耐腐蚀抗断裂的钢轨或列车钢轮的制作方法

文档序号:3404079阅读:230来源:国知局
专利名称:耐腐蚀抗断裂的钢轨或列车钢轮的制作方法
技术领域
本发明是一种耐腐蚀抗断裂的钢轨或列车钢轮,它属于一种长寿命的新型钢轨或车轮, 具体的说是在钢轨或车轮的非工作面包覆、贴合或安置阳极,并在钢轨或车轮的表面涂覆具 有离子导电和緩蚀功能的碱性緩蚀层(代替涂油),从而实现阴极保护与緩蚀剂相结合的新型除腐蚀引起的各^故障,大幅度延长轨轮及其配件的J用寿命。本发明打磁「了l化学防腐^ 与轨轮生产及运用这两个不同技术领域间存在的缺乏沟通之壁垒,从而实现了 一项创举。
背景技术
随着铁路运输负荷的加重,钢轨、车轮及轨道配件的损伤愈益严重,使用寿命大幅度下 降,给铁路运输增加了巨额的经济负担,给行驶安全带来严重威胁,尤其是重载货运对钢轨 和车轮的磨损严重,特别是在曲线段钢轨的侧磨更为严重,已经开发了多种高强度的耐磨钢 轨,其耐磨性能比普通钢皿高了 4 ~ 5倍,此外对钢轨涂润滑油,也有效地降低了钢轨的側 磨现象。但这两项提高轨轮耐磨性的技术措施,在实施过程中,却带来了危害性更大的裂紋 和断裂等严重事故,对钢轨的使用寿命和交通安全的影响,甚至比磨损所造成的损害更为严 重。采用高强度高硬度钢材制作的耐磨车轮也存在同样现象。高速客运是当4^界铁路运输 的发展趋势,对铁路线的平稳和安全性要求更高,中国铁路多lblL客、货共线,要同时滿足 高速^和重栽货运的要求,难度极大,,的严重损伤已成为制约铁路事业;SOl的瓶颈。目前铁路科技部门普遍认为钢轨的耐磨和抗裂(抗剥离)是一对相互制约的矛盾,为了 减轻和防止发生断轨等严重事故,主张使钢轨保持适当的磨损状态,限制钢轨硬度和耐磨性 的提高,限制涂润滑油,采用增加轮轨间磨耗的办法,磨去不断萌生的微裂紋,依靠这种办 法来减少剝离掉块和防止断轨(参阅中国铁道出版社2005年出版的《钢轨的材质性能及相关 工艺》一书pl03, p105)。铁路科技界认为"产生这些故障的原因是轮机接触应力超过了材料 的屈服极限值,引起材料塑性变形,在反复栽荷作用下,塑性变形的累积(疲劳M吏钢轨表面产 生微裂紋,在法向和切向应力作用下裂紋逐渐扩大,引起剥离掉块或钢轨断裂"(参阅[铁路 钢轨损伤机理研究]《中国机械工程》2002.9 —文);"随着材料含碳量、硬度和耐磨性的提 高,剥离也越严重"(参阅[车轮剝离性能试验研究]《中国;W工程》2005.4—文)。这里有 一个疑问耐磨钢轨的强度和屈服极限(与普通钢糾目比)有了大幅度提高,按上述分析,在同 样的接触应力下,普通钢轨应该更容易产生塑性变形和萌生微裂紋,但为什么裂紋和断轨事 故,耐磨钢轨却比普通钢轨严重的多?对此的解释是这样的"普通钢轨由于耐磨性差,产生 的微裂紋很快被磨掉了,而耐磨钢轨的硬度高,所产生的微裂紋不会被磨掉,微裂紋逐渐扩 展而引起钢轨剥离掉块或断裂"。上面的技术分析将轨轮裂紋的萌生和扩展,钢轨的断裂,看成是单纯应力和疲劳所引起
的破坏,依靠磨耗来减緩裂纹的iLlL因此也就无法解决耐磨性和抗裂性之间的矛盾,不能 在大幅度提高轨轮耐磨性的同时也提高其抗断裂的性能i顾此失彼,无法做到两全,成为一 大技术难关'要解决上述技术难关,必须首先认清亊物的本质。产生裂紋和断轨最主要的原因,是高 强度钢极易发生应力腐蚀,这是世界腐蚀科技界早已证明的亊实,M铁路系统却还是一项 尚未认知的新问题。