纳米基质粉末金属压块的制作方法

文档序号:3411663阅读:149来源:国知局
专利名称:纳米基质粉末金属压块的制作方法
纳米基质粉末金属压块相关申请的交叉参考本申请要求2009年12月8日提交的美国专利申请序列号12/633,682(“NANOMATRIX POWDER METAL COMPACT”)的提交日的权益。
背景技术
石油和天然气井常常利用井孔部件或工具,由于它们的功能只 需要具有有限的使用寿命,该寿命显著低于井的使用寿命。在完成部件或工具的使用功能后,必须将其去除或处置以便恢复流体通道用于包括油气生产、CO2封存等的原始尺寸。常规通过将部件或工具碾磨或钻孔进行离开井孔的部件或工具的处置,这通常是耗费时间和昂贵的操作。为了消除对碾磨或钻进操作的需要,已经提出通过使用各种井孔流体溶解可降解的聚乳酸聚合物进行部件或工具的去除。然而,这些聚合物通常在井孔的工作温度范围内不具有表现出井孔部件或工具的功能所必要的机械强度、断裂韧性和其它机械性能,因此其应用受限。已提出其它可降解的材料,包括某些可降解的(degradable)金属合金,该金属合金由占主要份数的反应性金属(例如Al)连同占次要份数的其它合金成分形成,所述其它合金成分例如镓、铟、铋、锡和混合物及其组合,而不排除某些再熔合金化元素,例如锌、铜、银、镉、铅及其混合物与组合。这些材料可以通过熔化这些成分的粉末,然后凝固熔体形成合金而形成。它们也可以通过以上述量将反应性金属和其它合金成分的粉末混合物进行压制、压实、烧结等使用粉末冶金而形成。这些材料包括多种组合,这些组合利用它们可能不适合连同材料的降解释放到环境中的金属例如铅、镉等。此外,它们的形成可能涉及各种熔化现象,这些现象导致合金结构由各自合金成分的相平衡和凝固特性支配,且可能不会导致最优或期望的合金显微组织、机械性能或溶解特性。因此,非常期望开发可以用于形成这样的部件和工具的材料其具有表现出它们的预期功能所需的机械性能,然后使用井孔流体通过受控溶解从井孔将其去除。发明概述公开了粉末金属压块的示例性实施方案。该粉末金属压块包括基本连续的、网状(cellular)的纳米基质,该基质包含纳米基质材料。该压块还包括多个分散的颗粒和固态结合层,所述分散的颗粒包含颗粒芯部材料,所述颗粒芯部材料包含Mg、Al、Zn或Mn或其组合,其分散在纳米基质中,且所述结合层遍及纳米基质在分散的颗粒之间扩展。还公开了粉末金属压块的另一示例性实施方案。粉末金属压块包括基本连续、网状(cellular)的纳米基质,该基质包含纳米基质材料。该压块还包括多个分散的颗粒和固态结合层,所述分散的颗粒包含颗粒芯部材料,所述颗粒芯部材料包含标准氧化势小于Zn的金属、陶瓷、玻璃或碳,其分散在纳米基质中,且所述固态结合层遍及纳米基质在分散的颗粒之间扩展。


现在参考附图,其中在多张图中以类似的数字表示类似的元素图I是如本文公开的粉末10的光学显微照片,所述粉末已嵌入环氧树脂样品安装材料中,且已剖开;图2是粉末颗粒12的示例性实施方案的示意图,正如它在图I的2 — 2部分所代表的示例性截面视图中所呈现的;图3是粉末颗粒12的第二示例性实施方案的示意图,正如它在图I的2 — 2部分所代表的第二示例性截面视图中所呈现的;图4是粉末颗粒12的第三示例性实施方案的示意图,正如它在图I的2 — 2部分所代表的第三示例性截面视图中所呈现的;图5是粉末颗粒12的第四示例性实施方案的示意图,正如它在图I的2 — 2部分所代表的第四示例性截面视图中所呈现的;
图6是如本文所公开的粉末的第二示例性实施方案的示意图,所述粉末具有多峰分布的颗粒尺寸;图7如本文所公开的粉末的第三示例性实施方案的示意图,所述粉末具有多峰分布的颗粒尺寸;图8是制造如本文所公开的粉末的方法的示例性实施方案的流程图;图9是如本文所公开的粉末压块的示例性实施方案的光学显微照片;图10是使用具有单层涂覆的粉末颗粒的粉末制造的图9的粉末压块的示例性实施方案的示意图,正如它沿着截面10 - 10所呈现的;图11是如本文所公开的粉末压块的示例性实施方案的示意图,其具有均匀的多峰分布的颗粒尺寸;图12是如本文所公开的粉末压块的示例性实施方案的示意图,其具有不均匀的、多峰分布的颗粒尺寸;图13是如本文所公开的粉末压块的示例性实施方案的示意图,其由第一粉末和第二种粉末形成,并具有均匀的多峰分布的颗粒尺寸;图14是如本文所公开的粉末压块的示例性实施方案的示意图,其由第一粉末和第二种粉末形成,并具有非均匀的多峰分布的颗粒尺寸。图15使用具有多层涂覆的粉末颗粒的粉末制造的图9的粉末压块的示例性实施方案的示意图,正如它沿着截面10 - 10所呈现的;图16是前体粉末压块的示例性实施方案的示意性横截面图;图17是制备如本文所公开的粉末压块的方法的示例性实施方案的流程图;图18是描述用于粉末颗粒和粉末的颗粒芯部和金属涂覆层的配置的表,这些粉末颗粒和粉末用来制备如本文所公开的测试用粉末压块的示例性实施方案;图19是图18的粉末压块在干燥和在含有3% KCl的水溶液中的抗压强度的曲线;图20是图18的粉末压块在200° F和室温下在含有3% KCl的水溶液中的腐蚀速度(ROC)的曲线;图21是图18的粉末压块在15%HC1中的ROC曲线;图22是如本文所公开的粉末压块的性能变化与时间和粉末压块环境的条件变化的函数关系不意图23是由纯Mg粉末形成的粉末压块的断裂表面的显微照片;图24是如本文所公开的粉末金属压块的示例性实施方案的断裂表面的显微照片;和图25是粉末压块的抗压强度与网状纳米基质的成分(Al2O3)量的函数关系曲线。详细说明公开了轻重量、高强度的金属材料,其可以用于各种应用和应用环境中,包括在各种井孔环境使用以制备各种可选性与可控性的可处置或可降解的轻重量、高强度井内工具或其它井内部件,以及用于耐用和可处置或可降解的制品的很多其它应用。这些轻重量、高强度且可选性与可控性的可降解材料包括由涂覆的粉末材料形成的完全致密、烧结的粉末压块,所述涂覆的粉末材料包括各种轻重量的颗粒芯部和芯部材料,其具有各种单一层和多层纳米级涂层。这些粉末压块由涂覆的金属粉末制成,其包括各种电化学活性(例如具有相对较高标准氧化势)的轻重量、高强度的颗粒芯部和芯部材料,例如分散在由金属涂覆材 料的各种纳米级金属涂覆层形成的网状纳米基质内的电化学活性金属,这些粉末压块在井孔应用尤其有用。这些粉末压块提供机械强度性能例如抗抗压强度和剪切强度、低密度和可选性与可控性的腐蚀性能,特别是在各种井孔流体中快速和受控溶解的独特和有利的组合。例如,可以选择这些粉末的涂覆层和颗粒芯部从而提供适用作高强度工程材料的烧结粉末压块,所述高强度工程材料具有的抗压强度和剪切强度相当于各种其它工程材料,包括碳钢、不锈钢和合金钢,但也具有相当于各种聚合物、弹性体、低密度多孔陶瓷和复合材料的低密度。作为另一个例子,可以配置这些粉末和粉末压块材料从而提供响应于环境条件变化的可选性与可控性的降解或处置,例如响应于由压块形成的制品附近的井孔的性能或条件的变化而从非常低的溶解速度转变到非常快速的溶解速度,所述性能或条件的变化包括与粉末压块接触的井孔流体的性能变化。所描述的可选性与可控性的降解或处置特性还允许由这些材料制成的制品例如井孔工具或其它部件的尺寸稳定性和强度得到保持,直到不再需要它们,此时可以使预定环境条件例如井孔的条件,包括井孔流体温度、压力或PH值改变以促进它们因快速溶解而移除。在下文进一步描述了这些涂覆的粉末材料和粉末压块以及由它们形成的工程材料,以及制备它们的方法。参考图1-5,金属粉末10包括多个金属的、涂覆的粉末颗粒12。可以形成粉末颗粒12以提供粉末10,包括自由流动的粉末,可以以具有可用于形成(fashion)前体粉末压块100 (图16)和粉末压块200 (图10-15)的所有形式的形状和尺寸成型或造型(未显示)的方式倾倒或以其它方式处置这些粉末,如本文所述,这些粉末压块可用作或用于制造各种制造广品,包括各种井孔工具和部件。粉末10的每个金属的、涂覆的粉末颗粒12包括颗粒芯部14和布置在颗粒芯部14上的金属涂覆层16。颗粒芯部14包括芯部材料18。芯部材料18可以包括用于形成提供粉末颗粒12的颗粒芯部14的任何合适材料,可以将该粉末颗粒12进行烧结以形成具有可选性与可控性的溶解特性的轻重量、高强度烧结粉末压块200。