一种制备荧光碳纳米颗粒的方法

文档序号:3448014阅读:150来源:国知局
专利名称:一种制备荧光碳纳米颗粒的方法
技术领域
本发明涉及采用软-硬模板路线自下而上制备荧光碳纳米颗粒的方法,属纳米功能碳材料制备工艺技术领域。
背景技术
突光碳基纳米材料,包括碳纳米管(carbon nanotubes)、碳点(carbon dots)和纳米金刚石(nanodiamonds)等,作为一种新型的突光材料迅速发展起来。与半导体量子点相比,其具有较高的荧光量子产率、稳定的化学组成、良好的生物相容性和低的细胞毒性等优点使荧光碳基纳米材料一出现,立即引起了化学家、材料学家和生物学家的极大热情和 关注,在生物成像、疾病检测和药物等生命科学领域初步展现出了优良的品质。关于目前的发展现状,经过对现有技术文献的检索发现,目前报道的荧光碳基纳米材料的合成方法自上而下的较多,且制备的纳米碳颗粒容易发生团聚,例如中国专利申请号200810197695.1公开了一种利用电化学氧化碳电极制备荧光碳点的方法;中国专利申请号201010126320. 3公开了一种热解乙二胺四乙酸钠盐合成荧光碳点的方法;中国专利申请号201010601015. 5公开了一种通过脉冲或连续激光光束轰击含碳的靶材制备荧光碳点的方法;中国专利号201110356592. 7公开了一种利用电化学刻蚀碳纤维电极制备荧光碳点的方法。近些年来,自下而上的合成方法由于具有操作简单、无需复杂仪器设备且可有效控制碳点尺寸、发光特性等优势引起了人们的关注。不过,大部分合成路线如水热法、微波法、氧化法,在制备过程中由于温度较高,很容易发生碳颗粒的团聚。更重要的是,目前报道中对荧光碳颗粒的制备方法的探讨仅仅是局限在一个点上,即只考察某一碳源在一个特定合成条件下得到的荧光碳颗粒,对其组分、尺寸大小和石墨化程度等影响荧光性质的参数均没有进行探索。这里,我们通过软-硬模板法,以表面活性剂形成的胶束为软模板,其中心疏水区作为疏水性有机小分子的限制空间,而胶束外围的二氧化硅作为高温焙烧过程中提供了很好的限制空间,有效的控制碳点团聚,合成尺寸可控、组分和石墨化程度可调、分散性良好的荧光碳颗粒,这一方法还未见报道。

发明内容
本发明的目的是提供一种制备荧光碳纳米颗粒的方法,根据其碳源的不同,所得到的荧光碳点的尺寸、组成和石墨化程度均有所不同,相应的荧光量子产率也随之不同。本发明公开了一种制备荧光碳纳米颗粒的方法,其特征在于具有以下工艺过程和步骤
a.称取2.0 g 的 P123 (EO2q-PO7q-EO2q,分子量 5800)溶于 75 ml 1.6 M 盐酸溶液中,在40°C下搅拌至澄清后再将4. 3 g正硅酸乙酯加入到此溶液中;
b.将上述溶液在40°C下继续搅拌65min后,混合溶液呈白色雾状。在1000 rpm,5min下迅速离心混合溶液,将得到的白色固体沉淀重新加入到含1. 0 g P123的75 ml 1.6M盐酸溶液中;C.在混合溶液中加入2. O g均三甲苯在40°C下强烈搅拌24小时,然后转移到373 K下水热24小时;
d.上述水热产物经过滤洗涤后,在空气中干燥;
e.将干燥后产物置于石英舟中,在氮气保护下放在管式炉内,以1°C/min速率升温至900°C,在900°C保持2小时,随后冷却降温至室温,收集得到的粉末;
f.将上一步得到的粉末置于离心管中,用HF(10 wt%)溶液在40°C下刻蚀48小时,随后将所得溶液置于透析袋中,透析袋截留分子量范围3500,透析24小时;
g.将透析后的悬浊液置于圆底烧瓶,加入悬浊液1/4体积的浓硝酸,加热至120°C,回流24小时,冷却后将所得溶液置于透析袋中,透析袋截留分子量范围3500,透析24小时;
h.将透析后的溶液置于圆底烧瓶中,加入10-20mg钝化剂PEG15qqn (H2NCH2 (CH2CH2O)nCH2CH2CH2NH2),加热至120°C,回流72小时,冷却后将所得溶液置于透析袋中,透析袋截留·分子量范围3500,透析12小时,即可得到水溶性、单分散的荧光碳纳米颗粒,其颗粒的平均直径大小为2-3. 5 nm。所述的2.0 g均三甲苯可用相同质量的不同组成和结构的其它有机分子如邻苯二胺、芘和菲啰啉代替。本发明的特点及优点如下所述