环境腐蚀因素和钢轨所承受的应力相叠加(或交替反应),引起耐磨钢轨裂 紋的萌生和迅速扩展,并造成钢轨断裂,在自然环境(尤其是潮湿地区)中长期使用的高强度 钢在张应力或交变应力作用下所发生的断裂,几乎全属于应力腐蚀或腐蚀疲劳断裂现象,因 为氧和水这个基本腐蚀介质随时随处都存在,不仅在南方的潮湿环境,即佳jl:气候较干燥的 北方,由于昼夜温差大,也会在钢轨表面形成露水、霜冻或雾气,从而提供应力腐蚀或腐蚀 疲劳的环境。在腐蚀科技领域,大量使用实践和试验验证都已证明高強度钢对应力腐蚀或腐 蚀疲劳存在高度的敏感性。在同样的环境中应力腐蚀的裂玟扩/IUl率是普通腐蚀速率的106倍(见冶金工业出版社出 版杨德钧等编的《金属腐蚀学》 一书)。不存在腐蚀因素时,只有当拉伸应力超过材料的屈服 极限后才可能使高强度钢发生断裂。存在腐蚀因素时,高强度钢可在极低的拉伸应力作用下 (例如在屈服极限的5% ~ 10%或更低的张应力作用下)发生应力腐蚀断裂(见冶金工业出版社 出版孫矛火霞等编的《材料腐蚀与防护》 一书),在纯水和湿大气中,高强度钢都能发生应力腐 蚀断裂。腐蚀疲劳与单纯疲劳相比,发生破断的极限应力,前者仅为后者的1/5-1/2 (见 清华大学出版社出版白新德等编的《材料腐蚀与控制》 一书),而裂紋扩展速度前者是后者的 10倍(见冶金工业出版社出版杨德钧等编的《金属腐蚀学》 一书)。在大气或潮湿自然环境中,钢铁的腐蚀都属于电化学腐蚀,金属的(腐蚀)损伤发生于 阳极,阳极的溶解速度,代表金属的腐蚀损伤速度,它与阳极的电流密度成正比,在电化学 腐蚀中,流经阴极和阳极的电流是相等的,但阴、阳极间的电流密;1A不等的,它与两者间 的面积大小成反比。当腐蚀处于大阴极小阳极状态时,阴极的电流密度极小,阴极极化的压 降接近于零,阴极(去极化)过程畅通无阻,从而加剧阳极过程,能量消耗也集中于阳极, 阳极电流密度极大,阳极的溶解(腐蚀损伤)速度极大。应力腐蚀(或腐蚀疲劳)是最典型的 大阴极小阳极腐蚀状态,是破坏性最严重的电化学腐蚀,腐蚀点促使应力集中和萌生裂乡丈源, 而应力集中又大大加剧腐蚀向纵深发展的速率,互为因果形成连锁反应,使裂紋迅速扩展。 应力集中的部位由于晶体的位错,滑移阶梯对金属表面钝态膜的破坏,致使应力集中点的金 属处于活化状态,其电位比其他部位的电位更负,成为这一腐蚀体系的阳极,裂纹尖端的宽 度极狭窄(估计不大于10nm),整个棵露的金属表面和裂紋的两侧都是阴极,唯独裂紋的尖端 才是阳极,阴阳极面积比常在106倍以上,阳极面积极其细微狹小,阳极电流密度极大,腐蚀 损伤高度集中,在张应力作用下,裂玟扩展过程中,裂紋尖端的钝态膜不断被撕裂,始终处 于高度活化状态,该处的阳极电流密度高达0.5A/cm2,而裂紋两侧的电流密度仅为1(T5A/ cm、见冶金工业出版社出版孫秋霞等编的《材料腐蚀与防护》 一书),两者相差5乂104倍,裂 紋尖端巨大的电流密度,使裂紋沿着张应力的垂直方向迅速向纵深4L艮,极大地加快破裂的 速度。当钢铁表面存在点腐蚀或出现微裂紋时,腐蚀产物或微裂紋的的孔隙会吸收空气中的 水分,按毛细管原理,孔径愈细,吸水性愈强,在大气的相对湿度尚未达到饱和时,这些细 小缝隙中就已含有足以引起应力腐蚀的水分。当发生应力腐蚀或腐蚀疲劳时,微裂紋的底部由于缺氧(空气中的氧不易进入裂紋底部),引起铁离子的水解而酸化,产生很多氢离子,pH值降至3 3.5,氢离子在裂紋内放电,形成 自催化腐蚀和引发氩脆,大大地加剧裂纹的;SOl,可从下面的电化学腐蚀反应方程式来说明 它的破坏原理阳极过程铁溶解(氧化)生成铁离子(发生于裂紋尖端) 2Fe-4e=2Fe2+裂紋内由于缺氧,阳极溶解下来的铁离子与水反应"水解",生成氢离子4吏水酸化 Fe2++2H20=Fe(0H)2+2lT 阴极过程分为两部份;钢表面的棵露部位主要是氧被还原的去极化过程 02 +2H20+4e=40H—裂紋内两侧主要是氢离子被还原为氢原子的去极化过程2FT+2e =2[H] 初生的氢原子[H]活性很强,容易渗A^材引起危害性极 严重的氩脆破裂为了阻止应力腐蚀(或腐蚀疲劳)时微裂紋的迅速扩展,必须消除微裂紋底部的酸化现象。