合适的芯部材料包括标准氧化势大于或等于Zn的电化学活性金属,包括如Mg、Al、Mn或Zn或其组合。这些电化学活性的金属与一些常见的井孔流体具有高的反应性,所述井孔流体包括许多离子流体或高度极性流体,例如包含各种氯化物的那些。例子包括包含氯化钾(KCl)、盐酸(HCl)、氯化钙(CaCl2)、溴化I丐(CaBr2)或溴化锌(ZnBr2)的流体。芯部材料18还可以包括比Zn电化学活性更低的其它金属、或非金属材料或其组合。合适的非金属材料包括陶瓷、复合物、玻璃或碳,或其组合。可以选择芯部材料18从而提供在预定井孔流体中的高溶解速度,但也可以选择芯部材料18从而提供相对低的溶解速度,包括零溶解,其中纳米基质材料的溶解导致颗粒芯部14迅速受到破坏并在与井孔流体的界面处从颗粒压块中释放出来,使得使用这些芯部材料18的颗粒芯部14制成的颗粒压块的有效溶解速度是高的,即使芯部材料18颗粒本身可以具有低的溶解速度,包括可以基本不溶于井孔流体中的芯部材料20。关于作为芯部材料18的电化学活性金属,包括Mg、Al、Mn或Zn,这些金属可以以纯金属,或与彼此的任何组合的形式使用,包括这些材料的各种合金组合,包括这些材料的二元、三元或四元合金。这些组合还可以包括这些材料的复合物。此外,作为对彼此的组合的补充,Mg、Al、Mn或Zn芯部材料18还可以包括其它成分,包括各种合金化添加物,从而例如通过改善芯部材料18的强度、降低密度或改变溶解特性来改变颗粒芯部14的一种或多种性能。在电化学活性金属中,Mg (要么以纯金属要么以合金要么以复合材料的形式)是特别有用的,这是因为它的低密度和形成高强度合金的能力,以及其高度的电化学活性,因 为它具有比Al、Mn或Zn高的标准氧化势。Mg合金包括具有Mg作为合金成分的所有合金。如本文所述,结合其它电化学活性金属作为合金成分的Mg合金是特别有用,包括二元Mg -Zn、Mg - Al和Mg - Mn合金,以及三元Mg — Zn — Y和Mg-Al-X合金,其中X包括Zn、Mn、Si、Ca或Y或其组合。这些Mg-Al-X合金可以包括按重量计至多约85%Mg、至多约15%A1和至多约5%X。颗粒芯部14和芯部材料18,特别是电化学活性金属包括Mg、Al、Mn或Zn、或其组合,还可以包括稀土元素或稀土元素的组合。本文所使用的稀土元素包括Sc、Y、La、Ce、Pr、Nd或Er或稀土元素的组合。当存在时,稀土元素或稀土元素的组合可以以约5重量%或更少的量存在。颗粒芯部14和芯部材料18具有熔化温度(Tp)。本文所使用的Tp包括在芯部材料18内发生初期熔化或液化或其它形式的部分熔化的最低温度,而不管芯部材料18是否包含纯金属、具有熔化温度不同的多种相的合金或具有不同的熔化温度的材料的复合物。颗粒芯部14可以具有任何合适的颗粒尺寸或颗粒尺寸的范围或颗粒尺寸的分布。例如,可以选择颗粒芯部14从而提供由在平均值或均值附近的正态或高斯型单峰分布所表示的平均颗粒尺寸,如图I大体所示。在另一个例子中,可以选择或混合颗粒芯部14以提供多峰分布的颗粒尺寸,包括多种平均颗粒芯部尺寸,例如均匀双峰分布的平均颗粒尺寸,如图6整体性和示意性地所示。可以使用颗粒芯部尺寸分布的选择来确定例如粉末10的颗粒12的颗粒尺寸和颗粒间的间距15。在示例性实施方案中,颗粒芯部14可以具有单峰分布和约5 μ m —约300 μ m,更特别是约80 μ m —约120 μ m,甚至更特别约100 μ m的平均颗粒直径。颗粒芯部14可以具有任何合适的颗粒形状,包括任何规则或不规则的几何形状或其组合。在示例性实施方案中,颗粒芯部14是基本球状的电化学活性金属颗粒。在另一个示例性实施方案中,颗粒芯部14是基本不规则形状的陶瓷颗粒。在另一个示例性实施方案中,颗粒芯部14是碳的或其它的纳米管的结构或空心玻璃微球。粉末10的每个金属的、涂覆的粉末颗粒12还包括布置在颗粒芯部14上的金属涂覆层16。金属涂覆层16包括金属涂覆材料20。金属涂覆材料20对粉末颗粒12和粉末10赋予其金属性质。金属涂覆层16是纳米级涂覆层。在示例性实施方案中,金属涂覆层16可以具有约25nm —约2500nm的厚度。金属涂覆层16的厚度可以在颗粒芯部14的表面上变化,但优选在将颗粒芯部14的表面上具有基本均匀的厚度。金属涂覆层16可以包括单一层,如图2所示,或多个层作为多层涂覆结构,如图3-5对于最多四个层所示。在单一层涂层中,或在多层涂层的每个层中,金属涂覆层16可以包括单一成分化学元素或化合物,或可以包括多种化学元素或化合物。在层包括多种化学成分或化合物时,它们可以具有均匀或不均匀分布的所有形式,包括金相的均匀或不均匀的分布方式。这可以包括渐变的(graded)分布,其中化学成分或化合物的相对数量根据跨层厚度的各自成分分布而变化。在单一层和多层涂覆层16中,每个各自层或它们的组合可以用于对粉末颗粒12或由此形成的烧结的粉末压块提供预定性能。例如,预定性能可以包括颗粒芯部14和涂覆材料20之间的冶金结合的结合强度;颗粒芯部14和金属涂覆层16之间的相互扩散特性,包括多层涂覆层16的层之间的相互扩散特性;多层涂覆层16的各层之间的相互扩散特性;一个粉末颗粒的金属涂覆层16和相邻粉末颗粒12的金属涂覆层16之间的相互扩散特性;相邻的烧结粉末颗粒12的金属涂覆层,包括多层涂覆层的最外层,之间的冶金结合的结合强度;和涂覆层16的电化学活性。 金属涂覆层16和涂覆材料20具有熔化温度(Te)。本文所使用的T。包括在涂覆材料20内发生初期熔化或液化或其它形式的部分熔化的最低温度,而不管涂覆材料20是否包含纯金属、具有熔化温度不同的多种相的合金或复合物,包括包含具有不同熔化温度的多种涂覆材料层的复合物。金属涂覆材料20可以包括提供可烧结的外表面21的任何合适的金属涂覆材料20,将其配置成要烧结到相邻粉末颗粒12,该相邻粉末颗粒也具有金属涂覆层16和可烧结的外表面21。如本文所述,在也包括第二或额外(涂覆或未涂覆的)颗粒32的粉末10中,也将金属涂覆层16的可烧结外表面21配置成可烧结的第二种颗粒32的外表面21。在示例性实施方案中,粉末颗粒12在作为芯部材料18和涂覆材料20的函数的预定烧结温度(Ts)下是可烧结的,使得粉末烧结压块200的烧结完全在固态实现,且其中Ts小于Tp和T。。在固态的烧结将颗粒芯部14/金属涂覆层16的相互作用限制为固态扩散过程和冶金传输现象,且限制了它们的生长,并提供了对它们之间的所得界面的控制。相比之下,例如,液相烧结的引入将提供颗粒芯部14/金属涂覆层16材料的快速互扩散,并使得难以限制它们的生长和提供对它们之间的所得界面的控制,因而干扰颗粒压块200的所需显微组织的形成,如本文所述。在示例性实施方案中,将选择芯部材料18以提供芯部的化学组合物,和将选择涂覆材料20以提供涂层的化学组合物,也将选择这些化学组合物以彼此区别。在另一个示例性实施方案中,将选择芯部材料18以提供芯部的化学组合物,且将选择涂覆材料20以提供涂层的化学组合物,也将选择这些化学组合物以在它们的界面处彼此区别。可以选择涂覆材料20和芯部材料18的化学组成的差异以提供粉末压块的200不同溶解速度和可选性与可控性的溶解速度,该粉末压块纳入它们使其可选性与可控性的可溶。这包括响应于井孔中变化的条件包括井孔流体的直接或间接变化而不同的溶解速度。在示例性实施方案中,由粉末10形成的粉末压块200响应于变化的井孔条件而可选性的可溶,所述变化的井孔条件包括温度变化、压力变化、流量变化、PH变化或井孔流体的化学组成的变化或其组合,该粉末10具有制成压块200的芯部材料18和涂覆材料20。响应于变化条件的可选性溶解可以归因于促进不同的溶解速度的实际化学反应或工艺,但也包括与物理反应或工艺相关的溶解响应的变化,例如井孔流体压力或流量的变化。在粉末10的示例性实施方案中,颗粒芯部14包括Mg、Al、Mn或Zn、或其组合作为芯部材料18,且更特别可以包括纯Mg及Mg合金,而金属涂覆层16包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re、或Ni、或其氧化物、氮化物或碳化物或上述材料的任何组合作为涂覆材料20。在粉末10的另一个示例性实施方案中,颗粒芯部14包括Mg、Al、Mn或Zn、或其组合作为芯部材料18,且更特别可以包括纯Mg及Mg合金,而金属涂覆层16包括Al或Ni、或其组合的单一层作为涂覆材料20,如图2所示。