(3)得到的粉料中添加聚乙烯醇,经预压、压片、排胶和烧结得到微波介质陶瓷预压前聚乙烯醇的添加量为原料总质量的6 15 %;压片时压强为8 12 MPa,排胶时升温8 20小时,温度为600 °C 800 °C,烧结时升温5 15小时,温度为1200 °C .1500 0C。
全文摘要
微波介质陶瓷及制备工艺,属于微波介质材料及其制造技术领域,所述的微波介质陶瓷由碳酸盐、氧化物和有机物形式的Na、Gd、Dy、Er、Lu和Ti组成,其化学式为Na0.5Re4.5Ti4O15,式中Re=Gd、Dy、Er、Lu。本发明提供了含稀土微波介质新材料,扩展了微波介质应用材料的选择范围;且针对本发明材料提供了相匹配的新工艺,即以溶胶-凝胶法制备粉料和固相反应法制备陶瓷的结合,得到成瓷良好的微波介质陶瓷。
文档编号C04B35/50GK103011814SQ201210388528
公开日2013年4月3日 申请日期2012年10月13日 优先权日2012年10月13日
发明者李正法, 葛洪良 申请人:中国计量学院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1