以上所列的与应力腐蚀和腐蚀疲劳相关的数据,均引自腐蚀科技教材或权威著作,都是 经过经过长期实践和试验考察,得到国际腐蚀科技^^认的数据。前苏联和日本都曾进行合金化钢轨的研究,对含Cr、 Cu、 Mo、 Mn、 Nb等元素的二十多 种钢轨材料进行了大量研究,证明在这类合金钢处于中低^r水平(合金元素含量4~ 5%)时, 对防腐蚀不起作用(见陈泽灵[运营隧道內钢轨防腐蚀技术的研究]《铁道建筑》199811期), 当采用高含量合金水平(即不锈钢)时,虽然防腐蚀效果不错,但价格昂贵,是普通钢轨的 3-3.5倍,因此难以推广使用,即使采用了不锈钢,可防止普通腐蚀,但仍然解决不了应力腐蚀 问题(腐蚀科技界都知道,高强度不锈钢存在应力腐蚀敏感性)。铁道部门曾经尝试采用各种涂层来防止钢轨的腐蚀,但现有各种涂层都不能防止钢, 头由应力腐蚀和腐蚀疲劳所引发的裂紋萌生和m,不能阻止钢轨的断裂。钢轨的焊缝部位 是钢轨的最薄弱环节,现有的各种涂层经焊接后^Mt烧损,无法在焊接现场恢复原有的防护 性能,钢轨经焊接后常常存在残余应力,焊接部位的金属组织要发生変化,焊缝处应力腐蚀 开裂的临界应力比母材降低了近一半,是应力腐蚀的高度敏感区,最易发生应力腐蚀或腐蚀 疲劳引起的裂紋,而现有的各种涂层技术都不能有效保护焊缝处这一更重要的部位。阴极保护法是消除应力腐蚀和腐蚀疲劳的有效方法,它在保护埋地管道或其它潮湿环境 中使用的大型钢铁件方面,已有长期的实践经验,沈阳铁路局和重庆铁路局都曾经嘗试在钢 轨上采用阴极保护方法,来防止隧道内钢轨的腐蚀.但是钢轨不像埋地管道,它在地面上, 不易形成常规阴极保护所必须的电流循环回路。申请号为92108213.4的中国发明专利"隧 道内钢轨锈蚀的阴极保护法",参照常规埋地管道的阴极保护方法,提出每隔100 400m设 置一个埋地辅助阳极,连接电压< 60V的直流电源,利用随道内的70 ~ 100%的高湿度和火车 排出的S02、 C02和氮氧化物等废气在钢轨和枕木上所形成的电解质7jc膜与大地连通,形成电 化学循环回路,达到阴极保护的目的。虽然从原理上讲是可行的,但是隧道内的湿度是个变
数,不能保证在钢轨和枕木表面随时都形成完整连续的水膜,大地的电阻也是变数,由外接 直流电源经过几百米的距离,通过大地和M到达钢轨表面,所形成的变化无常的大电压降, 降低了阴极极化效果,此外这种常规的阴极保护方法,容易受到地下杂散电流的干扰(本身也 会干扰铁路信号,影响铁路正常运输),因此这一体系^^对钢轨形成有效的阴极保护.另外该专利利用S02、 C02和氮氧化物等酸性腐蚀介质的导电性来实现阴极保护是不妥的,因为在酸性介质中电化学反应过程要析氩,存在引发氬脆断裂的的危险性。申请号为03137936. 2和申请号为200410033844. 2的中国发明专利提出采用负电性金属 膜或阳极层包覆需要保护的钢铁件(或金属件),形成无孔隙的屏蔽和阴极保护相结合的防腐 蚀体系,因此03137936. 2和200410033844.2两项专利,用于保护钢轨可以确保轨腰和轨底 不发生腐蚀,但由于钢轨轨头和列车钢轮的踏面及*相互摩擦面,不能采用任何包覆层, 因此03137936. 2和200410033844. 