在金属涂覆层16包括两种或更多种成分例如Al和Ni的组合时,该组合可以包括这些材料的各种渐变的或共沉积的结构,其中每种成分的量以及因此该层的组成跨层的厚度变化,也如图2所示。在另一个示例性实施方案中,颗粒芯部14包括Mg、Al、Mn或Zn、或其组合作为芯 部材料18,且更特别可以包括纯Mg及Mg合金,而涂覆层16包括两个层作为芯部材料20,如图3所示。第一层22布置在颗粒芯部14的表面上,且包括Al或Ni、或其组合,如本文所述。第二层24布置在第一层的表面上,且包括Al、Zn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其组合,且第一层具有的化学组成不同于第二层的化学组成。通常,选择第一层22以提供到颗粒芯部14的强冶金结合,并限制颗粒芯部14和涂覆层16 (特别是第一层22)之间的相互扩散。可以选择第二层24以提高金属涂覆层16的强度,或提供强的冶金结合和促进与相邻的粉末颗粒12的第二层24的烧结,或两者。在示例性实施方案中,可以选择金属涂覆层16的各自层从而响应于井孔包括井孔流体的性能变化而促进涂覆层16的可选性与可控性溶解,如本文所述。然而,这只是示例性,将理解,还可采用对于各层的其它选择标准。例如,可以选择任何各自层从而响应于井孔包括井孔流体的性能变化促进涂覆层16的可选性与可控性溶解,如本文所述。用于包含Mg的颗粒芯部14的两层金属涂覆层16的示例性实施方案包括包含Al/Ni和A1/W的第一 /第二层组合。在另一个实施方案中,颗粒芯部14包括Mg、Al、Mn或Zn、或其组合作为芯部材料18,且更特别可以包括纯Mg及Mg合金,而涂覆层16包括三个层,如图4所示。第一层22布置于颗粒芯部14上,且可以包括Al或Ni、或其组合。第二层24布置于第一层22上,且可以包括Al、Zn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re、或Ni、或其氧化物、氮化物或碳化物、或上述第二层材料的任何组合。第三层26布置于第二层24上,并可以包括Al、Mn、Fe、Co、Ni或其组合。在三层配置中,相邻层的组成是不同的,使得第一层的化学组成不同于第二层,第二层的化学组成不同于第三层。在示例性实施方案中,可以选择第一层22以提供与颗粒芯部14的强冶金结合,并限制颗粒芯部14和涂覆层16 (特别是第一层22)之间的相互扩散。可以选择第二层24以提高金属涂覆层16的强度,或限制颗粒芯部14或第一层22与外部层或第三层26之间的相互扩散,或促进第三层26和第一层22之间的附着与强的冶金结合,或它们的任何组合。可以选择第三层26以提供强的冶金结合和促进与相邻的粉末颗粒12的第三层26的烧结。然而,这只是示例性,将理解,还可采用对于各层的其它选择标准。例如,可以选择任何各自的层从而响应于井孔包括井孔流体的性能变化促进涂覆层16的可选性与可控性溶解,如本文所述。用于包含Mg的颗粒芯部的三层涂覆层的示例性实施方案包括包含A1/A1203/A1的第一 /第二 /第三层的组合。在另一个实施方案中,颗粒芯部14包括Mg、Al、Mn或Zn、或其组合作为芯部材料18,更特别可以包括纯Mg和Mg合金,而涂覆层16包括四个层,如图5所示。在四个层的配置中,第一层22可以包括Al或Ni、或其组合,如本文所述。第二层24可以包括Al、Zn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、氮化物、碳化物、或上述第二层材料的组合。第三层26还可以包括Al、Zn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、氮化物或碳化物、或上述第三层材料的组合。第四层28可以包括Al、Mn、Fe、Co、Ni或其组合。在四个层的配置中,相邻层的化学组成是不同的,使得第一层22的化学组成不同于第二层24的化学组成,第二层24的化学组成不同于第三层26的化学成,第三层26的化学组成不同于第四层28的化学组成。在示例性的实施方案中,各层的选择将类似上文关于内部(第一)和外部(第四)层描述的三个层的配置,而第二层和第三层可以用于提供增强的中间层附着力、整体金属涂覆层16的强度、有限的中间层扩散或可选性与可控性的溶解、或其组合。然而,这仅仅是示例性的,将理解,也可以使用对于各层的其它选择标准。例如,可以选择任何各自层从而响应于井孔包括井孔流体的性能变化促进涂覆层16的可选性与可 控性溶解,如本文所述。在多层配置中的各层厚度可以以任何方式分布各层之间,只要层厚度的总和提供纳米级涂覆层16,包括如本文所述的层厚度。在一个实施方案中,第一层22和外部层(24,26,或28,取决于层数)可以比存在的其它层更厚,这是因为在烧结粉末压块200期间期望提供足够的材料来促进第一层22与颗粒芯部14的所需结合,或相邻粉末颗粒12的外层的
彡口口 粉末10也可以包含散布在多个粉末颗粒12中的额外或第二种粉末30,如图7所示。在示例性的实施方案中,第二种粉末30包括多个第二种粉末颗粒32。可以选择这些第二种粉末颗粒32以改变由粉末10和第二种粉末30形成的粉末颗粒压块200的物理、化学、机械或其它性能、或这样的性能的组合。在示例性的实施方案中,性能改变可以包括由粉末10和第二种粉末30形成的粉末压块200的抗压强度的提高。在另一个示例性实施方案中,可以选择第二种粉末30从而响应于井孔包括井孔流体的性能变化促进在由粉末10和第二种粉末30形成的粉末压块200中的可选性与可控性溶解,如本文所述。第二种粉末颗粒32可以是未涂覆的或涂覆有金属涂覆层36。当得到涂覆时,包括单一层或多层涂层,第二种粉末颗粒32的涂覆层36可以包含相同的涂覆材料40作为粉末颗粒12的涂覆材料20,或涂覆材料40可以不同。第二种粉末颗粒32 (未涂覆的)或颗粒芯部34可以包括任何合适的材料以提供所需的好处,包括多种金属。在示例性的实施方案中,当使用包含Mg、AUMn或Zn、或其组合的涂覆的粉末颗粒12时,合适的第二种粉末颗粒32可以包括Ni、W、Cu、Co或Fe、或其组合。因为还将配置第二种粉末颗粒32用于在预定烧结温度(Ts)下固态烧结至粉末颗粒12,所以颗粒芯部34将具有熔化温度TAP,而任何涂覆层36将具有第二熔化温度Ta。,其中Ts小于Tap和TA。。还理解,第二种粉末30并不限于一种额外的粉末颗粒32类型(即第二种粉末颗粒),而可以以任何数量包括多个额外的粉末颗粒32 (即,第二、第三、第四等类型的额外粉末颗粒32)。参考图8,公开了制备金属粉末10的方法300的示例性实施方案。方法300包括形成310如本文所述的多个颗粒芯部14。方法300还包括在多个颗粒芯部14的每一个上沉积320金属涂覆层16。沉积320是由此将涂覆层16布置在颗粒芯部14上的过程,如本文所述。颗粒芯部14的形成310可以通过形成所需芯部材料18的多个颗粒芯部14的任何合适的方法进行,其主要包括形成芯部材料18的粉末的方法。形成合适粉末的方法包括机械方法;包括机加工、碾磨、冲击和形成金属粉末的其它机械方法;化学方法,包括化学分解、从液体或气体析出、固-固反应合成和其它化学粉末形成方法;雾化方法,包括气体雾化、液体和水雾化、离心雾化、等离子体雾化和形成粉末的其它雾化方法;以及各种蒸发和冷凝的方法。在示例性实施方案中,可以使用雾化方法如真空喷射成形或惰性气体喷射成形制造含Mg的颗粒芯部14。可以使用任何合适的沉积方法,包括各类薄膜沉积方法,例如化学气相沉积和物理气相沉积方法,在多个颗粒芯部14上进行金属涂覆层16的沉积320。在示例性实施方案中,使用流化床化学气相沉积(FBCVD)进行金属涂覆层16的沉积320。通过FBCVD沉积 320金属涂覆层16包括使作为涂覆介质的反应流体流过在合适条件下在反应器容器中流化的颗粒芯部14的床,所述涂覆介质包括所需的金属涂覆材料20,所述合适条件包括温度、压力、流量条件等,足以引发涂覆介质的化学反应以产生所需的金属涂覆材料20,并引发其沉积在颗粒芯部14的表面上以形成涂覆的粉末颗粒12。所选的反应流体将取决于所需的金属涂覆材料20,且通常将包含包括要沉积的金属材料的金属有机化合物,例如四羰基镍(Ni (C0)4)、六氟化钨(WF6)和三乙基铝(C6H15Al),该金属有机化合物在载体流体例如氦或氩气中传输。