本发明所描述的一种软-硬模板制备的单分散性荧光碳颗粒,具有原料适用性广、尺寸可控性强、荧光量子产率高、分散性好且无毒性的特点,这为其在生物医学和发光电子器件等领域的应用提供了一大优势。本发明所用的作为碳源的膨胀剂均三甲苯可用邻苯二胺、芘、菲啰啉等有机小分子代替。选用不同组成和结构的碳源,通过调节膨胀剂与表面活性剂胶束之间的相互作用,并结合分子自身结构对其亲、疏水性的影响,可以得到尺寸、组分和石墨化程度均有所不同的荧光碳颗粒。所需实验条件温和,结果重复性好,制备过程无环境污染物释放,属于环境友好的制备工艺。


图1.分别以膨胀剂均三甲苯、邻苯二胺、芘和菲啰啉为碳源所得到的荧光碳颗粒CDtmb、CDdab, CDpy、CDpha 的原子力显微镜照片(A、B、C 和 D)。图2.分别以膨胀剂均三甲苯、邻苯二胺、芘和菲啰啉为碳源所得到的荧光碳颗粒⑶ B、CDdab,⑶PY、⑶ 的透射电子显微镜照片(A、B、C和D)。图3.分别以膨胀剂均三甲苯、邻苯二胺、芘和菲啰啉为碳源所得到的荧光碳颗粒⑶ B、CDdab,⑶PY、⑶ 的紫外-可见吸收光谱和荧光发射光谱(A、B、C和D)。
具体实施例方式下面对本发明的实施例作详细说明。本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程。实施例1
(1)称取2.0g P123,溶于75 ml 1.6 M盐酸溶液中,40°C下搅拌2小时至溶液澄清后加入4. 3 g正硅酸乙酯;
(2)继续反应65min后,迅速将混合液置于离心机离心分离,转速1000转,5分钟,收集沉淀;
(3)将沉淀加入含有Ig P123的75 ml 1.6 M盐酸溶液中,随后加入2 g均三甲苯(可用2 g邻苯二胺或2 g芘或2 g菲啰啉代替),在40°C下继续搅拌24小时,然后转移到373K下水热24小时;
(4)将水热后的产物通过真空泵进行抽滤,并用去离子水进行清洗,得到的沉淀在空气中干燥;
(5)将干燥后的产物置于石英舟中,在氮气保护下放在管式炉中,在10小时内升温至900°C,在最高温度保持2小时,随后冷却降温至室温,收集得到的粉末;
(6)将上一步得到粉末置于离心管中,加入HF(10 wt%)溶液至离心管口 3-4 cm处,搅拌反应48小时,随后将反应产物置于透析袋中,透析袋截留分子量范围3500,透析24小时;
(7)取20ml透析后的混合液置于圆底烧瓶,加入5 ml浓硝酸,加热至120°C,回流24小时,冷却至室温后将所得溶液置于透析袋中,透析袋截留分子量范围3500,透析24小时;
(8)取20ml上述混合溶液置于圆底烧瓶,加入0.2 g钝化剂PEG15qqn,加热至120°C,回流72小时,冷却至室温后将所得溶液置于透析袋中,透析袋截留分子量范围3500,透析12小时即可得到多孔性荧光碳颗粒。对实施例所得样品的仪器检测
(1)原子力显微镜(AFM)的检测
用AFM表征上述实施例得到的荧光碳颗粒的形貌,结构表明以膨胀剂均三甲苯为碳源制备的荧光碳颗粒CDtmb高度在2-3. 5 nm,以膨胀剂邻苯二胺为碳源制备的荧光碳颗粒CDdab高度在2. 5-3. 5 nm,以膨胀剂芘为碳源制备的荧光碳颗粒⑶PY高度在3-4. 5 nm,以膨胀剂菲啰啉为碳源制备的荧光碳颗粒CDpha高度在3. 5-5 nm,且均具有良好的分散性。参见图1(A、B、C^O)
(2)透射电子显微镜(TEM)的检测
用TEM表征上述实施例得到的荧光碳纳米颗粒的形貌,结构表明以膨胀剂均三甲苯为碳源制备的荧光碳颗粒CDtmb直径在2-3. 5 nm,以膨胀剂邻苯二胺为碳源制备的荧光碳颗粒CDdab直径在2. 5-3. 5 nm,以膨胀剂芘为碳源制备的荧光碳颗粒OTpy直径在3-4. 5 nm,以膨胀剂菲啰啉为碳源制备的荧光碳颗粒⑶PHA高度在3. 5-5 nm。参见图2 (A、B、(^PD)。(3)紫外-可见分光光度计和荧光分光光度计的检测
用紫外-可见分光光度计和荧光分光光度计表征四种膨胀剂所得荧光碳颗粒CDTMB、CDdab, CDpy, CDpha的光学性质,结果显示其荧光发射光谱均具有对激发波长依赖性,在激发光波长是360 nm时,发射光最强,其波峰位于435 nm左右。参见图3 (A、B、(^PD)。(4)荧光碳纳米颗粒荧光量子产率的测量