2专利所提供的方法不能完全有效地消除重载负荷下的钢 轨轨头及钢轮由应力腐蚀和腐蚀疲劳所引起的严重损伤和断裂故障,现有的其它防腐蚀技术 也都无法消除由应力腐蚀和腐蚀疲劳对^t成的严重损害.发明内容本发明的目的就是要有效地防止钢轨、列车钢轮及轨道配件的腐蚀,尤其是消除由于应 力腐蚀或腐蚀疲劳引起耐磨^lfe"(或普通,)产生的裂紋或断裂。为达到目的必须有效阻止微 裂紋的萌生和扩展,虽然对轮轨设计、轨道安装和维护管理等方面的改进,可以改善钢轨的 受应力的状态,但在高速和重载运行中的铁路轮轨,要想完全消除应力的影响是不可能的, 而消除腐蚀因素的影响,消除应力腐蚀和腐蚀疲劳,抑制微裂紋的萌生和扩展,是防止, 产生裂玟或断裂的最好办法。面包覆、贴合或安置f;极,并在钢轨轨头(或列车钢轮)"踏面及轨轮相ii擦i,涂覆一层碱性緩蚀层代替涂润滑油,或者在钢轨轨头(或列车钢轮)的踏面、,相互摩擦面、阳极层 外表面(或内外表面)和轨轮的其余棵露面,在上述的所有表面或部份表面涂覆一层碱性緩蚀 层,该碱性緩蚀层对电解质离子是导通的或具有离子交換功能。通过牺牲性阳极的直接联结, 或通过导电连接件联结,或通过导电连接件并外接可控直流电源联结,使钢轨或列车钢轮与 阳极对电子导通,通过碱性緩蚀层(或通过湿气膜)使钢轨(或列车钢轮)与阳极对离子导通,通 过可控直流电源的自动调节或通过对牺牲阳极电极电位的选择,使阴极保护电位控制在不发 生应力腐蚀、腐蚀疲劳或氯脆的电极电位范围内,在25X:的淡水或中性介质中, 一般情况下, 该电极电位控制在-830mV (CSE)至-1170mV (CSE)的范围内〔负值超过-1170mV (CSE) 时,容易析出氢气〕,形成阴极保护和緩蚀相结合的电化学保护体系,该体系的阴极极化值不 小于100mV,从而確保钢轨和列车车轮不出现应力腐蚀、疲劳腐蚀或其它腐蚀,阻止微裂紋 的萌生和扩展,解决轨轮耐磨性和抗裂性相互抵制的矛盾,大幅度地延长钢轨(或列车钢轮) 的使用寿命,同时轨道配件也得到极有效的阴极保护。本发明所采用的碱性緩蚀层,其pH值不小于8,最好是在9~13的范围内,该碱性緩蚀 层具有较好的渗透性,从而使微裂紋底部或缝隙深处的pH值也达到8以上。像涂油一样,根
据实际情况,间隔一段时间重复涂一次。该碱性緩蚀层是亲水性的,但为了避免被雨水冲刷 掉,最好采用含不溶或难溶水的基团和亲水性离子相互结合组成的碱性緩蚀层,从而提高碱 性緩性层的粘附力和减少涂刷次数,保持钢轨和车轮表面始终有一层微薄的碱性緩蚀层,保持这些表面的电解质始终维持在碱性状态(pH值不小于8),这不仅阻止了钢的腐蚀(众所周知, 钢铁在碱性介质中不易腐蚀),同时有效地防止微裂玟底部由于酸化引起自催化腐蚀和iU!fe造 成的严重危害性,极有效地阻止了微裂紋的扩展。又因为该碱性緩蚀层含亲水性离子,具有 对电解质离子导通的功能,或具有离子交換功能,所以能增强阳极对钢轨和车轮的阴极保护 效果。该碱性緩蚀层可采用无机物,包括各种无机聚合物、单体、胶体及其混合物,例如各 种磷酸盐、硅酸盐、铬酸盐、钼酸盐、铝酸盐、钛酸盐、硼酸盐、亚硝酸盐、氟硅酸盐等等。 也可采用有机物,包括各种胶、树脂、聚合物、接枝改性聚合物、离子交换剂、有机碱、胺、 聚酰胺、乳化液、水油乳剂等等,或采用有机无机混合物,该碱性緩蚀层含有阴极緩蚀剂, 或含有阳极緩蚀剂,或含同时具有阴极緩蚀、阳极緩蚀双功能的緩蚀剂,或再添加上述的或 其它的一种或多种緩蚀剂。该碱性緩蚀层具有较好的渗透性和湿润性,或还具有可调节的润 滑性(可添加润滑剂),为了增強阴极保护的效果和緩烛功能,还可添加表面活性剂、吸湿剂、 粉末状或鳞片状牺牲性阳极,其中的一种或数种,或不添加。