反应性流体,包括载体流体,导致多个颗粒芯部14的至少一部分悬浮在流体中,由此使悬浮的颗粒芯部14的整个表面暴露于反应流体,该反应流体包括例如所需的金属有机成分,并使金属涂覆材料20和涂覆层16沉积在颗粒芯部14的整个表面上,使得它们各自变成封闭的,形成具有金属涂覆层16的涂覆颗粒12,如本文所述。还如本文所述,每个金属涂覆层16可以包括多个涂覆层。通过如下方式可以将涂覆材料20沉积成多个层以形成多层金属涂覆层16 :重复上文所述的沉积320步骤和改变330反应流体从而为每个后续层提供所需的金属涂覆材料20,其中在颗粒芯部14的外表面上沉积每个后续层,该颗粒芯部14已包括任何之前沉积的涂覆层或构成金属涂覆层16的层。各自层(例如22、24、26、28、等)的金属涂覆材料20可以彼此不同,和可以通过使用不同反应介质提供差异,所述反应介质配置成在流化床反应器中的颗粒芯部14上产生所需的金属涂覆层16。如图I和9所不,可以选择颗粒芯部14和芯部材料18及金属涂覆层16以及涂覆材料20从而提供粉末颗粒12与粉末10,为压实和烧结而配置粉末10以提供轻重量(即具有相对低的密度)、高强度的粉末压块200,该粉末压块200响应于井孔性能的变化可从井孔可选性与可控性的移除,包括可选性与可控性溶解于合适井孔流体中,包括如本文所公开的各种井孔流体。粉末压块200包括纳米基质材料220的基本连续、网状纳米基质216,该纳米基质材料220具有遍及网状纳米基质216分散的多个分散颗粒214。基本上连续的网状纳米基质216和由烧结的金属涂覆层16形成的纳米基质材料220是通过多个粉末颗粒12的多个金属涂覆层16的压实与烧结形成的。纳米基质材料220的化学组成可以不同于涂覆材料20的化学组成,这是因为与本文所述的烧结相关的扩散效应。粉末金属压块200还包括多个分散颗粒214,所述分散颗粒214包含颗粒芯部材料218。分散的颗粒芯部214和芯部材料218对应于多个颗粒芯部14和多个粉末颗粒12的芯部材料18,并由多个颗粒芯部14和多个粉末颗粒12的芯部材料18形成,因为金属涂覆层16烧结在一起形成纳米基质216。芯部材料218的化学组成可以不同于与芯部材料18的化学组成,这是因为与本文所述的烧结相关的扩散效应。本文所使用的术语基本连续的网状纳米基质216不表示粉末压块的主要成分,而是意指一种或多种次要成分,不论以重量计或体积计。这区别于其中基质包含主要组分(以重量计或体积计)的大多数基质复合材料。使用术语基本连续的、网状纳米基质旨在描述纳米基质材料220在粉末压块200内的扩展的、规则的、连续的和相互连接的分布性质。本文所使用的"基本连续的"描述纳米基质材料遍及粉末压块200的扩展,使得它在基本所有分散的颗粒214之间扩展和包封基本所有分散的颗粒214。使用基本连续表示完整连续性,且不需要每个分散颗粒214周围的纳米基质的规则顺序。例如,在一些粉末颗粒12上的颗粒芯部14上方的涂覆层16中的缺陷可以在粉末压块200的烧结期间导致颗粒芯部14的桥接,由此在网状纳米基质216内导致局部不连续性,即使在粉末压块的其它部分中纳米基质是基本连续的,且展现出如本文所描述的结构。本文所使用的"网状"用来表示纳米基质限定纳米基质材料220的整体重复、相互连接的隔室或单兀的网络,该纳米基质材料 220包围分散的颗粒214且还与分散的颗粒214相互连接。本文所使用〃纳米基质〃用来描述基质的尺寸或尺度,尤其是相邻分散颗粒214之间的基质厚度。烧结在一起以形成纳米基质的金属涂覆层本身是纳米级厚度涂覆层。由于纳米基质在超过两个分散的颗粒214的相交处之外的大多数位置处通常包含来自具有纳米级厚度的相邻粉末颗粒12的两个涂覆层16的相互扩散和结合,因此形成的基质也具有纳米级厚度(例如大约两倍的涂覆层厚度,如本文所述),并因此描述为纳米基质。此外,使用术语分散的颗粒214不表示粉末压块200的次要成分,而是意指一种或多种主要成分,不论以重量或体积计。使用术语分散的颗粒旨在表达颗粒芯部材料218在粉末压块200内的不连续和离散的分布。粉末压块200可以具有任何所需的形状和尺寸,包括柱形坯体或棒材的形状和尺寸,可将其机加工或以其它方式用于形成有用的制造产品,包括各种井孔工具和部件。用于形成前体粉末压块100的压制和用于形成粉末压块200并使粉末颗粒12变形的烧结与压制工艺提供粉末压块200及其显微组织的完全密度以及所需的宏观形状和尺寸,所述粉末颗粒12包括颗粒芯部14和涂覆层16。粉末压块200的显微组织包括分散的颗粒214的等轴(equiaxed)配置,所述分散的颗粒214遍及烧结的涂覆层的基本连续、网状纳米基质216中分散,且嵌入在烧结的涂覆层的基本连续、网状纳米基质216中。此显微组织有些类似于具有连续晶界相的等轴晶粒的显微组织,但它不需要使用具有能够生产这种组织的热动力学相平衡性能的合金成分。相反地,可以使用其中热机械相平衡条件不会产生等轴状组织的成分来产生此等轴分散的颗粒组织和烧结的金属涂覆层16的网状纳米基质216。分散的颗粒214的等轴形态和颗粒层的网状网络216来源于粉末颗粒12的烧结和变形,因为将它们压实并相互扩散和变形以填充颗粒间的间距15 (图I)。可以选择烧结温度和压力以确保粉末压块200的密度达到基本完全理论密度。在如图I和9所示的示例性实施方案中,由分散在烧结的金属涂覆层16的网状纳米基质216中的颗粒芯部14形成分散的颗粒214,且纳米基质216包括在分散颗粒214之间遍及网状纳米基质216扩展的固态冶金结合217或结合层219,如图10中所示,所述固态冶金结合217或结合层219在烧结温度(Ts)形成,其中Ts小于Tc和TP。如所示,通过由相邻粉末颗粒12的涂覆层16之间的固态相互扩散以固态形成固态冶金结合217,将所述粉末颗粒12在用于形成粉末压块200的压实和烧结过程中压实至接触性接触,如本文所述。这样,网状纳米基质216的烧结涂覆层16包括固态结合层219,该固态结合层的厚度⑴由涂覆层16的涂覆材料20的相互扩散的程度限定,这进而由沉积层16的性质限定,包括它们是单一涂覆层还是多层涂覆层,是否已选择它们来促进或限制这样的相互扩散,和如本文所述的其它因素,以及烧结和压实的条件,包括用于形成粉末压块200的烧结时间、温度和压力。随着形成纳米基质216,包括结合217和结合层219,金属涂覆层16的化学组成和/或相分布可变化。纳米基质216也具有熔化温度(Tm)。本文使用的Tm包括在纳米基质216内发生初期熔化或液化或其它形式的部分熔化的最低温度,而不管纳米基质材料220是否包含纯金属、具有熔化温度不同的多种相的合金或复合物,包括包含具有不同熔化温度的各种涂覆材料的多个层的复合物,或其组合,或其它。由于连同纳米基质216形成分散的颗粒214和颗粒芯部材料218,因此金属涂覆层16的成分也可扩散到颗粒芯部14中,这可导致颗粒芯部14的化学组成或相分布或两者的变化。因此,分散的颗粒214和颗粒芯部材料218可以具有不同于Tp的熔化温度(Tdp)。本文所使用Tdp包括在分散的颗粒214内发生初 期熔化或液化或其它形式的部分熔化的最低温度,而不管颗粒芯部材料218是否包含纯金属、具有熔化温度不同的多种相的合金或复合物,或其它。在烧结温度(Ts)形成粉末压块200,其中 Ts 小于 Tc、TP、Tm 和 TDP。尽管由于如本文所述的扩散效应,分散的颗粒214的化学组成可以不同,但分散的颗粒214可以包含本文对于颗粒芯部14所描述的任何材料。在示例性实施方案中,分散的颗粒214由颗粒芯部14形成,该颗粒芯部包含标准氧化势大于或等于Zn的材料,包括Mg、Al、Zn或Mn、或其组合,可以包括各种二元、三元和四元合金,或本文所公开的这些成分的组合,连同颗粒芯部14。在这些材料中,具有由本文所述的金属涂覆材料16形成的纳米基质216和含Mg的分散颗粒214的那些材料是特别有用的。分散的颗粒214和Mg、Al、Zn或Mn或其组合的颗粒芯部材料218还可以包括如本文所公开的稀土元素或稀土元素的组合,连同颗粒芯部14。在另一个示例性实施方案中,分散的颗粒214由颗粒芯部14形成,所述颗粒芯部14包含比Zn电化学活性低的金属或非金属材料。合适的非金属材料包括陶瓷、玻璃(例如空心玻璃微球)或碳或其组合,如本文所述。