在测量中,采用硫酸奎宁(0.05 M/L)为参照标准(其荧光量子产率为54%)。首先,分别测量荧光碳纳米颗粒水溶液和硫酸奎宁溶液在相同激发波长时得吸光度,在分别测量荧光碳纳米颗粒水溶液和硫酸奎宁溶液的荧光发射峰,并积分得到荧光发射峰的峰面积。再按照以下公式计算荧光量子产率(QY)。QYs = QYr(Fs/Fr) (Ar/As) (ns/nr)2
Fs (样品)和Fr (参比)是荧光发射峰峰面积,As (样品)和Ar (参比)是在激发波长下紫外吸光度,ns (样品)和L (参比)是溶剂的折射率。QYs和Qt分别是样品和参比的荧光量子产率。本发明所述以膨胀剂均三甲苯为碳源时制备的荧光碳颗粒CDtmb荧光量子产率为3. 3%,以邻苯二胺为碳源时制备的荧光碳颗粒CDdab荧光量子产率为4. 1% ;以芘为碳源时制备的荧光碳颗粒CDpy荧光量子产率为4. 7% ;以菲啰啉为碳源时制备的荧光碳颗粒CDpha荧光量子产率为4. 5%。(5)不同有机分子为碳源所得到的荧光碳颗粒的物理和光学参数列出于下表I。
表1.不同有机分子为碳源所得到的荧光碳颗粒的物理和光学参数
I碳源分子结构I碳颗粒大小(nm) I晶化结构I组成I最强突光发射光谱中心(nm)|量子产率(%)
CDtmb I2-3.5无定形 C, H, 04353.3
______
CDdabNHa 2. 5-3. 5无定形 C,H,0,N 4374.1
HaHi6______
CDpy H3-4.5石墨化 C,H,0, 4184.7
______
CDpha3.5-5石墨化 C,H,0,N 4384.5
1 I __
权利要求
1.一种制备荧光碳纳米颗粒的方法,其特征在于具有以下工艺过程和步骤 a.称取2.O g的P123溶于75 ml 1.6 M盐酸溶液中,在40°C下搅拌至澄清后再将4. 3g正硅酸乙酯加入到此溶液中; b.将上述溶液在40°C下继续搅拌65min后,混合溶液呈白色雾状;在1000 rpm, 5 min下迅速离心混合溶液,将得到的白色固体沉淀重新加入到含1. 0 g P123的75 ml 1.6 M盐酸溶液中; c.在混合溶液中加入2.0g均三甲苯,在40°C下强烈搅拌24小时,然后转移到373 K下水热24小时; d.上述水热产物经过滤洗涤后,在空气中干燥; e.将干燥后产物置于石英舟中,在氮气保护下放在管式炉内,以1°C/min速率升温至900°C,在900°C保持2小时,随后冷却降温至室温,收集得到的粉末; f.将上一步得到的粉末置于离心管中,用HF(10 wt%)溶液在40°C下刻蚀48小时,随后将所得溶液置于透析袋中,透析袋截留分子量范围3500,透析24小时; g.将透析后的悬浊液置于圆底烧瓶,加入悬浊液1/4体积的浓硝酸,加热至120°C,回流24小时,冷却后将所得溶液置于透析袋中,透析袋截留分子量范围3500,透析24小时; h.将透析后的溶液置于圆底烧瓶中,加入10-20mg钝化剂PEG15qqn (H2NCH2(CH2CH2O)nCH2CH2CH2NH2),加热至120°C,回流72小时,冷却后将所得溶液置于透析袋中,透析袋截留分子量范围3500,透析12小时,即可得到水溶性、单分散性的荧光碳纳米颗粒,其颗粒平均直径为2-3. 5 nm。
2.根据权利要求1所述的一种制备荧光碳纳米颗粒的方法,其特征是,所述的均三甲苯可用相同质量的不同组成和结构的其它有机分子如邻苯二胺、芘和菲啰啉代替。
全文摘要
本发明涉及一种制备荧光碳纳米颗粒的方法。本发明方法的主要过程是以三嵌段共聚物P123为结构导向剂,正硅酸乙酯为硅源,油溶性有机小分子、邻苯二胺(DAB)、芘(PY)、菲啰啉(PHA)为膨胀剂并作为目标荧光碳颗粒的碳源,在酸性水溶液体系合成膨胀剂/P123/二氧化硅复合材料。随后将该材料在惰性气体保护下置于管式炉中进行焙烧,焙烧温度为900℃,焙烧时间为2小时。冷却至室温后,刻蚀除去粉体中的二氧化硅组分,并对其进行硝化以及钝化处理,最终得到具有水溶性单分散性荧光碳颗粒。本发明的产物同时采用了表面活性剂P123为软模板和介孔二氧化硅为硬模板,所得到的荧光碳颗粒具有良好的分散性和稳定性。
文档编号C01B31/02GK102994080SQ20121052015
公开日2013年3月27日 申请日期2012年12月7日 优先权日2012年12月7日
发明者刘瑞丽, 杨玉星, 吴东清 申请人:上海大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1