本发明所采用的阳极,与常规阴极保护法不同,由原来的埋地状态改变为贴合于钢轨(或 车轮)表面(将阳极包覆、贴合或安置于钢轨的轨腰,或轨腰加轨底,或轨头外侧、或轨腰加轨 头外側,或轨腰加轨底加轨头外側,或列车钢轮的非工作摩擦面),通过冷压或热压或粘贴或 机械连接或磁力吸附或热镀或电镀或冶金结合或其它方法,使阳极与钢轨或列车钢轮的上述 的非工作摩擦面的全部或局部表面牢固结合,本发明既可实施牺牲性阳极阴极保护法,也可 实施强制电流阴极保护法,当采用强制电流阴极保护法时,该辅助阳极(非牺牲性阳极)与钢轨 (或钢轮)的贴合面之间应加对电子绝缘的隔离层,当采用牺牲性阳极阴极保护法时,牺牲性阳 极与钢轨(或钢轮)的贴合面之间可有对电子绝缘的隔离层,或没有这样的隔离层。阳极的形状 应与钢轨或与列车钢轮的非工作摩擦面的全部表面或局部表面相吻合,例如与钢轨两侧轨腰 的形状相吻合,或与轨头的外侧面相吻合,或同时与轨头外侧及轨腰的连续表面及另一侧轨 腰相吻合,或同时与轨腰及轨底相吻合,或同时与轨头外側面、轨腰及轨底相吻合,或与列 车钢轮的非工作摩擦面相吻合。该阳极可以制成一层厚度为0.03~5mm的金属箔或金属板, 该金属箔或金属板经退火处理后在室温下的延伸率不小于20%。当采用牺牲性阳极阴极保护法 时,通过调节和改变阳极材料的成份,从而改变阳极的电极电位,以满足阴极保护的需要, 制作牺牲性阳极的材料在纯水或碱性介质中的电极电位比钢轨或列车钢轮的电极电位至少负 105mV。制作该牺牲性阳极的材料选自添加有镓、锌、硅、镁、汞、铟、锡、镉、铝、锰、 钬、碳、镍、铋、铅、^、铍、钠、钟、锂、锑、锶、钪、锆、钒、铬、钼、磷、硼、锗、其他元素:含上述元素的一种或数种的:、铝合金、5锌、锌合金、镁或镁^金,其中至少一种,或选用含铜量不大于0.1%且^4失量不大于0.7%的铝或铝*。为了使钢轨(或列车钢轮)的踏面和M相互摩擦面获得更有效的阴极保护,可在这些表面 涂覆一层微薄的牺牲性阳极,可间隔一段时间补涂一次。可采取刷涂、快速镀、软金属擦镀
或其它快速方法涂覆,当采用碱性镀液镀覆后,不必洗去表面的残液,也可在所涂褒的碱性 緩蚀层中添加粉末状或鳞片状牺牲性阳极微粒,依靠轮轨滚动挤压,使该薄层牺牲性阳极粘 附于旨表面。为了使钢轨的焊缝部位得到最有效的保护,本发明对于需要在铺轨现场进行烀接的钢轨, 对焊缝部位和焊接热影响区亊先不包贴或安置阳极,待焊接完毕后再包覆、貼合或安置阳极, 或经电子绝缘隔离层或碱性緩蚀层或电子绝缘隔离层加碱性緩蚀层隔离后再安置阳极,并使该部位阳极与其余部位的阳极连通,使其间的电阻不大于1Q,或采用电极电位不高于其它部 位阳极的电极电位的材料制作的或镀覆具有这种电极电位的镀层的形状与被包贴的钢轨表面 相吻合的金属夹套包覆、压紧和贴合这些部位,或经电子绝缘隔离层或威性緩蚀层或电子绝 缘隔离层加碱性緩蚀层隔离后再包贴这些部位,并使金属夹套与其余部位的阳极连通,使其 间的电阻不大于1Q,从而使钢轨的焊缝部位和焊接热影响区获得有效的阴极保护,钢轨的焊 缝部位,经常需要探伤检测,本发明能很简便地取掉焊缝处的可卸保护层,待探伤检测完毕 后再重新装上金属夹套或补包阳极。本发明的阴极保护体系优于常规阴极保护,还在于它容易将阴极保护电位控制在更理想 的状态,从而达到更有效防止应力腐蚀的目的,在常规阴极保护体系中,由于阳极和阴^J巨 离很大,近处和远处的电极电位差别很大,因此阴极保护的效果差。