粉末压块200的分散颗粒214可以具有任何合适的颗粒尺寸,包括本文对于颗粒芯部14所描述的平均颗粒尺寸。取决于对颗粒芯部14和粉末颗粒12所选择的形状,以及用于烧结和压实粉末10的方法,分散颗粒214可以具有任何适合的形状。在示例性实施方案中,粉末颗粒12可以是球形或基本球形的,而分散颗粒214可以包括如本文所述的等轴颗粒配置。分散颗粒214的分散性质可受到用来制造颗粒压块200的一种粉末10或多种粉末10的选择的影响。在一个示例性实施方案中,可以选择具有单峰分布的粉末颗粒12尺寸的粉末10以形成粉末压块200,且在网状纳米基质216内会产生基本均匀的单峰分散的颗粒尺寸的分散颗粒214,如图9大体所示。在另一个示例性实施方案中,可以选择具有多个粉末颗粒的多种粉末10并如本文所述均匀混合以提供具有均匀、多峰分布的粉末颗粒12尺寸的粉末10,且所述粉末10可以用于形成具有在网状纳米基质216内均匀、多峰分散的颗粒尺寸的分散颗粒214的粉末压块200,如图6和11所示,所述多个粉末颗粒具有颗粒芯部14,所述颗粒芯部14具有相同的芯部材料18和不同的芯部尺寸和相同的涂覆材料20。类似地,在另一个示例性实施方案中,可以选择具有多种颗粒芯部14的多种粉末10并将其以非均匀方式分布从而提供非均匀、多峰分布的粉末颗粒尺寸,并可以用来形成在网状纳米基质216内具有非均匀、多峰分散性颗粒尺寸的分散颗粒214的粉末压块200,如图12示意地所示,所述多种颗粒芯部14可以具有相同的芯部材料18和不同的芯部尺寸和相同的涂覆材料20。可以使用颗粒芯部尺寸的分布的选择来确定例如由粉末10制成的粉末压块200的网状纳米基质216内的分散颗粒214的颗粒间间距和颗粒尺寸。如图7和13大体所示,也可以使用涂覆的金属粉末10和如本文所述的额外或第二种粉末30形成粉末压块200。使用额外的粉末30提供了还包括多个分散的第二种颗粒234的粉末压块200,所述第二种颗粒234分散在纳米基质216内,且还关于分散颗粒214分散。如本文所述,还可以由涂覆或未涂覆的第二种粉末颗粒32形成分散的第二种颗粒234。在示例性实施方案中,涂覆的第二种粉末颗粒32可以涂覆有与粉末颗粒12的涂覆层16相同的涂覆层36,使得涂覆层36也有助于纳米基质216。在另一个示例性实施方案中,第二 种粉末颗粒232可以是未涂覆的,使得分散的第二种颗粒234嵌入纳米基质216中。如本文所公开,可以混合粉末10和额外粉末30从而形成均匀分散的分散颗粒214和分散的第二种颗粒234,如图13所示,或形成非均匀分散的这些颗粒,如图14所示。可以由不同于粉末10的任何合适的额外粉末30形成分散的第二种颗粒234,这是因为颗粒芯部34或涂覆层36或它们两个中的组成差别,并可以包括本文对用作第二种粉末30所公开的任何材料,该第二种粉末30不同于选择用于形成粉末压块200的粉末10。在示例性实施方案中,分散的第二种颗粒234可以包括Fe、Ni、Co、或Cu、或其氧化物、氮化物或碳化物或任何上述材料的组合。纳米基质216是彼此烧结的金属涂覆层16的基本连续、网状网络。纳米基质216的厚度取决于用于形成粉末压块200的一种粉末10或多种粉末10的性质,以及任何第二种粉末30的纳入,特别是与这些颗粒相关的涂覆层的厚度。在示例性实施方案中,纳米基质216的厚度遍及粉末压块200的显微组织是基本均匀的,且包含粉末颗粒12的涂覆层16的厚度的两倍。在另一个示例性实施方案中,网状网络216在分散颗粒214之间具有约50nm至约5000nm的基本均勻的平均厚度。纳米基质216是通过相互扩散并产生结合层219通过彼此烧结相邻颗粒的金属涂覆层16形成的,如本文所述。金属涂覆层16可以是单一层或多层结构,且可以选择它们以促进和/或抑制在层内或金属涂覆层16的层之间,或金属涂覆层16与颗粒芯部14之间,或金属涂覆层16与相邻粉末颗粒的金属涂覆层16之间的扩散,在烧结期间金属涂覆层16的相互扩散的程度可以是有限的或广泛的,这取决于所选的涂层厚度、所选的一种或多种涂覆材料、烧结条件和其它因素。考虑到成分的相互扩散和相互作用的潜在复杂性,对所得纳米基质216和纳米基质材料220的化学组成的描述可简单理解为涂覆层16的成分的组合,其还可以包括分散颗粒214的一种或多种成分,这取决于发生在分散的颗粒214和纳米基质216之间的相互扩散(如果有)的程度。类似地,分散的颗粒214和颗粒芯部材料218的化学组成可以简单理解为颗粒芯部14的成分的组合,其还可以包括纳米基质216和纳米基质材料220的一种或多种成分,这取决于发生在分散颗粒214和纳米基质216之间的相互扩散(如果有)的程度。在示例性实施方案中,纳米基质材料220具有一种化学组成,颗粒芯部材料218的化学组成不同于纳米基质材料220的化学组成,且可以配置化学组成的差异从而响应于压块200附近的井孔的性能或条件的变化,包括与粉末压块200接触的井孔流体的性能变化而提供可选性与可控性溶解速度,包括从极低的溶解速度到非常快速的溶解速度的可选择性转变。可以由具有单一层和多层涂覆层16的粉末颗粒12形成纳米基质216。这种设计灵活性提供了大量的材料组合,特别是在多层涂覆层16的情形中,该灵活性可以通过控制给定层内以及涂覆层16和与之相关的颗粒芯部14或相邻粉末颗粒12的 涂覆层16之间的涂覆层成分的相互作用来调节网状纳米基质216和纳米基质材料220的组成。在下文提供了证明这种灵活性的几个示例性实施方案。如图10所示,在示例性的实施方案中,由其中涂覆层16包含单一层的粉末颗粒12形成粉末压块200,在多个分散的颗粒214的相邻颗粒之间所得到的纳米基质216包含一种粉末颗粒12的单一金属涂覆层16、结合层219和另一种相邻粉末颗粒12的单一涂覆层16。结合层219的厚度⑴由单一金属涂覆层16之间的相互扩散的程度决定,并可以包围纳米基质216的整个厚度或仅其一部分。在使用单一层粉末10形成的粉末压块200的示例性实施方案中,粉末压块200可以包括分散的颗粒214,所述分散的颗粒214包含Mg、Al、Zn或Mn、或其组合,如本文所述,而所述纳米基质216可以包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、碳化物或氮化物或任何上述材料的组合,包括这样的组合其中网状纳米基质216的纳米基质材料220,包括结合层219,具有一种化学组成,而分散的颗粒214的芯部材料218的化学组成不同于纳米基质材料216的化学组成。可以使用纳米基质材料220和芯部材料218的化学组成的差异来提供响应于井孔包括井孔流体的性能变化的可选性与可控性的溶解,如本文所述。在由具有单一涂覆层配置的粉末10形成的粉末压块200的其它示例性实施方案中,分散颗粒214包括Mg、Al、Zn或Mn、或其组合,而网状纳米基质216包括A I或Ni、或其组合。如图15所示,在另一个示例性实施方案中,由其中涂覆层16包含多层涂覆层16(其具有多个涂覆层)的粉末颗粒12形成粉末压块200,且多个分散颗粒214的相邻颗粒之间的所得纳米基质216包含多个层(t),所述多个层(t)包含一种颗粒12的涂覆层16、结合层219、以及包含另一种粉末颗粒12的涂覆层16的多个层。在图15中以两层金属涂覆层16对此进行说明,但将会理解,多层金属涂覆层16的多个层可以包括任何所需的层数。结合层219的厚度(t)也由各自涂覆层16的多个层之间的相互扩散的程度决定,并可以包围纳米基质216的整个厚度或仅其任何部分。在此实施方案中,可以将包含每个涂覆层16的多个层用于控制相互扩散和结合层219的形成以及厚度(t)。在使用具有多层涂覆层16的粉末颗粒12制成的粉末压块200的一个示例性实施方案中,所述压块包括分散的颗粒214,该分散的颗粒214包含Mg、Al、Zn或Mn、或其组合,如本文所述,且所述纳米基质216包含烧结的两层涂覆层16的网状网络,如图3所示,该两层涂覆层16包含布置在分散的颗粒214上的第一层22和布置在第一层22上的第二层24。第一层22包括Al或Ni、或其组合,而第二层24包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其组合。在这些配置中,选择用于形成纳米基质216的分散的颗粒214和多层涂覆层16的材料,使得相邻材料的化学组成是不同的(例如分散的颗粒/第一层和
第一层/第二层)。在使用具有多层涂覆层16的粉末颗粒12制成的粉末压块200的另一个示例性实施方案中,所述压块包括分散的颗粒214,该分散的颗粒214包含Mg、Al、Zn或Mn、或其组合,如本文所述,且所述纳米基质216包含烧结的三层金属涂覆层16的网状网络,如图4所示,该三层涂覆层16包含布置在分散的颗粒214上的第一层22、布置在第一层22上的第二层24和布置在第二层24上的第三层26。第一层22包括Al或Ni、或其组合;第二层24包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、氮化物或碳化物,或任何上述第二层材料的组合;第三层包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其组合。材料的选择类似于本文对于使用两层涂覆层粉末制成的粉末压块200所述的选择考虑,但还必须扩展到包括用于第三涂覆层的材料。在使用具有多层涂覆层16的粉末颗粒12制成的粉末压块200的另一个示例性实施方案中,所述压块包括分散的颗粒214,该分散的颗粒214包含Mg、Al、Zn或Mn、或其组 合,如本文所述,且所述纳米基质216包含烧结的四层金属涂覆层16的网状网络,该四层涂覆层16包含布置在分散的颗粒214上的第一层22 ;布置在第一层22上的第二层24 ;布置在第二层24上的第三层26和布置在第三层26上的第四层28。第一层22包括Al或Ni、或其组合;第二层 24 包括 Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re 或 Ni、或其氧化物、氮化物或碳化物,或任何上述第二层材料的组合;第三层包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、氮化物或碳化物,或任何上述第三层材料的组合;且第四层包含Al、Mn、Fe、Co或Ni、或其组合。材料的选择类似于本文对于使用两层涂覆层粉末制成的粉末压块200所述的选择考虑,但还必须扩展到包括用于第三和第四涂覆层的材料。在粉末压块200的另一个示例性实施方案中,分散的颗粒214包含标准氧化势小于Zn的金属或非金属材料,或其组合,如本文所述,且纳米基质216包含烧结的金属涂覆层16的网状网络。合适的非金属材料包括各种陶瓷、玻璃或各种形式的碳或其组合。此外,在包括包含这些金属或非金属材料的分散颗粒214的粉末压块200中,纳米基质216可以包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、碳化物或氮化物,或作为纳米基质材料220的任何上述材料的组合。参考图16,烧结的粉末压块200可以包含烧结的前体粉末压块100,该前体粉末压块100包括如本文所述的多个变形的、机械结合的粉末颗粒。可以通过如下方式形成前体粉末压块100 :将粉末10压实到粉末颗粒12彼此压入的程度,由使它们变形并形成颗粒间的机械或其它结合110,该结合与该变形相关,足以导致变形的粉末颗粒12彼此粘合并形成具有生坯密度的生坯状态的粉末压块,该生坯密度小于粉末10的完全致密压块的理论密度,这部分是因为颗粒间的间距15。可以通过例如在室温下等静压粉末10以提供形成前体粉末颗粒压块100所需的粉末颗粒12的变形和颗粒间结合来进行压实。烧结并锻压的(forged)粉末压块200展示出了例示如本文所公开的轻重量、高强度材料的机械强度和低密度的优异组合,如本文所述的该粉末压块200包括含Mg的分散颗粒214和包含各种纳米基质材料的纳米基质216。在图18的表中列出了粉末压块200的例子,所述粉末压块具有纯Mg分散颗粒214和由具有纯Mg颗粒芯部14的粉末10形成的各种纳米基质216以及各种单一或多层金属涂覆层16,所述涂覆层包括Al、Ni、W或A1203、或其组合,所述粉末压块使用本文公开的方法400制成。使这些粉末压块200经受各种机械测试和其它测试,包括密度测试,且对它们的溶解和机械性能劣化行为也进行表征,如本文所公开的。结果表明可以将这些材料配置成提供从极低腐蚀速度到极高腐蚀速度的宽范围的可选性与可控性的腐蚀或溶解行为,尤其是比没有纳入网状纳米基质的粉末压块更低和更高的腐蚀速度,没有纳入网状纳米基质的粉末压块例如由纯Mg粉末通过与在本文所述的包括各种网状纳米基质中包括纯Mg分散颗粒的压块相同的压实和烧结工艺形成的压块。还可以将这些粉末压块200配置成提供显著增强的性能,相对于由不包括本文描述的纳米级涂层的纯Mg颗粒所形成的粉末压块而言。例如参考图18和19,如本文所述的包括含Mg的分散颗粒214和包含各种纳米基质材料220的纳米基质216的粉末压块200展示出了至少约37k s i的室温抗压强度,并进一步展示出在干燥和浸入200° F的3%KC1溶液中超过约50ksi的室温抗压强度。相比之下,由纯Mg粉末形成的粉末压块具有约20ksi以下的室温抗压强度。纳米基质粉末压块200可以通过优化粉末10得到进一步改善,特别是用于形成网状纳米基质216的纳米级金属涂覆层16的重量百分数。例如,图25显示氧化铝涂层的不同重量百分比(wt. %)即厚度对于由涂覆的粉末颗粒12形成的网状纳米基质216的粉末压块200的室温抗压强度的影响,其中所述涂覆的粉末颗粒12包括纯Mg颗粒芯 部14上的多层(A1/A1203/A1)金属涂覆层16。在此例子中,优化强度是在4重量%的氧化铝处实现的,这代表了相比O重量%氧化铝的21%的增长。如本文所述的包含分散颗粒214和纳米基质216的粉末压块200还展示出至少约20ksi的室温剪切强度,所述分散颗粒214包括Mg,而纳米基质216包括各种纳米基质材料。这与具有约Sksi的室温剪切强度的由纯Mg粉末形成的粉末压块形成对比。本文所公开类型的粉末压块200能够实现与基于粉末10的组成的压块材料的预定理论密度基本相等的实际密度,该粉末10的组成包括颗粒芯部14和金属涂覆层16的相对数量的成分,且本文将其描述成完全致密的粉末压块。如本文所述的包含分散颗粒和纳米基质216的粉末压块200展示出约I. 738g/cm3 一约2. 50g/cm3的实际密度,这基本与预定理论密度相等,与预定理论密度相差至多4%,其中所述分散颗粒包括Mg,而纳米基质216包括各种纳米基质材料。可以将如本文公开的粉末压块200配置成响应于井孔中的改变条件而可选性与可控性地可溶于井孔流体中。可用于提供可选性与可控性的溶解度的改变条件的例子包括温度变化、压力变化、流量变化、井孔流体的PH变化或化学组成变化,或其组合。包括温度变化的改变条件的例子包括井孔流体的温度变化。例如,参考图18和20,包含如本文所述的包括Mg的分散颗粒214和包括各种纳米基质材料的纳米基质216的粉末压块200在室温下在3%KC1溶液中具有约O —约llmg/cm2/hr的相对低的腐蚀速度,相对于在200° F约I 一约246mg/cm2/hr的相对高的腐蚀速度而言,这取决于不同的纳米级涂覆层16。包括化学组成变化的改变条件的例子包括井孔流体的氯离子浓度或PH值变化,或两者。例如,参考图18和21,包含如本文所述的包括Mg的分散颗粒214和包括各种纳米级涂层的纳米基质216的粉末压块200在15%HC1中展示出约4750mg/cm2/hr_约7432mg/cm2/hr的腐蚀速度。因此,可以使用可选性与可控性的溶解度实现如图22所示的特征响应,该可选性与可控性的溶解度响应于井孔的改变条件即从KCl到HCl的井孔流体化学组成的变化,该图22说明了在所选的预定临界使用时间(CST)下,随着将粉末压块200用于给定应用中,例如井孔环境,可以将改变的条件施加于粉末压块200,这引起粉末压块200响应于其所应用的环境中的改变条件的可控变化。例如,在预定CST下,将与粉末压块200接触的井孔流体从第一流体(例如KCl)改变到第二井孔流体(例如HCl),所述第一流体提供作为时间函数的第一腐蚀速度和相关的重量损失或强度,所述第二井孔流体提供作为时间函数的第二腐蚀速度和相关的重量损失和强度,其中与第一流体相关的腐蚀速度显著小于与第二流体相关的腐蚀速度。