例如前面提到的申请号 为92108213.4的中国发明专利"随道内钢轨锈蚀的阴极保护法",阳极的最i^巨离达400m , 为克服远处大地电阻(及枕木电P且)引起的巨大电压降(介质IR降),使远端的钢轨也得到保护, 不得不施加很大的外加电压,因此该专利采用了最高电压达60V的直流电源,绝大部份的电 能消耗于克服大地电压降(作无用功),并造成离阳极近处钢轨的阴极极化电位过负,将引起 钢*面析氬,增加了ijfe断裂的危险性,此外由于介质IR降变化无常,给监测调控带来困 难。本发明由于阴阳极靠得很近,而且中间有导电良好的碱性緩蚀层,介质IR降极小,所施 加的电能主要为阴极极化作有用功,各部位的电极电位分布较均匀,变化因素小,容易监测 调控,只需施加较小的极化电压或较少的阳极损耗,就能达到阴极保护的目的。通过可控直 流电源的自动调节或通过对不同牺牲阳极电极电位的选择,使阴极保护电位控制在不发生应 力腐蚀、腐蚀疲劳或氢脆的电极电位范围内,再加上碱性緩蚀剂的作用,实现更有效的电化 学威护。为了获得更理想的阴极保护,可将包覆、贴合或安置于钢轨非摩擦表面的阳极,采用编 码的可控电子元件分割连接为若干段,通过测定阴极保护电流或电位或电压降或电阻的变化, 自动调节控制钢轨的阴极极化值。这样一种结构还能起到监测发现断轨的作用, 一旦出现断 轨,该部位的阴极保护电流中断,编码的可控电子元件立即显示断轨的位置,极有效地堵绝 事故的发生。本发明和现有技术相比,其优越性主J^有以下几点1钢轨和列车钢轮防腐蚀问题,尤其是如何有效防止应力腐蚀和腐蚀疲劳对轨轮所造成 的严重破坏,是至今尚未解决的世界难题,本发明找到了切实可行的解决办法,具有首创性 和开拓性,填补了世界空白。2. 随着材料的强度、硬度和耐磨性的提高,钢轨(或车轮)的断裂也同步增长,现有技术 无法消除耐磨性与抗裂性相互抵制的矛盾,本发明解决了这一重大技术难关。3. 由于本发明的阳极紧靠阴极,而且有碱性緩蚀层的离子导电功能,因此介质的IR降 极小,所以阴极保护效果远远胜过常规阴极保护,由于介质处于碱性状态就有效地避免了缝 隙、微裂^ (或点蚀坑底)酸化所引发的自催化腐蚀和iUlfe危害。4. 本发明极有效地解决了钢轨焊缝部位的保护问题,且不妨碍焊缝的探伤检测,这是现 有的其它防护涂层所无法做到的。5. 本发明容易实施,生产效率高,可在钢厂或铺轨厂采用自动线流水作业高效率地完成 阳极的包覆或压合。对于已经铺设钢轨的现役轨道,也可采用贴合、机械夹固或其它方法, 在钢轨轨腰或轨头外侧固定阳极,同样起到有效的阴极保护功能,涂覆碱性缓蚀层可利用现 有的涂油i殳施。6. 本发明可利用现有的成熟技术,稍加改造即可进行批量生产,例如可利用现有成熟的 阳极成份和型材制造技术,铝箔或铝板生产技术,进行改造和重新组合制成所需的阳极,利 用现有的各种对电解质离子导通的有緩蚀功能的有机物或无机物,重新组合和改造,制成所 需的碱性緩蚀层,初期阶段还可利用现有厂家的现成设备,委托加工,减少投资风险。7. 成本低廉效益高,钢轨采用本发明保护,其成本估计不高于钢轨价格的5%,而钢轨 的使用寿命至少提高两倍以上。8. 本发明能自动调节控制钢轨的阴极极化值,使电化学保护处于最佳状态,还能起监测 作用, 一旦出现断轨,能立即发现断轨的位置,防止事故的发生。


图1包覆牺牲性阳极的耐腐蚀抗断裂的钢轨断面示意图 图2包覆牺牲性阳极扩大到轨头外侧的耐腐蚀抗断裂的钢轨断面示意图 图3采用锌阳极的耐腐蚀抗断裂的钢轨断面示意图 图4采用强制电流阴极保护法的耐腐蚀抗断裂的钢轨断面示意图 图5采用强制电流阴极保护法的耐腐蚀抗断裂的钢轨电化学循环电路示意图 附图标记1. 钢轨截面2. 铝合金牺牲性阳极包覆层3. 粘佶剂4. 锌合金牺牲性阳极5. 对电子绝缘的隔离层6. 强制电流阴极保护所用的辅助阳极7. 碱性緩蚀层8. 可控直流电源9. 导线