例如,可以使用对于井孔流体条件的变化的这种特征响应将临界使用时间与用于特定应用的尺度损失极限或最低强度关联,使得当由如本文所公开的粉末压块200形成的井孔工具或部件不再需要在井孔中使用(例如CST)时,井孔(例如井孔流体的氯离子浓度)中的条件可以改变以导致粉末压块200的快速溶解及其从井孔去除。在上述的例子中,粉末压块200以约O —约7000mg/cm2/hr的速度可选性地可溶。这一系列的响应例如提供这样的能力通过在不到一小时中改变井孔流体从井孔去除由这种材料形成的3英寸直径球。上述的可选性与可控性的溶解度行为与本文所述的优异强度和低密度性能结合定义了一种新设计的分散的颗粒一纳米基质材料,该纳米基质材料配置为与流体接触并配置成作为与流体接触时间的函数从一种第一强度条件到低于工作强度阈值的第二强度条件,或从 第一重量损失量到大于重量损失极限的第二重量损失量的可选性与可控性的转变。分散的颗粒一纳米基质复合物是本文描述的粉末压块200的特性,并包括纳米基质材料220的网状纳米基质216、包括分散在基质中的颗粒芯部材料218的多个颗粒214。纳米基质216的特征是遍及纳米基质扩展的固态结合层219。与上文所述的流体接触的时间可以包括如上文所述的CST。CST可以包括溶解与流体接触的粉末压块200的预定部分所期望或需要的预定时间。CST还可以包括对应于工程材料或流体的性能、或其组合的变化的时间。在工程材料的性能变化的情形中,该变化可以包括工程材料的温度变化。在存在流体的性能变化的情形中,该变化可以包括流体的温度、压力、流量、化学组成或PH值或其组合的变化。可以调节工程材料与工程材料或流体的性能或其组合的变化从而提供所需的CST响应特性,包括在CST之前(例如阶段I)和CST之后(例如阶段2)的特定性能(例如,重量损失、强度损失)的变化速度,如图22所示。参考图17,制备粉末压块200的方法400。方法400包括形成410包含粉末颗粒12的涂覆的金属粉末10,所述粉末颗粒12具有颗粒芯部14以及布置于其上的纳米级金属涂覆层16,其中金属涂覆层16具有一种化学组成,且颗粒芯部14的化学组成不同于金属涂覆材料16的化学组成。方法400还包括通过如下方式形成420粉末压块对涂覆的粉末颗粒施加预定温度和预定压力以形成纳米基质材料220的基本上连续的网状纳米基质216和分散在如本文所述的纳米基质216中的多个分散的颗粒214,所述预定温度和预定压力足以通过固相烧结将它们烧结,所述固相烧结为多个涂覆的颗粒粉末12的涂覆的层的固相
紅彡口 涂覆的金属粉末10的形成410可以通过任何合适的方法进行,该涂覆的金属粉末10包含粉末颗粒12以及布置于其上的纳米级金属涂覆层16,该粉末颗粒12具有颗粒芯部14。在示例性实施方案中,形成410包括使用如本文所述的流化床化学气相沉积(FBCVD)将如本文所述的金属涂覆层16施加到如本文所述的颗粒芯部14。施加金属涂覆层16可以包括施加如本文所述的单层金属涂覆层16或多层金属涂覆层16。施加金属涂覆层16还可以包括在施加单个层时控制其厚度,以及控制金属涂覆层16的总体厚度。可以如本文所述形成颗粒芯部14。粉末压块200的形成420可以包括形成粉末10的完全致密压块的任何合适的方法。在示例性实施方案中,形成420包括动态锻压生坯密度的前体粉末压块100从而施加足以烧结和变形粉末颗粒的预定温度和预定压力,并形成如本文所述的完全致密的纳米基质216和分散颗粒214。如本文使用的动态锻压意指动态施加负载,其温度和持续时间足以促进相邻粉末颗粒12的金属涂覆层16的烧结,并可以优选包括在预定负载速度下,在一定温度下施加动态锻压负载一段时间,该时间和温度足以形成烧结的和完全致密的粉末压块200。在示例性实施方案中,动态锻压包括I)加热前体或生坯状态的粉末压块100到预定固相烧结温度,例如足以促进相邻粉末颗粒12的金属涂覆层16之间相互扩散的温度;2)将前体粉末压块100保持在烧结温度持续预定保持时间,例如足以确保烧结温度遍及前体压块100的基本均匀性的时间;3)将前体粉末压块100锻压至完全密度,例如通过如下方式根据足以快速实现完全密度的预定压力进度表(schedule)或斜变(ramp)速率施加预定锻压压力,同时将压块保持在预定烧结温度;和4)使压块冷却到室温。在形成420过程 中施加的预定压力和预定温度包括如本文所述的将确保粉末颗粒12的固态烧结和变形从而形成完全致密的粉末压块200的烧结温度Ts和锻压压力PF,该粉末压块200包括固态结合217和结合层219。将前体粉末压块100加热到预定烧结温度和将前体粉末压块100保持于预定烧结温度持续预定时间的步骤可以包括温度和时间的任何合适组合,并取决于例如所选择的粉末10,包括用于颗粒芯部14和金属涂覆层16的材料、前体粉末压块100的尺寸、所用的加热方法和影响为实现前体粉末压块100内的所需温度和温度均匀性所需时间的其它因素。在锻压步骤中,预定压力可以包括足以实现完全致密的粉末压块200的任何合适压力和压力施加进度表或压力斜变速度,并取决于例如所选择的粉末颗粒12的材料性能,包括依赖温度的应力/应变特性(例如应力/应变速度特性)、相互扩散和冶金热动力学和相平衡特性、位错动动力学及其它材料性能。例如,可以使用动态锻压的最大锻压压力和锻压进度表(即对应于所使用的应变速度的压力斜变速度)来调节粉末压块的机械强度和韧性。最大锻压压力和锻压斜变速度(即应变速度)是正低于压块开裂压力的压力,即在压块中不形成裂缝的情况下动态回复过程不能释放压块显微组织中的应变能。例如,对于需要具有相对较高强度和较低韧性的粉末压块的应用,可以使用相对较高的锻压压力和斜变速度。如果需要粉末压块的相对较高韧性,可以使用相对较低的锻压压力和斜变速度。对于本文描述的粉末10和其尺寸足以形成多个井孔工具和部件的前体压块100的某些示例性实施方案,可以使用约I 一约5小时的预定保持时间。如本文所述,优选地选择预定烧结温度Ts从而避免任一颗粒芯部14和金属涂覆层16的熔化,因为它们在方法400期间进行转化以提供分散的颗粒214和纳米基质216。对于这些实施方案,动态锻压可以包括通过在约O. 5 —约2ksi/秒的压力斜变速度下动态压制到约80ksi的最高值来施加锻压压力。在颗粒芯部14包括Mg和金属涂覆层16包括如本文所述的各种单一和多层涂覆层(例如包含Al的各种单一和多层涂覆层)的示例性实施方案中,通过如下方式进行动态锻压在约450°C至约470°C的温度Ts下烧结至多约I小时而不施加锻压压力,接着通过以约O. 5 —约2ksi/秒的斜变速度施加等静压力至约30ksi —约60ksi的最大压力Ps进行动态锻压,这导致约15秒至约120秒的锻压循环。锻压循环的短时间是明显的优势,因为它将相互扩散,包括给定金属涂覆层16内的相互扩散、相邻的金属涂覆层16之间的相互扩散以及金属涂覆层16与颗粒芯部14之间的相互扩散,限制为形成冶金结合217与结合层219所需要的相互扩散,同时也保持所需的等轴分散颗粒214的形状与网状纳米基质216强化相的完整性。动态锻压循环的时间显著短于常规粉末压块形成工艺例如热等静压(HIP)、压力辅助烧结或扩散烧结所需的形成循环和烧结时间。方法400也可以任选地包括通过如下方式形成430前体粉末压块充分地将多个涂覆的粉末12进行压实从而使颗粒变形并彼此形成颗粒间的结合且在形成420粉末压块之前形成前体粉末压块100。压实可以包括在室温压制例如等静压多个粉末颗粒12至形成前体粉末压块100。可以在室温下进行压实430。在示例性实施方案中,粉末10可以包括含Mg的颗粒芯部14,且形成430前体粉末压块可以在室温下在约IOksi —约60ksi的等静压力下进行。方法400还可以任选地在形成420粉末压块或形成430前体粉末压块之前包括将 第二种粉末30混入440如本文所述的粉末10中。不受限于理论,由涂覆的粉末颗粒12形成粉末压块200,该涂覆的粉末颗粒12包括颗粒芯部14和相关的芯部材料18以及金属涂覆层16和相关的金属涂覆材料20从而形成基本连续的、三维的、网状纳米基质216,该网状纳米基质216包括通过各自涂覆层16的烧结和相关扩散形成的纳米基质材料220,所述各自涂覆层16包括颗粒芯部材料218的多个分散颗粒214。这种独特的结构可以包括将会很难或不可能通过从熔体凝固而形成的材料的亚稳组合,所述熔体具有相同的相对量的构成材料。可以选择涂覆层和相关的涂覆材料从而提供在预定流体环境例如井孔环境中可选性与可控性的溶解速度,其中预定流体可以是注入井孔或从井孔提取的常用的井孔流体。还将从本文的描述中理解,纳米基质的受控溶解使芯部材料的分散颗粒暴露。还可以选择颗粒芯部材料从而也提供井孔流体中的可选性与可控性的溶解。或者,还可以选择它们从而对粉末压块200提供特定的机械性能,例如抗压强度或剪切强度,而不必提供芯部材料本身的可选性与可控性的溶解,因为围绕这些颗粒的纳米基质材料的可选性与可控性的溶解必然会释放它们,使得它们被井孔流体带走。可以选择以提供强化相材料的基本连续、网状纳米基质216以及可以选择以提供等轴分散颗粒214的分散颗粒214的显微组织形态对这些粉末压块提供了增强的机械性能,包括抗压强度和剪切强度,因为可以控制纳米基质/分散颗粒的所得形态从而通过类似于常规强化机制的工艺提供强化,所述常规强化机制例如晶粒尺寸减小、通过使用杂质原子的固溶强化、析出或时效硬化和强度/加工硬化的机制。由于如本文所述的纳米基质材料内的不连续层之间的界面以及多个颗粒纳米基质界面,因此纳米基质/分散的颗粒结构趋于限制位错运动。如图23和24所示,这例示于这些材料的断裂行为中。在图23中,使用未涂覆纯Mg粉末制成粉末压块200,并使其经受足以诱发失效(表现为晶间断裂)的剪切应力。相比之下,在图24中,使用粉末颗粒12制成粉末压块200并使其经受足以诱发失效(表现为穿晶断裂)的剪切应力和如本文所述的显著较高的破裂应力,该粉末颗粒12具有纯Mg粉末颗粒芯部14 (从而形成分散颗粒214)和包括Al的金属涂覆层16 (从而形成纳米基质216)。由于这些材料具有高强度特性,因此可以选择芯部材料与涂覆材料以利用低密度材料或其它低密度材料,例如低密度的金属、陶瓷、玻璃或碳,否则将不会提供用于所需应用包括井孔工具和部件中的必要强度特性。虽然已经显示和描述了一个或多个实施方案,但可以对其进 行修改和替换,而不背离本发明的精神和范围。因此,要理解,通过说明而非限制的方式描述了本发明。
权利要求
1.粉末金属压块,包含 包含纳米基质材料的基本连续、网状纳米基质; 包含颗粒芯部材料的多个分散的颗粒,所述颗粒芯部材料包含Mg、Al、Zn或Mn、或其组合,其分散在网状纳米基质中;和 固态结合层,其遍及网状纳米基质在分散的颗粒之间扩展。
2.权利要求I的粉末金属压块,其中纳米基质材料具有熔化温度(TM),颗粒芯部材料具有熔化温度(Tdp);其中压块在烧结温度(Ts)下能够以固态而烧结,且Ts小于Tm。
3.权利要求I的粉末金属压块,其中颗粒芯部材料包含Mg- Zn、Mg - Zn、Mg — Al、Mg — Mn 或 Mg — Zn — Y。
4.权利要求I的粉末金属压块,其中芯部材料包含Mg- Al-X合金,其中X包含Zn、Mn、Si、Ca或Y或其组合。
5.权利要求4的粉末金属压块,其中Mg-Al-X合金包含至多约85%的Mg、至多约15%的Al和至多约5%的X,按重量计。
6.权利要求I的粉末金属压块,其中分散的颗粒还包含稀土元素。
7.权利要求I的粉末金属压块,其中分散的颗粒具有约5至约300 的平均颗粒尺寸。
8.权利要求I的粉末金属压块,其中分散的颗粒的分散包含在网状纳米基质内基本均勻的分散。
9.权利要求I的粉末金属压块,其中分散颗粒的分散包括在网状纳米基质内颗粒尺寸的多峰分布。
10.权利要求I的粉末金属压块,其中分散的颗粒具有等轴的颗粒形状。
11.权利要求I的粉末金属压块,还包含多个分散的第二种颗粒,其中分散的第二种颗粒也在网状纳米基质内并且相对于所述分散的颗粒而分散。
12.权利要求11的粉末金属压块,其中分散的第二种颗粒包含Fe、Ni、Co或Cu、或其氧化物、氮化物或碳化物、或任何上述材料的组合。
13.权利要求I的粉末金属压块,其中纳米基质材料包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、氮化物或碳化物、或任何上述材料的组合,且其中纳米基质材料具有一种化学组成,且颗粒芯部材料具有的化学组成不同于纳米基质材料的化学组成。
14.权利要求I的粉末金属压块,其中网状纳米基质具有约50nm—约5000nm的平均厚度。
15.权利要求I的粉末金属压块,其中该压块由包含多个粉末颗粒的烧结粉末形成,每个粉末颗粒具有颗粒芯部,其在烧结时包含分散的颗粒和布置于所述分散的颗粒上的单一金属涂覆层,且其中多个分散的颗粒的相邻颗粒之间的网状纳米基质包含一种粉末颗粒的单一金属涂覆层、结合层和另一种粉末颗粒的单一金属涂覆层。
16.权利要求15的粉末金属压块,其中分散的颗粒包含Mg,且网状纳米基质包含Al或Ni,或其组合。
17.权利要求I的粉末金属压块,其中该压块由包含多个粉末颗粒的烧结粉末形成,每个粉末颗粒具有颗粒芯部,其在烧结时包含分散的颗粒和布置在所述分散的颗粒上的多个金属涂覆层,且其中多个分散的颗粒的相邻颗粒之间的网状纳米基质包含一种粉末颗粒的多个金属涂覆层,结合层和另一种粉末颗粒的多个金属涂覆层,且其中多个金属涂覆层的相邻涂覆层具有不同的化学组成。
18.权利要求17的粉末金属压块,其中多个层包含布置于颗粒芯部上的第一层和布置于第一层上的第二层。
19.权利要求18的粉末金属压块,其中分散的颗粒包含Mg,而第一层包含Al或Ni,或其组合,第二层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其组合,其中第一层的化学组成不同于第二层的化学组成。
20.权利要求19的粉末金属压块,权利要求18的金属粉末,还包含布置于第二层上的第三层。
21.权利要求20的粉末金属压块,其中第一层包含Al或Ni或其组合,第二层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、氮化物或碳化物,或任何上述第二层材料的组合,且第三层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其组合,其中第二层的化学组成不同于第三层的化学组成。
22.权利要求21的粉末金属压块,还包含布置于第三层上的第四层。
23.权利要求22的粉末金属压块,其中第一层包含Al或Ni或其组合,第二层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、氮化物或碳化物,或任何上述第二层材料的组合,第三层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni、或其氧化物、氮化物或碳化物,或任何上述第三层材料的组合,且第四层包含Al、Mn、Fe、Co或Ni、或其组合,其中第二层的化学组成不同于第三层的化学组成,第三层的化学组成不同于第四层的化学组成。
24.粉末金属压块,包含 包含纳米基质材料的基本连续、网状纳米基质; 分散在网状纳米基质中的标准氧化势小于Zn的金属、陶瓷、玻璃或碳、或其组合,和 固态结合层,其遍及网状纳米基质在分散的颗粒之间扩展。
25.权利要求24的粉末金属压块,其中纳米基质材料包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、S i、Ca、Co、Ta、Re或Ni、或其氧化物、氮化物或碳化物,或任何上述材料的组合,其中纳米基质材料具有一种化学组成,芯部材料具有的化学组成不同于纳米基质材料的化学组成。
全文摘要
公开了一种粉末金属压块。该粉末压块包括包含纳米基质材料的基本连续、网状纳米基质。该粉末压块还包括包含颗粒芯部材料的多个分散的颗粒和固态结合层,所述颗粒芯部材料包含Mg、Al、Zn或Mb、或其组合,其分散在网状纳米基质中,所述固态结合层遍及网状纳米基质在分散的颗粒之间扩展。纳米基质粉末压块是独特地轻重量、高强度材料,且提供独特的可选性与可控性腐蚀性能,包括非常快速的腐蚀速率,用于制造多重可降解或可处置的制品,包括各种井下工具和部件。
文档编号B22F3/12GK102781608SQ201080055609
公开日2012年11月14日 申请日期2010年12月7日 优先权日2009年12月8日
发明者G·阿格拉瓦尔, 徐志跃 申请人:贝克休斯公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1