具体实施例方式
下面结合附图介绍本发明的具体实施方式
,它们仅仅是实施本发明一些举例,并不包括 本发明的全部内容。实施例一采用含3。/oZn、 0.025%In、 0.1%Si、 0.3°/。Zr,余量为Al的铝合金制成厚度为0.2 —0.3mm 退火状态的薄板,并经过消光处理和内表面事先涂覆一层巨分子量的线性环氣树脂,将经过 这样处理的铝合金薄板作为牺牲性阳极板备用。将上述阳 1的内表面贴合于钢轨的轨腰和 轨底(见图1),利用高频或中频或其它的表面(瞬间)加热法在加压状态下使阳板板牢固贴合于 钢轨表面。铁路运输过程中,利用现有的涂油装置改涂碱性緩蚀层,每1~4天涂一次,碱性 緩蚀层的配方举例如下配方一 配方二胺值为400的低分子量聚耽胺28%水玻璃0^lfc为32)30 ~ 50%E51环氧树脂1%氢氧化铝10~20%工业丙三醇14%二硫化钼5 ~ 15%工业丁醇5%三聚磷酸二氢铝5 - 15%工业乙醇10%淀粉1 ~ 2%水42%水余量实施例二贴合阳极板的范围,除了按实施例一所述的轨腰和轨底的表面外,还包括钢轨轨头的外侧面,其它与实施例一完全相同,见图2。实施例三采用含O.l-0.5% Al、 0.025 ~0.15%Cd,其余为Zn的锌合金作为牺牲性阳极,通过;^ 连接,将阳极固定于钢轨两侧轨腰,其它与实施例一相同,见图3。实施例四采用高硅铸铁、铁氧体、磁性氧化铁、铝、磁铁、废旧钢铁或其它辅助阳极材料作为强 制电流阴极保护的辅助阳极,通过电子绝缘隔离层的隔离,依靠机械夹固或磁性吸力或其它 方法将阳极固定于轨腰两側,通过导电连接件、导线将该辅助阳极与钢轨及可控直流电源连 接,按实施例一的方法涂碱性緩蚀层,形成可调节的阴极保护体系,见图4、图5。实施例五参照上述实施例一至三,采用同样方法,在列车钢轮的除了踏面及工作摩擦面外其余的 全部或局部表面包覆或贴合阳极,使列车钢轮与阳极对电子导通,并通过碱性緩蚀层使列车 钢轮与阳极对离子导通,从而使列车钢轮也得到极有效的电化学保护。
权利要求
1.一种耐腐蚀抗断裂的钢轨或列车钢轮,其特征在于在钢轨或列车钢轮的除了踏面及轨轮摩擦面外其余的全部或局部的非摩擦表面包覆、贴合或安置阳极,该阳极是牺牲性阳极或非牺牲性阳极,非牺牲性阳极与钢轨的贴合面之间有对电子绝缘的隔离层,牺牲性阳极与钢轨的贴合面之间有对电子绝缘的隔离层,或没有这样的隔离层,通过牺牲性阳极的直接联结,或通过导电连接件联结,或通过导电连接件并外接可控直流电源联结,使钢轨或列车钢轮与阳极对电子导通,形成阴极保护体系,经可控直流电源的自动调节或通过对牺牲阳极电极电位的选择,使阴极保护电位控制在不发生应力腐蚀、腐蚀疲劳或氢脆的电极电位范围内,该体系的阴极极化值不小于100mV。
2. 按权利要求1所述的耐腐蚀抗断裂的钢轨或列车钢轮,其特征在于在钢轨或列车钢轮 的踏面、轨轮相互摩擦面、阳极的外表面或内外表面和轨轮的其余棵露面,在上述的所有表 面或部份表面涂覆一层碱性緩蚀层,所述的碱性緩蚀层对电解质离子是导通的或具有离子交 換功能,其pH值不小于在8,通过碱性緩蚀层使钢轨或列车钢轮与阳极对电解质离子导通, 从而形成阴极保护和緩蚀相结合的电化学保护体系。
3. 按权利要求2所述的耐腐蚀抗断裂的钢轨或列车钢轮,其特征在于所述的碱性緩蚀层 是无机物或有机物或有机无机混合物,该碱性緩蚀层是亲水性的,或由含不溶或难溶于水的 基团和亲水性离子相互结合组成,该碱性緩蚀层具有渗透性和湿润性,或还具有可调节的润 滑性,或还添加有表面活性剂、润滑剂、吸湿剂、粉末状或鳞片状牺牲性阳极,其中的一种或数种,或不添加o
4. 按权利要求2所述的耐腐蚀抗断裂的钢轨或列车钢轮,其特征在于所述的碱性緩蚀层 含有阴极緩蚀剂或阳极緩蚀剂,或含具有阴极緩蚀、阳极緩蚀双功能的緩蚀剂,其中的一种 或多种。
5. 按权利要求l所述的耐腐蚀抗断裂的钢轨或列车钢轮,其特征在于所述的钢轨,其中 需要在铺轨现场进行焊接的,其焊缝处和焊接热影响区这些部位事先不包贴安置阳极,待焊 接完毕后再包覆、贴合或安置阳极,或经电子绝缘隔离层或碱性緩蚀层或电子绝缘隔离层加 碱性緩蚀层隔离后再安置阳极,并使该部位阳极与其余部位的阳极连通,使其间的电阻不大 于1Q,或采用电极电位不高于其它部位阳极的电极电位的材料制作的或4^具有这种电极电 位的镀层的形状与被包贴的钢轨表面相吻合的金属夹套包覆、压紧或贴合这些部位,或通过 电子绝缘隔离层或碱性緩蚀层或电子绝缘隔离层加碱性緩蚀层隔离后再包贴这些部位,并使 金属夹套与其余部位的阳极连通,使其间的电阻不大于1Q,从而使钢轨的焊缝部位和焊接热 影响区获得有效的阴极保护。
6. 按权利要求l所述的耐腐蚀抗断裂的钢轨或列车钢轮,其特征在于所述的钢轨或列车 钢轮的踏面、,相互摩擦面覆蓋有一层微薄的牺牲性阳极。
7. 按权利要求1所述的耐腐蚀抗断裂的钢轨或列车钢轮,其特征在于所述的包覆、贴合 或安置于钢轨非摩擦表面的阳极,被编码的可控电子元件分割连接为若千段,通过测定阴极 保护电流或电位或电压降或电阻的变化,自动调节控制钢轨的阴极极化值,和监测发现断轨 的位置。
8. —种专门用于耐腐蚀抗断裂的钢轨或列车钢轮的阳极,其特征在于该阳极的形状与钢 轨或与列车钢轮的非工作摩擦面的全部表面或局部表面相吻合,或该阳极是一层厚度为0.03 ~ 5mm的金属箔或金属板,该金属箔或金属板经退火处理后在室温下的延伸率不小于20% 。
9. 一种专门用于耐腐蚀抗断裂的钢轨或列车钢轮的牺牲性阳极,其特征在于制作该牺牲
10. 按权利要求1或权利要求3或权利要求6所述的耐腐蚀抗断裂的钢轨或列车钢轮, 或按权利要求9所述的专门用于耐腐蚀抗断裂的钢轨或列车钢轮的牺牲性阳极,其特征在于 制作牺牲性阳极的材料选自添加有镓、锌、硅、镁、汞、铟、锡、镉、铝、锰、钛、碳、镍、 铋、铅、鈣、铍、钠、钾、锂、锑、锶、钪、锆、钒、铬、钼、磷、硼、锗、稀土金属或能 使该牺牲性阳极的电极电位保持比钢轨或列车钢轮的电极电位至少负105mV的其他元素,含 上述元素的一种或数种的铝、铝合金、锌、锌合金、镁或镁合金,其中至少一种,或选用含 铜量不大于0.1%且^量不大于0. 7%的铝或铝合金。
全文摘要
本发明是一种耐腐蚀抗断裂的钢轨或列车钢轮,消除由应力腐蚀或腐蚀疲劳引起耐磨轨轮(或普通轨轮)产生的裂纹或断裂现象,消除腐蚀引起的各种故障,消除钢轨(或车轮)耐磨性与抗裂性之间相互制约的矛盾。具体的说是在钢轨或车轮的非工作面直接安置阳极,并在钢轨或车轮的表面涂覆具有离子导电和缓蚀功能的缓蚀层,通过牺牲阳极或外接可控直流电源,实施阴极保护与缓蚀剂相结合的新型电化学保护,使钢轨和车轮及轨道配件的使用寿命延长数倍,适应铁路运输提速和重载负荷日益增长的紧迫需求。
文档编号C23F13/00GK101153398SQ20061002196
公开日2008年4月2日 申请日期2006年9月28日 优先权日2006年9月28日
发明者李红梅, 毅 赵, 鸿 赵, 赵全玺 申请人:赵全玺
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1